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To Jerrold E. Marsden, 1942--2010

Jerry Marsden, Carl F. Braun distinguished Professor at the
California Institute of Technology, Fellow of the Royal Society
(as was Isaac Newton), and one of the world’s pre-eminent
applied mathematicians, passed away on September 21, 2010,
while working on the sixth edition of Vector Calculus. Jerry’s
interests were unusually broad; his work influenced physicists,
engineers, life scientists, and mathematicians across the scientific
and engineering spectrum. In addition to his many publications
(over 400 archival and conference papers and 21 books) and
major scientific prizes, he was a brilliant expositor and teacher.
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Preface
This text is intended for a one-semester course in the calculus of functions of several
variables and vector analysis, which is normally taught at the sophomore level. In addi-
tion to making changes and improvements throughout the text, we have also attempted
to convey a sense of excitement, relevance, and importance of the subject matter.

Prerequisites
Sometimes courses in vector calculus are preceded by a first course in linear algebra,
but this is not an essential prerequisite. We require only the bare rudiments of matrix
algebra, and the necessary concepts are developed in the text. If this course is preceded
by a course in linear algebra, the instructor will have no difficulty enhancing the material.
However, we do assume a knowledge of the fundamentals of one-variable calculus—the
process of differentiation and integration and their geometric and physical meaning as
well as a knowledge of the standard functions, such as the trigonometric and exponential
functions.

The Role of Theory
The text includes much of the basic theory as well as many concrete examples and
problems. Some of the technical proofs for theorems in Chapters 2 and 5 are given
in optional sections that are readily available on the Book Companion Web Site at
www.whfreeman.com/marsdenvc6e (see the description on the next page). Section 2.2,
on limits and continuity, is designed to be treated lightly and is deliberately brief. More
sophisticated theoretical topics, such as compactness and delicate proofs in integration
theory, have been omitted, because they usually belong to a more advanced course in
real analysis.

Concrete and Student-Oriented
Computational skills and intuitive understanding are important at this level, and we
have tried to meet this need by making the book concrete and student-oriented. For
example, although we formulate the definition of the derivative correctly, it is done
by using matrices of partial derivatives rather than abstract linear transformations. We
also include a number of physical illustrations such as fluid mechanics, gravitation,
and electromagnetic theory, and from economics as well, although knowledge of these
subjects is not assumed.

Order of Topics
A special feature of the text is the early introduction of vector fields, divergence, and curl
in Chapter 4, before integration. Vector analysis often suffers in a course of this type,
and the present arrangement is designed to offset this tendency. To go even further, one
might consider teaching Chapter 3 (Taylor’s theorems, maxima and minima, Lagrange
multipliers) after Chapter 8 (the integral theorems of vector analysis).

New to This Edition
This sixth edition was completely redesigned, but retains and improves on the balance
between theory, applications, optional material, and historical notes that was present in
earlier editions.

ix

http://www.whfreeman.com/marsdenvc6e
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x Preface

We are excited about this new edition of Vector Calculus, especially the inclusion of
many new exercises and examples. The exercises have been graded from less difficult
to more difficult, allowing instructors to have more flexibility in assigning practice
problems. The modern redesign emphasizes the pedagogical features, making the text
more concise, student-friendly, and accessible. The quality of the art work has been
significantly improved, especially for the crucial three-dimensional figures, to better
reflect key concepts to students. We have also trimmed some of the historical material,
making it more relevant to the mathematics under discussion. Finally, we have moved
some of the more difficult discussions in the fifth edition—such as those on Conservation
Laws, the derivation of Euler’s Equation of a Perfect Fluid, and a discussion of the Heat
Equation—to the Book Companion Web Site. We hope that the reader will be equally
pleased.

Supplements
The following electronic and print supplements are available with Vector Calculus, Sixth
Edition:

1. Book Companion Web Site. www.whfreeman.com/marsdenvc6e The Book
Companion Web Site contains the following materials:

• Additional Content contains additional material suitable for projects as well as
technical proofs and sample examinations with complete solutions. Also
included are discussions of the second derivative test for constrained extrema, a
look at Kepler’s laws and the solution to the two-body problem, a further
discussion of Feynman’s view of The Principle of Least Action and of how cats
fall and astronauts reorient themselves in space, a look at some further
differential equations in Mechanics, and an examination of Green’s function
methods in partial differential equations.

• PowerPoint and KeyNote Slides for instructors to use in presentations of the
text’s figures, as well as section-by-section summaries.

• LATEX and PDF Files of Sample Exams (on instructor’s password-protected site)

2. Student Study Guide with Solutions. This student guide contains helpful hints
and summaries for the material in each section, and the solutions to selected
problems. Problems whose solutions appear in the Student Study Guide have a
colored number in the text for easy reference. The guide has been revised and reset
for the Sixth Edition of Vector Calculus.

3. Instructor’s Manual with Solutions. This supplement contains material available
only to instructors. This includes summaries of material and additional worked-out
examples that are helpful in the preparation of lectures. It also contains additional
solutions to problems and sample exams (some of them with complete solutions).

4. Final Exam Questions. There are practice exams available on the Book
Companion Web Site as well as in the Instructor’s Manual. The level and choice of
topics and the lengths of final exams will vary from instructor to instructor. Working
these problems requires a knowledge of most of the main material of the book,
and solving 10 of these problems should take the reader about 3 hours to complete.

Jerry Marsden and Tony Tromba,
Caltech and UC Santa Cruz, Summer 2010.

http://www.whfreeman.com/marsdenvc6e
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Historical Introduction:
A Brief Account

This, therefore, is Mathematics; she reminds you of the invisible form of the soul; she

gives life to her own discoveries; she awakens the mind and purifies the intellect; she

brings light to our intrinsic ideas; she abolishes oblivion and ignorance which is ours

by birth. ---Proclus, c. 450

Cum Deus Calculat Fit Mundus.

(As God calculates, so the world is created ). ---Leibniz, c. 1700

The word mathematics derives from the Greek word mathema, meaning knowledge,
cognition, understanding, or perception, suggesting that the study of what we now call
mathematics began by asking questions about the world. In fact, the historical evidence
suggests that mathematics began about 2700 years ago as an attempt to comprehend
nature. Unfortunately, in most mathematical expositions, historical motivations and
contexts are often sacrificed. In this new edition, the authors continue to address this
problem by including the discussion of historical and contextual material where appro-
priate. Therefore, before we dive into the mathematics of Vector Calculus, we briefly
discuss the development of mathematics prior to and including the discovery of calculus.

Egyptian, Babylonian, and Greek Mathematics
It is generally acknowledged that mathematics developed in the seventh and sixth cen-
turies B.C., somewhat after the Greeks had developed a uniform alphabet. This is not to
say, however, that mathematical knowledge did not exist before the Greeks. In fact,
the Egyptians and Babylonians knew many empirical facts centuries before the rise of
the Greek civilization. For example, they could solve quadratic equations, compute the
areas of certain geometric figures, such as squares, rectangles, and triangles, and they
possessed a reasonably good formula for the area of a circle, using the value of 3.16 for
π . They also knew how to compute certain volumes like the size of cubes, rectangles,
rectangular solids, cones, cylinders, and (not surprisingly) pyramids. The ancients were
also acquainted with the Pythagorean theorem (at least empirically).

The Greeks, who settled throughout the Mediterranean, must have played an
important role in preserving and spreading the mathematical knowledge of the Egyp-
tians and the Babylonians. However, the Greeks were aware that there were different
formulas for the same area or volumes. For example, the Babylonians had one formula
for the volume of a frustum of a pyramid with a square base, and the Egyptians had
another (see Figure 1).

It is not surprising that the Egyptians (with the experience in pyramid construc-
tion) had the correct formula. Now, given two formulas, it was clear that only one could

xiii
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figure 1 Volume of a frustum of a pyramid with a
square base: V = 1

3 h (a2 + ab+ b2).

be correct. But how could one decide such an answer? Certainly it is not a question
for debate, as would be the question of the quality of works of art. It is likely that the
necessity to determine the answers to such questions is what led to the development of
mathematical proof and to the method of deductive reasoning.

The person usually credited for the invention of rigorous mathematical proof
was a merchant named Thales of Miletus (624–548 B.C.). It is Thales who is said
to be the creator of Greek geometry, and it was this geometry (earth measure) as an
abstract mathematical theory (rather than a collection of empirical facts) supported by
rigorous deductive proofs that was one of the turning points of scientific thinking. It led
to the creation of the first mathematical model for physical phenomena.

For example, one of the most beautiful geometric theories developed during
antiquity was that of conic sections. See Figure 2.

Conics include the straight line, circle, ellipse, parabola, and hyperbola. Their discov-
ery is attributed to Menaechmus, a member of the school of the great Greek philosopher
Plato. Plato, a student of Socrates, founded his school The Academy (see Figure 3) in a sa-
cred area of the ancient city of Athens, called Hekadameia (after the hero Hekademos).
All later academies obtained their name from this institution, which existed without
interruption for about 1000 years until it was dissolved by the Roman Emperor
Justinian in 529 C.E.

A

B

C

D

figure 2 The conic sections: (A) hyperbola,
(B) parabola, (C) ellipse, (D) circle.
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figure 3 Plato’s Academy
(mosaic found in Pompeii, Villa
of T. Siminius Stephanus,
86 × 85 cm, Naples,
Archaeological Museum). With
certainty the seven men have
been identified as Plato (third
from the left) and six other
philosophers, who are talking
about the universe, the celestial
spheres, and the stars. The
mosaic shows Plato’s Academy,
with the city of Athens in the
background. It is probably a
copy (from the first century B.C.)
of a Hellenistic painting.

Plato suggested the following problem to his students:

Explain the motion of the heavenly bodies by some geometrical theory.

Why was this a question of interest and puzzlement for the Greeks? Observed
from the Earth, these motions appear to be quite complicated. The motions of the
sun and the moon can be roughly described as circular with constant speed, but the de-
viations from the circular orbit were troublesome to the Greeks and they felt challenged
to find an explanation for these irregularities. The observed orbits of the planets are
even more complicated, because as they go through a revolution, they appear to reverse
direction several times.

The Greeks sought to understand this apparently wild motion by means of their
geometry. Eudoxus, Hipparchus, and then Apollonius of Perga (262–190 B.C.) suggested
that the celestial orbits could be explained by combinations of circular motion (that is,
through the construction of curves called epicycles traced out by circles moving on
other circles). This idea was to become the most important astronomical theory of
the next two thousand years. This theory, known by us through the writings of the
Greek astronomer Ptolemy of Alexandria, ultimately becomes known as the “Ptolemaic
theory.” See Figures 4 and 5.

Most of Greek geometry was codified by Euclid in his Elements (of Mathematics).
Actually the Elements consist of thirteen books, in which Euclid collected most of
the mathematical knowledge of his age (circa 300 B.C.), transforming it into a lucid,
logically developed masterpiece. In addition to the Elements, some of Euclid’s other
writings were also handed down to us, including his Optics and the Catoptrica (theory
of mirrors).

The success of Greek mathematics had a profound effect on views of nature. The
Platonists, or followers of Plato, distinguished between the world of ideas and the world
of physical objects. Plato was the first to propose that ultimate truth or understanding
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figure 4 Woodcut from Georg von Peurbach’s
Theoricae novae planetarum, edited by Oronce
Fine as a teaching text for the University of Paris
(1515). It was the canonical description of the
heavens until the end of the sixteenth century,
and even Copernicus was to a large extent
under the influence of this work. Peurbach
described the solid sphere representations of
Ptolemaic planetary models, which he probably
based on Ibn al-Haytham’s work “On the
configuration of the world” (translated into Latin
in the thirteenth century). The same frontispiece
was used for the Sacrosbosco edition of the first
four books of Euclid’s Elements (in excerpts),
which appeared under the title Textus de
Sphaera in Paris (1521).

figure 5 Ptolemy observing the stars with
a quadrant, together with an allegoric
Astronomia. (From Gregorius Reish, Margarita
Philosophica nova, Strasbourg, 1512, an early
compendium of philosophy and science.) In
those days, Ptolemy was often depicted as a
king, because he was erroneously thought to be
descended from the Ptolemaic dynasty that
ruled Egypt after Alexander.

could not come from the material world, which is constantly subject to change, but only
from mathematical models or constructs. Thus, infallible knowledge could be attained
only through mathematics. Plato not only wished to use mathematics in the study of
nature, but he actually went so far as to attempt to substitute mathematics for nature.
For Plato, reality lies only within the realm of ideas, especially mathematical ideas.

Not everyone in antiquity agreed with this point of view. Aristotle, a student of Plato,
criticized Plato’s reduction of science to the study of mathematics. Aristotle thought that
the study of the material world was one’s primary source of reality. Despite Aristotle’s
critique, the view that mathematical laws governed the universe took a firm hold on
classical thought. The search for the mathematical laws of nature was underway.

After the death of Archimedes in 212 B.C., Greek civilization went into a period of
slow decline. The final blow to Greek civilization came in 640 A.D. with the Moslem
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conquest of Egypt. The remaining Greek texts housed in the great library in Alexandria
were burned. Those scholars who survived migrated to Constantinople (now part of
Turkey), which had become the capitol of the Eastern Roman Empire. It was in this
great city that what survived of Greek civilization was preserved for its rediscovery by
European civilization some five hundred years later.

Indian and Arabian Mathematics
Mathematical activity did not, however, cease with the decline of Greek civilization. In
the middle of the sixth century, somewhere in the Ganges Valley in India, our modern
system of numeration evolved. The Indians developed a number system based on ten,
with ten rather abstract symbols from zero to nine looking “roughly” as they do today.
They developed rules for addition, multiplication, and division (as we have today), a
system infinitely superior to the Roman abacus, which was used (by a special class
of servants called arithmeticians) throughout Europe until the fifteenth century. See
Figure 6.

After the fall of Egypt, came the rise of Arab civilization centered in Baghdad. Schol-
ars from Constantinople and India were invited to study and to share their knowledge.
It was through these contacts that the Arabs came to acquire the learning of the ancients
as well as the newly discovered Indian system of numeration. See Figure 7.

figure 6 Arithmetician performing a calculation
on a counter-abacus.

figure 7 Detail from the Codex
Vigilanus (976 A.D. northern
Spain). The first known
occurrence of the nine Indo-
Arabic numerals in Western
Europe. (Escurial Library, Madrid.)
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It was the Arabs who gave us the name Algebra, which comes from the book by
the astronomer Mohammed ibn Musa al-Khuwarizmi titled “Al-Jabr w’al muqabola,”
which means “restoring” or “balancing” (equations). Al-Khuwarizmi is also responsible
for a second profoundly influential book entitled “Kitab al jami’ wa’l tafriq bi hisab al
hind” (Indian Technique of Addition and Subtraction), which described and clarified
the Indian decimal place value system.

The decline of Arab civilization coincided with the rise of European civilization.
The dawn of the modern age began when Richard the Lionhearted reached the walls
of Jerusalem. From approximately 1192 through around 1270, the Christian knights
brought the learning of the “infidels” back to Europe. Around 1200–1205, Leonardo of
Pisa (also known as Fibonacci), who had traveled extensively in Africa and Asia Minor,
wrote his interpretation (in Latin) of Arabic and Greek mathematics. His historic texts
brought the work of al-Khuwarizmi and Euclid to the attention of a large audience in
Europe.

European Mathematics
Around 1450 Johann Gutenberg invented the printing press with movable type. This,
combined with the advent of linen and cotton paper obtained from the Chinese, dramat-
ically increased the rate of the dissemination of knowledge. The steep rise in trade and
manufacturing fueled the growth of wealth and dramatic change in European societies
from feudal to city-states. In Italy, the mother of the Renaissance, we see the rise of
extraordinarily wealthy states such as Venice under the Doges and Florence under the
Medicis.

The needs of the rising merchant class accelerated the adoption of the Indian system
of numeration. The teachings of the Catholic Church, which rested on absolute authority
and dogma, began to be challenged by the ideas of Plato. From Plato, scholars learned that
the world was rational and could be understood, and that the means of understanding
nature was through mathematics. But this sharply contradicted the teachings of the
church, which taught that God designed the universe. The only possible resolution of
this apparent contradiction was that “God designed the universe mathematically” or that
“God is a mathematician.”

It is perhaps surprising how much this point of view inspired the work of many
sixteenth- to eighteenth-century mathematicians and scientists. For if this were indeed
the case, then by understanding the mathematical laws of the universe, one could come
closer to an understanding of the Creator himself. Believe it or not, this point of view
survives to this day. The following is a quote from Paul Dirac, a Nobel Prize–winning
physicist and a creator of modern quantum mechanics.

It seems to be one of the fundamental features of nature that fundamental physical
laws are described in terms of a mathematical theory of great beauty and power,
needing quite a high standard of mathematics for one to understand it. You may
wonder: Why is nature constructed along these lines? One can only answer that
our present knowledge seems to show that nature is so constructed. We simply
have to accept it. One could perhaps describe the situation by saying that God is
a mathematician of a very high order, and He used very advanced mathematics in
constructing the universe. Our feeble attempts at mathematics enable us to
understand a bit of the universe, and as we proceed to develop higher and higher
mathematics we can hope to understand the universe better.

Mathematics began to see further advances and applications. In the sixteenth and
seventeenth centuries, al-Khuwarizmi’s algebra was significantly advanced by Cardano,
Vieta, and Descartes. The Babylonians had solved the quadratic equation, but now two



Marsden-3620111 VC˙FM September 27, 2011 9:49 xix

Historical Introduction xix

thousand years later, del Ferro and Tartaglia solved the cubic equation, which in turn
led to the discovery of imaginary numbers. These imaginary numbers were later to
play a fundamental role, as we shall see, in the development of vector calculus. In the
early seventeenth century, Descartes, perhaps motivated by the grid technique used by
Italian fresco painters to locate points on a wall or canvas, created, in a moment of great
mathematical inspiration, coordinate (or analytic) geometry. This new mathematical
model enables one to reduce Euclid’s geometry to algebra and provides a precise and
quantitative method to describe and calculate with space curves and surfaces.

Early on, Archimedes’ great work in statics and equilibrium (centers of gravity,
the principle of the lever—which we study in this book) was absorbed and improved
upon, leading to dramatic engineering achievements. In a building spree that remains
astonishing to this day, engineering advances made possible the rise of an incredible
number of cathedrals throughout Europe, including the stunning Duomo in Florence,
Notre Dame in Paris, and the Great Cathedral in Cologne, to mention a few. See Figure 8.

figure 8 Duomo.

figure 9 Nicolaus Copernicus
(1473–1543).

However, as in Greek times, it was astronomy that was to give mathematics its greatest
impetus. It is not surprising that the Greek astronomers placed the Earth and not the
sun at the center of our universe, because on a daily basis we see the sun both rise and
set. Still, it is interesting to ask if the Greeks, who were such marvelous thinkers, at
least tested the heliocentric theory, which places the sun at the center of the universe.
In fact, they did. In the third century B.C., Aristarchus of Samus taught that the Earth
and other planets move in circular orbits around a fixed sun. His hypotheses were, for
several reasons, rejected. First, the opposing astronomers reasoned that if the Earth were
indeed moving, one should be able to sense it. Second, how would objects, circulating
with us, be able to stay on a moving Earth? Third, why are the clouds not lagging behind
the moving Earth?

Such arguments were to be used again in the sixteenth century against the Polish
astronomer Nicolas Copernicus (see Figure 9), who in 1543 introduced the heliocentric
theory (the planets move in orbit around the sun). His book Revolutionibus Orbium
Coelestium (On the Revolution of the Heavenly Orbits) was to initiate the “Copernican
revolution” in science and to give the world a new word, revolutionary.
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figure 10 Johannes Kepler
(1571–1630).

figure 11 The motion of Mars.
From Kepler’s Astronomia Nova
(1609).

In 1619, the German astronomer Johannes Kepler (see Figure 10), using the astro-
nomical calculations of the Danish astronomer Tycho Brahe, showed that the planetary
orbits were in fact elliptical, the same ellipses that the Greeks had studied as abstract
forms some 2000 years earlier (see Figure 11).

But Kepler’s law of elliptical orbits was only one of three laws he discovered govern-
ing planetary motion. Kepler’s second law states that if a planet moves from a point
A to another point B in a certain amount of time T , and also moves from A′ to
B′ in the same time, and if S is a focus of the orbital ellipse, then the sections SAB
are SA′B′ have equal areas (see Figure 12). Kepler’s third law was that the square of

B'

S

B

A

A'

figure 12 Kepler’s second law.

time T a planetary body requires to complete an orbit is proportional to a3, where a
is the great axis of the elliptical orbit. In equation form, T 2 = K a3, where K is some
constant (we shall derive this law for circular orbits in Chapter 4).

Profound as these observations were, an explanation of why these laws held was
lacking. However, by the middle of the seventeenth century, it was fully understood
that a change of velocity requires the action of forces, but how these forces influenced
motion was not at all clear. In 1674 Robert Hooke, in an attempt to explain Kepler’s
laws, assumed the existence of an attractive force the sun must exert on the plan-
ets, a force that decreased with planetary distance. Hooke’s theory, however, was only
qualitative.

Newton
What was also seriously lacking was a quantitative, precise definition of both velocity
and acceleration. This was ultimately solved by the invention of calculus by both Isaac
Newton and Gottfried Wilhelm Leibniz (see Figure 13). Hooke was never able to achieve
an understanding of the profound ideas behind the infinitesimal calculus. However,
during the period of 1679–1680 Hooke discussed his ideas with Newton, including his
conjecture that the force the sun exerts on the planets was actually inversely proportional
to the square of the planetary distance.

After Sir Christopher Wren, amateur astronomer, architect of the city of London
and London’s magnificent St. Paul’s Cathedral, issued a public challenge to “theoretically
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figure 13 Gottfried Wilhelm Leibniz (1646–1716).

figure 14 Isaac Newton, one of the greatest
scientific and mathematical intellects of all time,
created the notion of a vector through his
conception of forces as being vectorial. Here
you see him depicted in 1725 (with his natural
hair) just two years before his death, leafing
through the pages of his masterpiece, the
Philosopiae Naturalis Principia Mathematica,
arguably the most influential and profound
scientific work ever written and the true starting
point of vector calculus. (Source: Courtesy of
the National Portrait Gallery, London)

determine” the orbits of the planets, Isaac Newton took a serious interest in the problem.
Perhaps acting on rumors, the great British astronomer Edmund Halley (1656–1743)
in August 1684 visited Newton in Cambridge and asked him directly what the orbit
of a planet would be under an inverse square force. Newton answered that it had to
be an ellipse. As the stunned Halley asked him how he knew this, Newton’s famous
reply was “Why I have calculated it.” Halley ultimately urged Newton to publish his
results as a book, and these appeared in 1686 in Newton’s now legendary Principia.
See Figure 15.

This book, often and justly referred to as the foundation of modern science, had
an immediate dramatic impact. Alexander Pope wrote:

Nature and nature’s laws lay hid at night,
God said, “Let Newton be” and all was light.

In Figure 14, we see Newton holding open a copy of his Principia.
Although Newton did not use calculus in the Principia, convincing arguments

have been put forward that Newton originally used his calculus to derive the trajectories
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figure 15 The frontispiece of the
two-lines print of the Principia,
carrying the imprint “Prostat
apud plures Bibliopolas,” which is
sometimes called the “first issue”
of the first edition. The “export
copy” (with the three lines
“Prostant Venales apud Sam
Smith . . .aliosq; nonnullos
Bibliopolas”) is called the second
issue of the first edition. This
distinction between the first and
second issues seems to be quite
unfounded. It has been
suggested that Halley made an
agreement with Smith
concerning foreign sales; in fact,
most of Smith’s fifty copies were
apparently sold on the
continent.

of the planetary orbits from the inverse square law.∗ The Principia provided profound
evidence that the universe, as the early Greeks had understood, was indeed designed
mathematically. Incidentally, it was Newton who first conceptualized force as a vector,
although he provided no formal definition of what a vector was. Such a formal definition
had to wait for William Rowan Hamilton, a century and a half after the Principia.

The invention of the calculus and the subsequent development of vector calculus was
the true beginning of modern science and technology, which has changed our world so
dramatically. From the mathematics of Newton’s mechanics to the profound intellectual
constructs of Maxwell’s electrodynamics, Einstein’s relativity, and Heisenberg’s and
Schrödinger’s quantum mechanics, we have seen the discoveries of radio, television,
wireless communications, flight, computers, space travel, and countless engineering
marvels.

Underlying all these developments was mathematics, an exciting adventure of the
mind and a celebration of the human spirit. It is in this context that we begin our account
of vector calculus.

∗We shall study the problem of planetary orbits in Section 4.1 and further in the Internet supplement.
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Prerequisites and Notation
We assume that students have studied the calculus of functions of a real variable, in-
cluding analytic geometry in the plane. Some students may have had some exposure to
matrices as well, although what we shall need is given in Sections 1.3 and 1.5.

We also assume that students are familiar with functions of elementary calculus,
such as sin x , cos x , ex , and log x (we write log x or ln x for the natural logarithm,
which is sometimes denoted loge x). Students are expected to know, or to review as the
course proceeds, the basic rules of differentiation and integration for functions of one
variable, such as the chain rule, the quotient rule, integration by parts, and so forth.

We now summarize the notations to be used later. Students can read through these
quickly now, then refer to them later if the need arises.

The collection of all real numbers is denoted R. Thus R includes the integers, . . . ,
−3, −2, −1, 0, 1, 2, 3, . . . ; the rational numbers, p/q, where p and q are integers
(q �= 0); and the irrational numbers, such as

√
2, π, and e. Members of R may be

visualized as points on the real-number line, as shown in Figure P.1.

figure P.1 The geometric
representation of points on the
real-number line.

−3 −2 −1 0 1 2 2 3e π1
2

When we write a ∈ R we mean that a is a member of the set R, in other words, that
a is a real number. Given two real numbers a and b with a < b (that is, with a less than
b), we can form the closed interval [a, b], consisting of all x such that a ≤ x ≤ b, and
the open interval (a, b), consisting of all x such that a < x < b. Similarly, we can form
half-open intervals (a, b] and [a, b) (Figure P.2).

figure P.2 The geometric
representation of the intervals
(a, b), (c, d), and (e, f ).

a b c d e f

Closed Open Half open

The absolute value of a number a ∈ R is written |a| and is defined as

|a| =
{ a if a ≥ 0

−a if a < 0.

For example, |3| = 3, |−3| = 3, |0| = 0, and |−6| = 6. The inequality |a + b| ≤
|a| + |b| always holds. The distance from a to b is given by |a − b|. Thus, the distance
from 6 to 10 is 4 and from −6 to 3 is 9.

If we write A ⊂ R, we mean A is a subset of R. For example, A could equal the set
of integers {. . . , −3, −2, −1, 0, 1, 2, 3, . . .}. Another example of a subset of R is the
set Q of rational numbers. Generally, for two collections of objects (that is, sets) A and
B, A ⊂ B means A is a subset of B; that is, every member of A is also a member of B.

The symbol A ∪ B means the union of A and B, the collection whose members are
members of either A or B (or both). Thus,

{. . . , −3, −2, −1, 0} ∪ {−1, 0, 1, 2, . . .} = {. . . , −3, −2, −1, 0, 1, 2, . . .}.

xxiii
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Similarly, A ∩ B means the intersection of A and B; that is, this set consists of those
members of A and B that are in both A and B. Thus, the intersection of the two sets on
the preceding page is {−1, 0}.

We shall write A\B for those members of A that are not in B. Thus,

{. . . , −3, −2, −1, 0}\{−1, 0, 1, 2, . . .} = {. . . , −3, −2}.

We can also specify sets as in the following examples:

{a ∈ R | a is an integer} = {. . . , −3, −2, −1, 0, 1, 2, . . .}
{a ∈ R | a is an even integer} = {. . . , −2, 0, 2, 4, . . .}

{x ∈ R | a ≤ x ≤ b} = [a, b].

A function f : A → B is a rule that assigns to each a ∈ A one specific member f (a) of
B. We call A the domain of f and B the target of f . The set { f (x) | x ∈ A} consisting
of all the values of f (x) is called the range of f . Denoted by f ( A), the range is a subset
of the target B. It may be all of B, in which case f is said to be onto B. The fact that
the function f sends a to f (a) is denoted by a → f (a). For example, the function
f (x) = x3/(1 − x) that assigns the number x3/(1 − x) to each x �= 1 in R can also
be defined by the rule x → x3/(1 − x). Functions are also called mappings, maps, or
transformations. The notation f : A ⊂ R → R means that A is a subset of R and that
f assigns a value f (x) in R to each x ∈ A. The graph of f consists of all the points
(x , f (x)) in the plane (Figure P.3).

(x,  f (x)) 

A  =  domain

x

y

Graph  of  f 

x

figure P.3 The graph of a function with
the half-open interval A as domain.

The notation
∑n

i=1 ai means a1 +· · ·+ an , where a1, . . . , an are given numbers. The
sum of the first n integers is

1 + 2 + · · · + n =
n∑

i=1

i = n(n + 1)

2
.

The derivative of a function f (x) is denoted f ′(x), or

df

dx
,
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and the definite integral is written

∫ b

a
f (x) dx.

If we set y = f (x), the derivative is also denoted by

dy

dx
.

Readers are assumed to be familiar with the chain rule, integration by parts, and other
basic facts from the calculus of functions of one variable. In particular, they should know
how to differentiate and integrate exponential, logarithmic, and trigonometric functions.
Short tables of derivatives and integrals, which are adequate for the needs of this text,
are printed at the front and back of the book.

The following notations are used synonymously: ex = exp x , ln x = log x , and
sin−1 x = arcsin x .

The end of a proof is denoted by the symbol ■, while the end of an example or remark
is denoted by the symbol▲.
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1

The Geometry of
Euclidean Space

Quaternions came from Hamilton . . . and have been an unmixed evil to those who have

touched them in any way. Vector is a useless survival . . . and has never been of the slightest

use to any creature. ---Lord Kelvin

In this chapter we consider the basic operations on vectors in two- and

three-dimensional space: vector addition, scalar multiplication, and the

dot and cross products. In Section 1.5 we generalize some of these no-

tions to n-space and review properties of matrices that will be needed

in Chapters 2 and 3.

1.1 Vectors in Two- and Three-Dimensional Space

Points P in the plane are represented by ordered pairs of real numbers (a1, a2); the
numbers a1 and a2 are called the Cartesian coordinates of P. We draw two perpendicular
lines, label them as the x and y axes, and then drop perpendiculars from P to these axes,
as in Figure 1.1.1. After designating the intersection of the x and y axes as the origin
and choosing units on these axes, we produce two signed distances a1 and a2 as shown
in the figure; a1 is called the x component of P, and a2 is called the y component.

x

y

aP

1

21

2

a= ,( )

a

a

figure 1.1.1 Cartesian
coordinates in the plane.

Points in space may be similarly represented as ordered triples of real numbers. To
construct such a representation, we choose three mutually perpendicular lines that meet
at a point in space. These lines are called x axis, y axis, and z axis, and the point at
which they meet is called the origin (this is our reference point). We choose a scale on
these axes, as shown in Figure 1.1.2.

The triple (0, 0, 0) corresponds to the origin of the coordinate system, and the arrows
on the axes indicate the positive directions. For example, the triple (2, 4, 4) represents
a point 2 units from the origin in the positive direction along the x axis, 4 units in the
positive direction along the y axis, and 4 units in the positive direction along the z axis
(Figure 1.1.3).

Because we can associate points in space with ordered triples in this way, we often
use the expression “the point (a1, a2, a3)” instead of the longer phrase “the point P
that corresponds to the triple (a1, a2, a3).” We say that a1 is the x coordinate (or first

1
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1

2
3

32

1

1
2

3

y

x

z

figure 1.1.2 Cartesian coordinates in space.

x

y

z

2

4

6

4

4

4
42

2

2

( ), ,
figure 1.1.3 Geometric representation of the point
(2, 4, 4) in Cartesian coordinates.

coordinate), a2 is the y coordinate (or second coordinate), and a3 is the z coordinate
(or third coordinate) of P. It is also common to denote points in space with the letters
x , y, and z in place of a1, a2, and a3. Thus, the triple (x , y, z) represents a point whose
first coordinate is x , second coordinate is y, and third coordinate is z.

We employ the following notation for the line, the plane, and three-dimensional
space:

(i) The real number line is denoted R1 or simply R.

(ii) The set of all ordered pairs (x , y) of real numbers is denoted R2.

(iii) The set of all ordered triples (x , y, z) of real numbers is denoted R3.

When speaking of R1, R2, and R3 simultaneously, we write Rn , where n = 1, 2, or 3; or
Rm , where m = 1, 2, 3. Starting in Section 1.5 we will also study Rn for n = 4, 5, 6, . . . ,
but the cases n = 1, 2, 3 are closest to our geometric intuition and will be stressed
throughout the book.

Vector Addition and Scalar Multiplication
The operation of addition can be extended from R to R2 and R3. For R3, this is done as
follows. Given the two triples (a1, a2, a3) and (b1, b2, b3), we define their sum to be

(a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3).
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example 1 (1, 1, 1) + (2, −3, 4) = (3, −2, 5),
(x , y, z) + (0, 0, 0) = (x , y, z),
(1, 7, 3) + (a, b, c) = (1 + a, 7 + b, 3 + c) ▲

The element (0, 0, 0) is called the zero element (or just zero) of R3. The element
(−a1, −a2, −a3) is the additive inverse (or negative) of (a1, a2, a3), and we will write
(a1, a2, a3) − (b1, b2, b3) for (a1, a2, a3) + (−b1, −b2, −b3).

The additive inverse, when added to the vector itself, of course produces zero:

(a1, a2, a3) + (−a1, −a2, −a3) = (0, 0, 0).

There are several important product operations that we will define on R3. One of
these, called the inner product, assigns a real number to each pair of elements of R3.
We shall discuss it in detail in Section 1.2. Another product operation for R3 is called
scalar multiplication (the word “scalar” is a synonym for “real number”). This product
combines scalars (real numbers) and elements of R3 (ordered triples) to yield elements of
R3 as follows: Given a scalar α and a triple (a1, a2, a3), we define the scalar multiple by

α(a1, a2, a3) = (αa1, αa2, αa3).

example 2 2(4, e, 1) = (2 · 4, 2 · e, 2 · 1) = (8, 2e, 2),
6(1, 1, 1) = (6, 6, 6),

1(u, v, w) = (u, v, w),
0( p, q, r ) = (0, 0, 0) ▲

Addition and scalar multiplication of triples satisfy the following properties:

(i) (αβ)(a1, a2, a3) = α[β(a1, a2, a3)] (associativity)

(ii) (α + β)(a1, a2, a3) = α(a1, a2, a3) + β(a1, a2, a3) (distributivity)

(iii) α[(a1, a2, a3) + (b1, b2, b3)] = α(a1, a2, a3) + α(b1, b2, b3) (distributivity)

(iv) α(0, 0, 0) = (0, 0, 0) (property of zero)

(v) 0(a1, a2, a3) = (0, 0, 0) (property of zero)

(vi) 1(a1, a2, a3) = (a1, a2, a3) (property of the
unit element)

The identities are proven directly from the definitions of addition and scalar multi-
plication. For instance,

(α + β)(a1, a2, a3) = ((α + β)a1, (α + β)a2, (α + β)a3)
= (αa1 + βa1, αa2 + βa2, αa3 + βa3)
= α(a1, a2, a3) + β(a1, a2, a3).

For R2, addition and scalar multiplication are defined just as in R3, with the third
component of each vector dropped off. All the properties (i) to (vi) still hold.
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example 3 Interpret the chemical equation 2NH2 + H2 = 2NH3 as a relation in the algebra of
ordered pairs.

solut ion We think of the molecule Nx Hy (x atoms of nitrogen, y atoms of hydrogen) as represented
by the ordered pair (x , y). Then the chemical equation given is equivalent to 2(1, 2) +
(0, 2) = 2(1, 3). Indeed, both sides are equal to (2, 6). ▲

Geometry of Vector Operations
Let us turn to the geometry of these operations in R2 and R3. For the moment, we define
a vector to be a directed line segment beginning at the origin; that is, a line segment with
specified magnitude and direction, and initial point at the origin. Figure 1.1.4 shows
several vectors, drawn as arrows beginning at the origin. In print, vectors are usually
denoted by boldface letters such as a. By hand, we usually write them as �a or simply as
a, possibly with a line or wavy line under it.

Using this definition of a vector, we associate with each vector a the point (a1, a2,
a3) where a terminates, and conversely, we can associate a vector a with each point
(a1, a2, a3) in space. Thus, we shall identify a with (a1, a2, a3) and write a = (a1, a2, a3).
For this reason, the elements of R3 not only are ordered triples of real numbers, but are
also regarded as vectors. The triple (0, 0, 0) is denoted 0. We call a1, a2, and a3 the
components of a, or when we think of a as a point, its coordinates.

Two vectors a = (a1, a2, a3) and b = (b1, b2, b3) are equal if and only if a1 =
b1, a2 = b2, and a3 = b3. Geometrically this means that a and b have the same direction
and the same length (or “magnitude”).

Geometrically, we define vector addition as follows. In the plane containing the
vectors a = (a1, a2, a3) and b = (b1, b2, b3) (see Figure 1.1.5), form the parallelogram

x

y

z

figure 1.1.4 Geometrically, vectors are thought
of as arrows emanating from the origin.

x

y

z

a

b

b

a +
figure 1.1.5 The geometry of vector addition.
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z

x

y

v1 2+ v

2v
v1 2+v

v1 v1

v1

v12v

2v

2v

figure 1.1.6 A physical interpretation of vector addition.

having a as one side and b as its adjacent side. The sum a+b is the directed line segment
along the diagonal of the parallelogram.

This geometric view of vector addition is useful in many physical situations, as we
shall see in the next section. For an easily visualized example, consider a bird or an
airplane flying through the air with velocity v1, but in the presence of a wind with
velocity v2. The resultant velocity, v1 + v2, is what one sees; see Figure 1.1.6.

To show that our geometric definition of addition is consistent with our algebraic
definition, we demonstrate that a + b = (a1 + b1, a2 + b2, a3 + b3). We shall prove this
result in the plane and leave the proof in three-dimensional space to the reader. Thus,
we wish to show that if a = (a1, a2) and b = (b1, b2), then a + b = (a1 + b1, a2 + b2).

In Figure 1.1.7 let a = (a1, a2) be the vector ending at the point A, and let b = (b1, b2)
be the vector ending at point B. By definition, the vector a + b ends at the vertex C of
parallelogram OBCA. To verify that a + b = (a1 + b1, a2 + b2), it suffices to show that
the coordinates of C are (a1 + b1, a2 + b2). The sides of the triangles OAD and BCG
are parallel, and the sides OA and BC have equal lengths, which we write as OA = BC.
These triangles are congruent, so BG = OD; since BGFE is a rectangle, EF = BG.
Furthermore, OD = a1 and OE = b1. Hence, EF = BG = OD = a1. Since OF = EF +
OE, it follows that OF = a1 + b1. This shows that the x coordinate of a + b is a1 + b1.
The proof that the y coordinate is a2 + b2 is analogous. This argument assumes A and
B to be in the first quadrant, but similar arguments hold for the other quadrants.

Figure 1.1.8(a) illustrates another way of looking at vector addition: in terms of
triangles rather than parallelograms. That is, we translate (without rotation) the directed
line segment representing the vector b so that it begins at the end of the vector a. The
endpoint of the resulting directed segment is the endpoint of the vector a + b. We
note that when a and b are collinear, the triangle collapses to a line segment, as in
Figure 1.1.8(b).

x

y

O

A = (a , a )1 2

D E F

G

C

a + b

b

a

B = (b , b )1 2

figure 1.1.7 The construction used to prove
that (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2).
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figure 1.1.8 (a) Vector addition
may be visualized in terms of
triangles as well
as parallelograms. (b) The
triangle collapses to a line
segment when a and b are
collinear.

a b

b

a
b

a

a

b

x

y y

x

+

translated 

translated
+ b

(a) (b)

In Figure 1.1.8 we have placed a and b head to tail. That is, the tail of b is placed
at the head of a, and the vector a + b goes from the tail of a to the head of b. If we do
it in the other order, b + a, we get the same vector by going around the parallelogram
the other way. Consistent with this figure, it is useful to let vectors “glide” or “slide,”
keeping the same magnitude and direction. We want, in fact, to regard two vectors as
the same if they have the same magnitude and direction. When we insist on vectors
beginning at the origin, we will say that we have bound vectors. If we allow vectors to
begin at other points, we will speak of free vectors or just vectors.

vectors Vectors (also called free vectors) are directed line segments in [the plane
or] space represented by directed line segments with a beginning (tail) and an end
(head). Directed line segments obtained from each other by parallel translation
(but not rotation) represent the same vector.

The components (a1, a2, a3) of a are the (signed) lengths of the projections
of a along the three coordinate axes; equivalently, they are defined by placing
the tail of a at the origin and letting the head be the point (a1, a2, a3). We write
a = (a1, a2, a3).

Two vectors are added by placing them head to tail and drawing the vectors
from the tail of the first to the head of the second, as in Figure 1.1.8.

Scalar multiplication of vectors also has a geometric interpretation. If α is a scalar
and a a vector, we define αa to be the vector that is |α| times as long as a, with the same
direction as a if α > 0, but with the opposite direction if α < 0. Figure 1.1.9 illustrates
several examples.

x

y

x

y

x

y

x

y

a1__
4

a3__
2

a

a1__
4

−

figure 1.1.9 Some scalar multiples of a vector a.
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−b a
a

−b a

A

B

x

y

b
figure 1.1.10 The geometry of vector subtraction.

Using an argument based on similar triangles, we find that if a = (a1, a2, a3), and α

is a scalar, then

αa = (αa1, αa2, αa3).

That is, the geometric definition coincides with the algebraic one.
Given two vectors a and b, how do we represent the vector b − a geometrically, that

is, what is the geometry of vector subtraction? Because a+(b−a) = b, we see that b−a
is the vector that we add to a to get b. In view of this, we may conclude that b − a is the
vector parallel to, and with the same magnitude as, the directed line segment beginning
at the endpoint of a and terminating at the endpoint of b when a and b begin at the same
point (see Figure 1.1.10).

example 4 Let u and v be the vectors shown in Figure 1.1.11. Draw the two vectors u+v and −2u.
What are their components?

v
x

y

u

1

1

2

2

3

figure 1.1.11 Find u + v and −2u.

solut ion Place the tail of v at the tip of u to obtain the vector shown in Figure 1.1.12.
The vector −2u, also shown, has length twice that of u and points in the opposite

direction. From the figure, we see that the vector u + v has components (5, 2) and −2u
has components (−6, −4).
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v

x

y

u

1
v

u2−

+u v1

1−

2

2

6 2

−

−

−

3

3

54

4

−

figure 1.1.12 Computing u + v and −2u. ▲

example 5 (a) Sketch −2v, where v has components (−1, 1, 2).

(b) If v and w are any two vectors, show that v − 1
3 w and 3v − w are parallel.

solut ion (a) The vector −2v is twice as long as v, but points in the opposite direction (see
Figure 1.1.13).

x

y

2− v

z

( )1− , 1 2

2

1

−1

,

( )2, 2− , 4−

v }} }

figure 1.1.13 Multiplying (−1, 1, 2) by −2.

(b) v − 1
3 w = 1

3 (3v − w); vectors that are multiples of one another are parallel. ▲

The Standard Basis Vectors
To describe vectors in space, it is convenient to introduce three special vectors along
the x , y, and z axes:

i: the vector with components (1, 0, 0)

j: the vector with components (0, 1, 0)

k: the vector with components (0, 0, 1).
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i j

k

(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

x

y

z

figure 1.1.14 The standard basis vectors.

These standard basis vectors are illustrated in Figure 1.1.14. In the plane we have the
standard basis i and j with components (1, 0) and (0, 1).

Let a be any vector, and let (a1, a2, a3) be its components. Then

a = a1i + a2j + a3k,

because the right-hand side is given in components by

a1(1, 0, 0) + a2(0, 1, 0) + a3(0, 0, 1) = (a1, 0, 0) + (0, a2, 0) + (0, 0, a3)
= (a1, a2, a3).

Thus, we can express every vector as a sum of scalar multiples of i, j, and k.

The Standard Basis Vectors

1. The vectors i, j, and k are unit vectors along the three coordinate axes, as
shown in Figure 1.1.14.

2. If a has components (a1, a2, a3), then

a = a1i + a2j + a3k.

example 6 Express the vector whose components are (e, π, −√
3) in the standard basis.

solut ion Substituting a1 = e, a2 = π, and a3 = −√
3 into a = a1i + a2j + a3k gives

v = ei + π j −
√

3k. ▲

example 7 The vector (2, 3, 2) equals 2i+3j+2k, and the vector (0, −1, 4) is −j + 4k. Figure 1.1.15
shows 2i + 3j + 2k; you draw in the vector −j + 4k. ▲

Addition and scalar multiplication may be written in terms of the standard basis
vectors as follows:

(a1i + a2j + a3k) + (b1i + b2j + b3k) = (a1 + b1)i + (a2 + b2)j + (a3 + b3)k

and

α(a1i + a2j + a3k) = (αa1)i + (αa2)j + α(a3)k.
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x

y

z

i
j

k

2

(2, 3, 2)k

ji

2

3

figure 1.1.15 Representation of (2, 3, 2)
in terms of the standard basis vectors i, j,
and k.

The Vector Joining Two Points
To apply vectors to geometric problems, it is useful to assign a vector to a pair of points
in the plane or in space, as follows. Given two points P and P′, we can draw the vector
v with tail P and head P′, as in Figure 1.1.16, where we write

−→
PP′ for v.

P

PP' P'

figure 1.1.16 The
vector from P to
P′ is denoted

−→
PP′.

If P = (x , y, z) and P′ = (x ′, y′, z′), then the vectors from the origin to P and P′

are a = x i + yj + zk and a′ = x ′i + y′j + z′k, respectively, so the vector
−→
PP′ is the

difference a′ − a = (x ′ − x)i + ( y′ − y)j + (z′ − z)k. (See Figure 1.1.17.)

x

y

O

P
P'

a'

a

a

a' −

figure 1.1.17
−→
PP′ = −−→

OP′ − −→
OP.

The Vector Joining Two Points If the point P has coordinates (x , y, z) and
P′ has coordinates (x ′, y′, z′), then the vector

−→
PP′ from the tip of P to the tip of P′

has components (x ′ − x , y′ − y, z′ − z).

example 8 (a) Find the components of the vector from (3, 5) to (4, 7).

(b) Add the vector v from (−1, 0) to (2, −3) and the vector w from (2, 0) to (1, 1).

(c) Multiply the vector v in (b) by 8. If the resulting vector is represented by the
directed line segment from (5, 6) to Q, what is Q?

solut ion (a) As in the preceding box, we subtract the ordered pairs: (4, 7) − (3, 5) = (1, 2).
Thus the required components are (1, 2).

(b) The vector v has components (2, −3) − (−1, 0) = (3, −3), and w has
components (1, 1) − (2, 0) = (−1, 1). Therefore, the vector v + w has
components (3, −3) + (−1, 1) = (2, −2).

(c) The vector 8v has components 8(3, −3) = (24, −24). If this vector is represented
by the directed line segment from (5, 6) to Q, and Q has coordinates (x , y), then
(x , y) − (5, 6) = (24, −24), so (x , y) = (5, 6) + (24, −24) = (29, −18). ▲

example 9 Let P = (−2, −1), Q = (−3, −3), and R = (−1, −4) in the xy plane.

(a) Draw these vectors: v joining P to Q; w joining Q to R; u joining R to P.

(b) What are the components of v, w, and u?

(c) What is v + w + u?
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s o l u t i o n (a) See Figure 1.1.18.

v

x

y

u

1
1

1−

2

2 2−−

3

33

w

− 4

−3

2−

1−

u
v

w

P

R

Q

figure 1.1.18 The vector v joins P to Q; w joins Q to
R; and u joins R to P.

(b) Because v = −→
PQ, w = −→

QR, and u = −→
RP, we get

v = (−3, −3) − (−2, −1) = (−1, −2),
w = (−1, −4) − (−3, −3) = (2, −1),
u = −(−1, −4) + (−2, −1) = (−1, 3).

(c) v + w + u = (−1, −2) + (2, −1) + (−1, 3) = (0, 0). ▲

Geometry Theorems by Vector Methods
Many of the theorems of plane geometry can be proved by vector methods. Here is one
example.

example 10 Use vectors to prove that the diagonals of a parallelogram bisect each other.

solut ion Let OPRQ be the parallelogram, with two adjacent sides represented by the vectors
a = −→

OP and b = −→
OQ. Let M be the midpoint of the diagonal OR, and let N be the

midpoint of the other diagonal, PQ. (See Figure 1.1.19.)

O

P

Q

R

P

Q

R a

b

a b a

M N

−
a b + ( 

) 1 
2 

1
2

b

( )

O

figure 1.1.19 If the midpoints M and N coincide, then
the diagonals OR and PQ bisect each other.

Observe that
−→
OR = −→

OP +−→
OQ = a + b by the parallelogram rule for vector addition,

so
−→
OM = 1

2

−→
OR = 1

2 (a + b). On the other hand,

−→
PQ = −→

OQ − −→
OP = b − a, so

−→
PN = 1

2

−→
PQ = 1

2 (b − a),
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and hence,

−→
ON = −→

OP + −→
PN = a + 1

2 (b − a) = 1
2 (a + b).

Because
−→
OM and

−→
ON are equal vectors, the points M and N coincide, so the diagonals

bisect each other. ▲

Equations of Lines
Planes and lines are geometric objects that can be represented by equations. We shall
defer until Section 1.3 a study of equations representing planes. However, using the
geometric interpretation of vector addition and scalar multiplication, we will now find
the equation of a line l that passes through the endpoint of the vector a, with the direction
of a vector v (see Figure 1.1.20); that is, line l is parallel to the vector v.

figure 1.1.20 The line l ,
parametrically given by
l(t) = a + t v, lies in the direction v
and passes through the tip of a.

l

a
v

0

tva +

tv

tv

As t varies through all real values, the points of the form tv are all scalar multiples
of the vector v, and therefore exhaust the points of the line passing through the origin
in the direction of v. Because every point on l is the endpoint of the diagonal of a
parallelogram with sides a and tv for some real value of t , we see that all the points on l
are of the form a + tv. Thus, the line l may be expressed by the equation l(t) = a + tv.
We say that l is expressed parametrically, with t the parameter. At t = 0, l(t) = a. As
t increases, the point l(t) moves away from a in the direction of v. As t decreases from
t = 0 through negative values, l(t) moves away from a in the direction of −v.

Point-Direction Form of a Line The equation of the line l through the tip of
a and pointing in the direction of the vector v is l(t) = a+ tv, where the parameter
t takes on all real values. In coordinate form, the equations are

x = x1 + at ,
y = y1 + bt ,
z = z1 + ct ,

where a = (x1, y1, z1) and v = (a, b, c). For lines in the xy plane, we simply drop
the z component.

example 11 Determine the equation of the line l passing through (1, 0, 0) in the direction j. See
Figure 1.1.21.

wujiayao
高亮



Marsden-3620111 VC September 27, 2011 9:19 13

1.1 Vectors in Two- and Three-Dimensional Space 13

x

y

z

( ),1,

i

j

0 0 l(t)
l

figure 1.1.21 The line l passes through the tip of i in the direction j.

s o l u t i o n The desired line can be expressed parametrically as l(t) = i+tj. In terms of coordinates,

l(t) = (1, 0, 0) + t (0, 1, 0) = (1, t , 0). ▲

example 12 (a) Find the equations of the line in space through the point (3, −1, 2) in the direction
2i − 3j + 4k.

(b) Find the equation of the line in the plane through the point (1, −6) in the direction
of 5i − π j.

(c) In what direction does the line x = −3t + 2, y = −2(t − 1), z = 8t + 2 point?

solut ion (a) Here a = (3, −1, 2) = (x1, y1, z1) and v = 2i − 3j + 4k, so a = 2, b = −3, and
c = 4. From the preceding box, the equations are

x = 3 + 2t , y = −1 − 3t , z = 2 + 4t.

(b) Here a = (1, −6) and v = 5i − π j, so the required line is

l(t) = (1, −6) + (5t , −π t) = (1 + 5t , −6 − π t);

that is,

x = 1 + 5t , y = −6 − π t.

(c) Using the box, we construct the direction v = ai + bj + ck from the
coefficients of t : a = −3, b = −2, c = 8. Thus, the line points in the direction
of v = −3i − 2j + 8k. ▲

example 13 Do the two lines (x , y, z) = (t , −6t +1, 2t −8) and (x , y, z) = (3t +1, 2t , 0) intersect?

solut ion If the lines intersect, there must be numbers t1 and t2 such that the corresponding points
are equal:

(t1, −6t1 + 1, 2t1 − 8) = (3t2 + 1, 2t2, 0);
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that is, all three of the following equations hold:

t1 = 3t2 + 1,
−6t1 + 1 = 2t2,

2t1 − 8 = 0.

From the third equation, t1 = 4. The first equation then becomes 4 = 3t2 + 1; that is,
t2 = 1. We must check whether these values satisfy the middle equation:

−6t1 + 1
?= 2t2.

Since t1 = 4 and t2 = 1, this reads

−24 + 1
?= 2,

which is false, so the lines do not intersect. ▲

Notice that there can be many equations of the same line. Some may be obtained by
choosing, instead of a, a different point on the given line, and forming the parametric
equation of the line beginning at that point and in the direction of v. For example, the
endpoint of a + v is on the line l(t) = a + tv, and thus, l1(t) = (a + v) + tv represents
the same line. Still other equations may be obtained by observing that if α �= 0, the
vector αv has the same (or opposite) direction as v. Thus, l2(t) = a + tαv is another
equation of l(t) = a + tv.

For example, both l(t) = (1, 0, 0) + (t , t , 0) and l1(s) = (0, −1, 0) + (s, s, 0)
represent the same line since both are in the direction i + j and both pass through the
point (1, 0, 0); l passes through (1, 0, 0) at t = 0 and l1 passes through (1, 0, 0) at s = 1.

Therefore, the equation of a line is not uniquely determined. Nevertheless, it is
customary to use the term “the equation of a line.” Keeping this in mind, let us derive
the equation of a line passing through the endpoints of two given vectors a and b.
Because the vector b − a is parallel to the directed line segment from a to b, we
calculate the parametric equation of the line passing through a in the direction of b − a
(Figure 1.1.22). Thus,

l(t) = a + t (b − a); that is, l(t) = (1 − t)a + tb.

As t increases from 0 to 1, t (b − a) starts as the zero vector and increases in length
(remaining in the direction of b − a) until at t = 1 it is the vector b − a. Thus, for
l(t) = a + t (b − a), as t increases from 0 to 1, the vector l(t) moves from the endpoint
of a to the endpoint of b along the directed line segment from a to b.

t(b − a)

t(b − a)

t(b − a)

b − a a b 

 a +

 0

l

figure 1.1.22 The line l , parametrically
given by l(t) = a + t(b − a) =
(1 − t)a + t b, passes through the tips
of a and b.
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If P = (x1, y1, z1) is the tip of a and Q = (x2, y2, z2) is the tip of b, then v =
(x2 − x1)i + ( y2 − y1)j + (z2 − z1)k, and so the equations of the line are

x = x1 + (x2 − x1)t ,
y = y1 + ( y2 − y1)t ,
z = z1 + (z2 − z1)t.

By eliminating t , these can be written as

x − x1

x2 − x1
= y − y1

y2 − y1
= z − z1

z2 − z1
.

Parametric Equation of a Line: Point--Point Form The parametric
equations of the line l through the points P = (x1, y1, z1) and Q = (x2, y2, z2) are

x = x1 + (x2 − x1)t ,
y = y1 + ( y2 − y1)t ,
z = z1 + (z2 − z1)t ,

where (x , y, z) is the general point of l, and the parameter t takes on all real values.

example 14 Find the equation of the line through (2, 1, −3) and (6, −1, −5).

solut ion Using the preceding box, we choose (x1, y1, z1) = (2, 1, −3) and (x2, y2, z2) =
(6, −1, −5), so the equations are

x = 2 + (6 − 2)t = 2 + 4t ,
y = 1 + (−1 − 1)t = 1 − 2t ,
z = −3 + (−5 − (−3))t = −3 − 2t. ▲

example 15 Find the equation of the line passing through (−1, 1, 0) and (0, 0, 1) (see Figure 1.1.23).

x

y

z

a
b

0

l
( ), 1,0 0

( )1− , 1,

figure 1.1.23 Finding the equation of the line through two points.
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s o l u t i o n Letting a = −i + j and b = k represent the given points, we have

l(t) = (1 − t)(−i + j) + tk = −(1 − t)i + (1 − t)j + tk.

The equation of this line may thus be written as

l(t) = (t − 1)i + (1 − t)j + tk,

or, equivalently, if l(t) = x i + yj + zk,

x = t − 1, y = 1 − t , z = t. ▲

The description of a line segment requires that the domain of the parameter t be
restricted, as in the following example.

example 16 Find the equation of the line segment between (1, 1, 1) and (2, 1, 2).

solut ion The line through (1, 1, 1) and (2, 1, 2) is described in parametric form by (x , y, z) =
(1 + t , 1, 1 + t), as t takes on all real values. When t = 0, the point (x , y, z) is
(1, 1, 1), and when t = 1, the point (x , y, z) is (2, 1, 2). Thus, the point (x , y, z) lies
between (1, 1, 1) and (2, 1, 2) when 0 ≤ t ≤ 1, so the line segment is described by the
equations

x = 1 + t ,
y = 1,
z = 1 + t ,

together with the inequalities 0 ≤ t ≤ 1. ▲

We can also give parametric descriptions of geometric objects other than lines.

example 17 Describe the points that lie within the parallelogram whose adjacent sides are the vectors
a and b based at the origin (“within” includes points on the edges of the parallelogram).

solut ion Consider Figure 1.1.24. If P is any point within the given parallelogram and we construct
lines l1 and l2 through P parallel to the vectors a and b, respectively, we see that l1

intersects the side of the parallelogram determined by the vector b at some point tb,
where 0 ≤ t ≤ 1. Likewise, l2 intersects the side determined by the vector a at some
point sa, where 0 ≤ s ≤ 1.

tb

sa
a

b

l

P

1

2l

0

figure 1.1.24 Describing points within the
parallelogram formed by vectors a and b, with
vertex 0.

Note that P is the endpoint of the diagonal of a parallelogram having adjacent sides sa
and tb; hence, if v denotes the vector

−→
OP, we see that v = sa + tb. We conclude that all
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the points in the given parallelogram are endpoints of vectors of the form sa + tb for
0 ≤ s ≤ 1 and 0 ≤ t ≤ 1. Reversing our steps, we see that all vectors of this form end
within the parallelogram. ▲

As two different lines through the origin determine a plane through the origin, so do
two nonparallel vectors. If we apply the same reasoning as in Example 17, we see that
the entire plane formed by two nonparallel vectors v and w consists of all points of the
form sv + tw, where s and t can be any real numbers, as in Figure 1.1.25.

We have thus described the points in the plane by two parameters. For this reason, we
say the plane is two-dimensional. Similarly, a line is called one-dimensional whether
it lies in the plane or in space or is the real number line itself.

The plane determined by v and w is called the plane spanned by v and w. When v is
a scalar multiple of w and w �= 0, then v and w are parallel and the plane degenerates to
a straight line. When v = w = 0 (i.e., both are zero vectors), we obtain a single point.

There are three particular planes that arise naturally in a coordinate system and that
will be useful to us later. We call the plane spanned by vectors i and j the xy plane, the
plane spanned by j and k the yz plane, and the plane spanned by i and k the xz plane.
These planes are illustrated in Figure 1.1.26.

figure 1.1.25 Describing points P
in the plane formed from vectors
v and w.

y

P

w

tw

sv

v

x

z

x

y

z

xz plane

yz plane

xy plane

figure 1.1.26 The three coordinate
planes.
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exercises

(Exercises with colored numbers are solved in the Study Guide.)

Complete the computations in Exercises 1 to 4.

1. (−21, 23) − (?, 6) = (−25, ?)

2. 3(133, −0.33, 0) + (−399, 0.99, 0) = (?, ?, ?)

3. (8a, −2b, 13c) = (52, 12, 11) + 1
2 (?, ?, ?)

4. (2, 3, 5) − 4i + 3j = (?, ?, ?)

In Exercises 5 to 8, sketch the given vectors v and w. On your sketch, draw in −v, v + w, and v − w.

5. v = (2, 1) and w = (1, 2)

6. v = (0, 4) and w = (2, −1)

7. v = (2, 3, −6) and w = (−1, 1, 1)

8. v = (2, 1, 3) and w = (−2, 0, −1)

9. Let v = 2i + j and w = i + 2j. Sketch
v, w, v + w, 2w, and v − w in the plane.

10. Sketch (1, −2, 3) and (− 1
3 , 2

3 , −1). Why do these
vectors point in opposite directions?

11. What restrictions must be made on x , y, and z so that the
triple (x , y, z) will represent a point on the y axis? On
the z axis? In the xz plane? In the yz plane?

12. (a) Generalize the geometric construction in Figure
1.1.7 to show that if v1 = (x , y, z) and v2 = (x ′, y′, z′),
then v1 + v2 = (x + x ′, y + y′, z + z′).

(b) Using an argument based on similar triangles, prove
that αv = (αx , αy, αz) when v = (x , y, z).

In Exercises 13 to 19, use set theoretic or vector notation or both to describe the points that lie in the given configurations.

13. The plane spanned by v1 = (2, 7, 0) and v2 = (0, 2, 7)

14. The plane spanned by v1 = (3, −1, 1) and v2 = (0, 3, 4)

15. The line passing through (−1, −1, −1) in the direction
of j

16. The line passing through (0, 2, 1) in the direction of
2i − k

17. The line passing through (−1, −1, −1) and (1, −1, 2)

18. The line passing through (−5, 0, 4) and (6, −3, 2)

19. The parallelogram whose adjacent sides are the vectors
i + 3k and −2j

20. Show that l1(t) = (1, 2, 3) + t (1, 0, −2) and
l2(t) = (2, 2, 1) + t (−2, 0, 4) parametrize the
same line.

21. Do the points (2, 3, −4), (2, 1, −1), and (2, 7, −10) lie
on the same line?

22. Let u = (1, 2), v = (−3, 4), and w = (5, 0):

(a) Draw these vectors in R2.

(b) Find scalars λ1 and λ2 such that w = λ1u + λ2v.

23. Suppose A, B, and C are vertices of a triangle. Find−→
AB + −→

BC + −→
C A.

24. Find the points of intersection of the line
x = 3 + 2t , y = 7 + 8t , z = −2 + t , that is, l(t) =
(3 + 2t , 7 + 8t , −2 + t), with the coordinate planes.

25. Show that there are no points (x , y, z) satisfying
2x − 3y + z − 2 = 0 and lying on the line
v = (2, −2, −1) + t (1, 1, 1).

26. Show that every point on the line
v = (1, −1, 2) + t (2, 3, 1) satisfies the equation
5x − 3y − z − 6 = 0.

27. Determine whether the lines
x = 3t + 2, y = t − 1, z = 6t + 1, and
x = 3s − 1, y = s − 2, z = s intersect.

28. Do the lines (x , y, z) = (t + 4, 4t + 5, t − 2) and
(x , y, z) = (2s + 3, s + 1, 2s − 3) intersect?
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In Exercises 29 to 31, use vector methods to describe the given configurations.

29. The parallelepiped with edges the vectors a, b, and c
emanating from the origin

30. The points within the parallelogram with one corner
at (x0, y0, z0) whose sides extending from that

corner are equal in magnitude and direction to vectors a
and b

31. The plane determined by the three points
(x0, y0, z0), (x1, y1, z1), and (x2, y2, z2)

Prove the statements in Exercises 32 to 34.

32. The line segment joining the midpoints of two sides of a
triangle is parallel to and has half the length of the third
side.

33. If PQR is a triangle in space and b > 0 is a number, then

there is a triangle with sides parallel to those of PQR and
side lengths b times those of PQR.

34. The medians of a triangle intersect at a point, and this
point divides each median in a ratio of 2 : 1.

Problems 35 and 36 require some knowledge of chemical notation.

35. Write the chemical equation CO + H2O = H2 + CO2 as
an equation in ordered triples (x1, x2, x3), where
x1, x2, x3 are the number of carbon, hydrogen, and
oxygen atoms, respectively, in each molecule.

36. (a) Write the chemical equation pC3H4O3 + qO2 =
rCO2 + sH2O as an equation in ordered triples with
unknown coefficients p, q, r , and s.

(b) Find the smallest positive integer solution for
p, q, r , and s.

(c) Illustrate the solution by a vector diagram in space.

37. Find a line that lies entirely in the set defined by the
equation x2 + y2 − z2 = 1.

1.2 The Inner Product, Length, and Distance

In this section and the next we shall discuss two products of vectors: the inner product
and the cross product. These are very useful in physical applications and have interesting
geometric interpretations. The first product we shall consider is called the inner product.
The name dot product is often used instead.

The Inner Product
Suppose we have two vectors a and b in R3 (Figure 1.2.1) and we wish to determine
the angle between them, that is, the smaller angle subtended by a and b in the plane
that they span. The inner product enables us to do this. Let us first develop the concept

q

x

y

z

a
b

figure 1.2.1 θ is the angle between the vectors
a and b.
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formally and then prove that this product does what we claim. Let a = a1i + a2j + a3k
and b = b1i + b2j + b3k. We define the inner product of a and b, written a · b, to be
the real number

a · b = a1b1 + a2b2 + a3b3.

Note that the inner product of two vectors is a scalar quantity. Sometimes the inner
product is denoted 〈a, b〉; thus, 〈a, b〉 and a · b mean exactly the same thing.

example 1 (a) If a = 3i + j − 2k and b = i − j + k, calculate a · b.

(b) Calculate (2i + j − k) · (3k − 2j).

solut ion (a) a · b = 3 · 1 + 1 · (−1) + (−2) · 1 = 3 − 1 − 2 = 0.

(b) (2i + j − k) · (3k − 2j) = (2i + j − k) · (0i − 2j + 3k)
= 2 · 0 − 1 · 2 − 1 · 3 = −5. ▲

Certain properties of the inner product follow from the definition. If a, b, and c are
vectors in R3 and α and β are real numbers, then

(i) a · a ≥ 0;

a · a = 0 if and only if a = 0.

(ii) αa · b = α(a · b) and a · βb = β(a · b).

(iii) a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c.

(iv) a · b = b · a.

To prove the first of these properties, observe that if a = a1i+a2j+a3k, then a · a =
a2

1 +a2
2 +a2

3 . Because a1, a2, and a3 are real numbers, we know a2
1 ≥ 0, a2

2 ≥ 0, a2
3 ≥ 0.

Thus, a · a ≥ 0. Moreover, if a2
1 + a2

2 + a2
3 = 0, then a1 = a2 = a3 = 0; therefore,

a = 0 (zero vector). The proofs of the other properties of the inner product are also
easily obtained.

It follows from the Pythagorean theorem that the length of the vector a = a1i + a2j+
a3k is

√
a2

1 + a2
2 + a2

3 (see Figure 1.2.2). The length of the vector a is denoted by ‖a‖.
This quantity is often called the norm of a. Because a · a = a2

1 + a2
2 + a2

3 , it follows that

‖a‖ = (a · a)1/2.

a1
2

x

y

z

a2
2 a3

2++

a1
2 a2

2+
a1

a2
a3

a

figure 1.2.2 The length of the vector
a = (a1, a2, a3) is given by the Pythagorean

formula:
√

a2
1 + a2

2 + a2
3 .
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Unit Vectors
Vectors with norm 1 are called unit vectors. For example, the vectors i, j, k are unit
vectors. Observe that for any nonzero vector a, a/‖a‖ is a unit vector; when we divide
a by ‖a‖, we say that we have normalized a.

example 2 (a) Normalize v = 2i + 3j − 1
2 k.

(b) Find unit vectors a, b, and c in the plane such that b + c = a.

solut ion (a) We have ‖v‖ = √
22 + 32 + (1/2)2 = (1/2)

√
53, so the normalization of v is

u = 1

‖v‖ v = 4√
53

i + 6√
53

j − 1√
53

k.

(b) Because all three vectors are to have length 1, a triangle with sides a, b, and c
must be equilateral, as in Figure 1.2.3. If we orient the triangle as in the figure and
we take a = i, then necessarily

b = 1

2
i +

√
3

2
j, and c = 1

2
i −

√
3

2
j.

Note that indeed ‖a‖ = ‖b‖ = ‖c‖ = 1 and that b + c = a. ▲

1
2

3
2

a

b c

x

y

,

figure 1.2.3 The vectors a, b,
and c are represented by the
sides of an equilateral triangle.

In the plane, define the vector iθ = (cos θ )i + (sin θ )j, which is the unit vector making
an angle θ with the x axis (see Figure 1.2.4).

x

y

i

sin q
q

q

cos q

figure 1.2.4 The coordinates of
iθ are cos θ and sin θ ; it is a unit
vector because
cos2

θ + sin2
θ = 1.

x

y

z

Q

P

b

a

 ||b −  a|| 

figure 1.2.5 The distance
between the tips of a and b is
‖ b − a ‖.

Distance
If a and b are vectors, we have seen that the vector b − a is parallel to and has the same
magnitude as the directed line segment from the endpoint of a to the endpoint of b.
It follows that the distance from the endpoint of a to the endpoint of b is ‖b − a‖ (see
Figure 1.2.5).

Inner Product, Length, and Distance Letting a = a1i + a2j + a3k and
b = b1i + b2j + b3k, their inner product is

a · b = a1b1 + a2b2 + a3b3,

while the length of a is

‖a‖ = √
a · a =

√
a2

1 + a2
2 + a2

3 .

To normalize a vector a, form the vector

a

‖a‖ .

The distance between the endpoints of a and b is ‖a−b‖, and the distance between
P and Q is ‖−→PQ‖.

wujiayao
高亮
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example 3 Find the distance from the endpoint of the vector i, that is, the point (1, 0, 0), to the
endpoint of the vector j, that is, the point (0, 1, 0).

solut ion ‖j − i‖ = √
(0 − 1)2 + (1 − 0)2 + (0 − 0)2 = √

2. ▲

The Angle Between Two Vectors
Let us now show that the inner product does indeed measure the angle between two
vectors.

Theorem 1 Let a and b be two vectors in R3 and let θ , where 0 ≤ θ ≤ π, be
the angle between them (Figure 1.2.6). Then

a · b = ‖a‖‖b‖ cos θ.

It follows from the equation a · b = ‖a‖‖b‖ cos θ that if a and b are nonzero, we
may express the angle between them as

θ = cos−1

(
a · b

‖a‖‖b‖
)

.

proof If we apply the law of cosines from trigonometry to the triangle with one
vertex at the origin and adjacent sides determined by the vectors a and b (as in the
figure), it follows that

‖b − a‖2 = ‖a‖2 + ‖b‖2 − 2‖a‖‖b‖ cos θ.

Because ‖b − a‖2 = (b − a) · (b − a), ‖a‖2 = a · a, and ‖b‖2 = b · b, we can rewrite
the preceding equation as

(b − a) · (b − a) = a · a + b · b − 2‖a‖‖b‖ cos θ.

x

y

z

b − a||||

q

b

a

figure 1.2.6 The vectors a, b, and the angle θ

between them; the geometry for Theorem 1 and its
proof.
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We can also expand (b − a) · (b − a) as follows:

(b − a) · (b − a) = b · (b − a) − a · (b − a)
= b · b − b · a − a · b + a · a
= a · a + b · b − 2a · b.

Thus,

a · a + b · b − 2a · b = a · a + b · b − 2‖a‖‖b‖ cos θ.

That is,

a · b = ‖a‖‖b‖ cos θ. ■

example 4 Find the angle between the vectors i + j + k and i + j − k (see Figure 1.2.7).

x

y

z

i + j − k

i + j + k

q

figure 1.2.7 Finding the angle between
a = i + j + k and b = i + j − k.

solut ion Using Theorem 1, we have

(i + j + k) · (i + j − k) = ‖i + j + k‖‖i + j − k‖ cos θ ,

and so

1 + 1 − 1 = (
√

3)(
√

3) cos θ.

Hence,

cos θ = 1
3 .

That is,

θ = cos−1( 1
3 ) ≈ 1.23 radians (71◦). ▲

The Cauchy–Schwarz Inequality
Theorem 1 shows that the inner product of two vectors is the product of their lengths times
the cosine of the angle between them. This relationship is often of value in problems of
a geometric nature. An important consequence of Theorem 1 is:
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Corollary Cauchy–Schwarz Inequality For any two vectors a and b, we
have

|a · b| ≤ ‖a‖‖b‖

with equality if and only if a is a scalar multiple of b, or one of them is 0.

proof If a is not a scalar multiple of b, then θ , the angle between them, is not zero or
π , and so |cos θ | < 1, and thus the inequality holds; in fact, if a and b are both nonzero,
strict inequality holds in this case. When a is a scalar multiple of b, then θ = 0 or π

and |cos θ | = 1, so equality holds in this case. ■

example 5 Verify the Cauchy–Schwarz inequality for a = −i + j + k and b = 3i + k.

solut ion The dot product is a · b = −3+0+1 = −2, so |a · b| = 2. Also, ‖a‖ = √
1 + 1 + 1 =√

3 and ‖b‖ = √
9 + 1 = √

10, and it is true that 2 ≤ √
3 ·

√
10 because

√
3 ·

√
10 >√

3 ·
√

3 = 3 ≥ 2. ▲

If a and b are nonzero vectors in R3 and θ is the angle between them, we see that
a · b = 0 if and only if cos θ = 0. Thus, the inner product of two nonzero vectors is zero
if and only if the vectors are perpendicular. Hence, the inner product provides us with
a convenient method for determining whether two vectors are perpendicular. Often we
say that perpendicular vectors are orthogonal. The standard basis vectors i, j, and k are
mutually orthogonal and of length 1; any such system is called orthonormal. We shall
adopt the convention that the zero vector is orthogonal to all vectors.

example 6 The vectors iθ = (cos θ )i + (sin θ )j and jθ = −(sin θ )i + (cos θ )j are orthogonal,
because

iθ · jθ = −cos θ sin θ + sin θ cos θ = 0.

Here, iθ is the rotation of i, θ◦ counterclockwise. Also, jθ is the rotation of j, θ◦

counterclockwise (see Figure 1.2.8).

q
q

q

j i

x

y

q

figure 1.2.8 The vectors iθ and jθ are orthogonal and of
unit length, that is, they are orthonormal.

▲

example 7 Let a and b be two nonzero orthogonal vectors. If c is a vector in the plane spanned by
a and b, then there are scalars α and β such that c = αa + βb. Use the inner product
to determine α and β (see Figure 1.2.9).
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aa

bb

c

b

a

q

||c|| cos q  = a c.___
||a||

x

y

z

figure 1.2.9 The geometry for finding α and β, where
c = α a + β b.

s o l u t i o n Taking the inner product of a and c, we have

a · c = a · (αa + βb) = αa · a + βa · b.

Because a and b are orthogonal, a · b = 0, and so

α = a · c

a · a
= a · c

‖a‖2
.

Similarly,

β = b · c

b · b
= b · c

‖b‖2
. ▲

Orthogonal Projection
In the preceding example, the vector αa is called the projection of c along a, and βb is
its projection along b. Let us formulate this idea more generally. If v is a vector, and l is
the line through the origin in the direction of a vector a, then the orthogonal projection
of v on a is the vector p whose tip is obtained by dropping a perpendicular line to l from
the tip of v, as in Figure 1.2.10.

v

p

a

lq

q

figure 1.2.10 p is the orthogonal
projection of v on a.

Referring to the figure, we see that p is a multiple of a and that v is the sum of p and
a vector q perpendicular to a. Thus,

v = ca + q,

where p = ca and a · q = 0. Taking the dot product of a with both sides of v = ca + q,
we find a · v = ca · a, so c = (a · v)/(a · a), and hence

p = a · v

‖a‖2
a.
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The length of p is

‖p‖ = |a · v|
‖a‖2

‖a‖ = |a · v|
‖a‖ = ‖v‖ cos θ.

Orthogonal Projection The orthogonal projection of v on a is the vector

p = a · v

‖a‖2
a.

example 8 Find the orthogonal projection of i + j on i − 2j.

solut ion With a = i − 2j and v = i + j, the orthogonal projection of v on a is

a · v

a · a
a = 1 − 2

1 + 4
(i − 2j) = −1

5
(i − 2j)

(see Figure 1.2.11). ▲

Orthogonal

v on a
projection
of

v

a

figure 1.2.11 The
orthogonal projection of v
on a equals − 1

5 a.

The Triangle Inequality
A useful consequence of the Cauchy–Schwarz inequality, which is called the triangle
inequality, relates the lengths of vectors a and b and of their sum a + b. Geometrically,
the triangle inequality says that the length of any side of a triangle is no greater than the
sum of the lengths of the other two sides (see Figure 1.2.12).

Theorem 2 Triangle Inequality For vectors a and b in space,

‖a + b‖ ≤ ‖a‖ + ‖b‖.

proof While this result may be clear geometrically, it is useful to give a proof using the
Cauchy–Schwarz inequality, as it will generalize to n-dimensional vectors. We consider
the square of the left-hand side:

‖a + b‖2 = (a + b) · (a + b) = ‖a‖2 + 2a · b + ‖b‖2.

P Q

O R

a
a a

b

b

+

figure 1.2.12 This geometry shows that
‖OQ‖ ≤ ‖OR‖ + ‖RQ‖ or, in vector notation,
that ‖ a + b‖ ≤ ‖ a‖ + ‖ b‖, which is the
triangle inequality.

wujiayao
高亮
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By the Cauchy–Schwarz inequality, we have

‖a‖2 + 2a · b + ‖b‖2 ≤ ‖a‖2 + 2‖a‖‖b‖ + ‖b‖2 = (‖a‖ + ‖b‖)2.

Thus,

‖a + b‖2 ≤ (‖a‖ + ‖b‖)2;

taking square roots proves the result. ■

example 9 (a) Verify the triangle inequality for a = i + j and b = 2i + j + k.

(b) Prove that ‖u − v‖ ≤ ‖u − w‖ + ‖w − v‖ for any vectors u, v, and w. Illustrate
with a figure in which u, v, and w have the same base point.

solut ion (a) We have a + b = 3i + 2j + k, so ‖a + b‖ = √
9 + 4 + 1 = √

14. On the other
hand, ‖a‖ = √

2 and ‖b‖ = √
6, so the triangle inequality asserts that√

14 ≤ √
2 + √

6. The numbers bear this out:
√

14 ≈ 3.74, while√
2 + √

6 ≈ 1.41 + 2.45 = 3.86.

(b) We find that u − v = (u − w) + (w − v), so the result follows from the triangle
inequality with a replaced by u − w and b replaced by w − v. Geometrically, we
are considering the shaded triangle in Figure 1.2.13. ▲

u

u

u vv

v

w

w

w

−

−

−

figure 1.2.13 Illustrating
the inequality ‖ u − v ‖ ≤
‖ u − w ‖ + ‖ w − v ‖. Physical Applications of Vectors

A simple example of a physical quantity represented by a vector is a displacement.
Suppose that, on a part of the earth’s surface small enough to be considered flat, we
introduce coordinates so that the x axis points east, the y axis points north, and the
unit of length is the kilometer. If we are at a point P and wish to get to a point Q, the
displacement vector d = −→

PQ joining P to Q tells us the direction and distance we have
to travel. If x and y are the components of this vector, the displacement of P to Q is “x
kilometers east, y kilometers north.”

example 10 Suppose that two navigators who cannot see one another but can communicate by radio
wish to determine the relative position of their ships. Explain how they can do this if
they can each determine their displacement vector to the same lighthouse.

solut ion Let P1 and P2 be the positions of the ships, and let Q be the position of the lighthouse.
The displacement of the lighthouse from the i th ship is the vector di joining Pi to Q.
The displacement of the second ship from the first is the vector d joining P1 to P2. We
have d + d2 = d1 (Figure 1.2.14), and so d = d1 − d2. That is, the displacement from
one ship to the other is the difference between the displacements from the ships to the
lighthouse.

Fog

d

d

d
ddP Q

P

1

2

2

1
1 2−= figure 1.2.14 Vector methods can be used

to locate objects. ▲
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We can also represent the velocity of a moving object as a vector. For the moment,
we will consider only objects moving at uniform speed along straight lines. Suppose,
for example, that a boat is steaming across a lake at 10 kilometers per hour (km/h) in
the northeast direction. After 1 hour of travel, the displacement is (10/

√
2, 10/

√
2) ≈

(7.07, 7.07); see Figure 1.2.15.45

Initial 
position

Position after 1 h

10

10

2
__

10

2
__

figure 1.2.15 If an
object moves northeast
at 10 km/h, its velocity
vector has components
(10/

√
2, 10/

√
2) =

10(1/
√

2, 1/
√

2), where

(1/
√

2, 1/
√

2) is the unit
vector of the northeast
direction.

The vector whose components are (10/
√

2, 10/
√

2) is called the velocity vector of
the boat. In general, if an object is moving uniformly along a straight line, its velocity
vector is the displacement vector from the position at any moment to the position 1 unit
of time later. If a current appears on the lake, moving due eastward at 2 km/h, and the
boat continues to point in the same direction with its engine running at the same rate,
its displacement after 1 hour will have components given by (10/

√
2 + 2, 10/

√
2); see

Figure 1.2.16. The new velocity vector, therefore, has components (10/
√

2+2, 10/
√

2).
We note that this is the sum of the original velocity vector (10/

√
2, 10/

√
2) of the boat

and the velocity vector (2, 0) of the current.

Displacement and Velocity If an object has a (constant) velocity vector
v, then in t units of time the resulting displacement vector of the object is d = tv;
thus, after time t = 1, the displacement vector equals the velocity vector. See
Figure 1.2.17.

Displacement
due to
engine

Displacement due
      to current

Total displacement

figure 1.2.16 The total displacement
is the sum of the displacements due
to the engine and the current.

v d = tv

Displacement in time t

figure 1.2.17 Displacement =
time × velocity.

example 11 A bird is flying in a straight line with velocity vector 10i + 6j + k (in kilometers per
hour). Suppose that (x , y) are its coordinates on the ground and z is its height above the
ground.

(a) If the bird is at position (1, 2, 3) at a certain moment, what is its location 1 hour
later? 1 minute later?

(b) How many seconds does it take the bird to climb 10 meters?

solut ion (a) The displacement vector from (1, 2, 3) after 1 hour is given by 10i + 6j + k, so
the new position is (1, 2, 3) + (10, 6, 1) = (11, 8, 4). After 1 minute, the displacement

vector from (1, 2, 3) is 1
60 (10i + 6j + k) = 1

6 i + 1
10 j + 1

60 k, and so the new position is
(1, 2, 3) + ( 1

6 , 1
10 , 1

60 ) = ( 7
6 , 21

10 , 181
60 ).

(b) After t seconds (= t/3600 hours), the displacement vector from (1, 2, 3) is (t/3600)
(10i + 6j + k) = (t/360)i + (t/600)j + (t/3600)k. The increase in altitude is the z
component, namely, t/3600. This will equal 10 m (= 1

100 km) when t/3600 = 1
100 , that

is, when t = 36 s. ▲
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example 12 Physical forces have magnitude and direction and may thus be represented by vectors.
If several forces act at once on an object, the resultant force is represented by the sum
of the individual force vectors. Suppose that forces i + k and j + k are acting on a body.
What third force F must we impose to counteract the two—that is, to make the total
force equal to zero?

solut ion The force F should be chosen so that (i + k) + ( j + k) + F = 0; that is, F = −(i + k) −
( j + k) = −i − j − 2k. (Recall that 0 is the zero vector, the vector whose components
are all zero.) ▲

exercises

1. Calculate (3i + 2j + k) · (i + 2j − k).

2. Calculate a · b, where a = 2i + 10j − 12k and
b = −3i + 4k.

3. Find the angle between 7j + 19k and −2i − j (to the
nearest degree).

4. Compute u · v, where u = √
3i − 315j + 22k and

v = u/‖u‖.

5. Is ‖8i − 12k‖ · ‖6j + k‖ − |(8i − 12k) · (6j + k)| equal
to zero? Explain.

In Exercises 6 to 11, compute ‖u‖, ‖v‖, and u · v for the given vectors in R3.

6. u = 15i − 2j + 4k, v = π i + 3j − k

7. u = 2j − i, v = −j + i

8. u = 5i − j + 2k, v = i + j − k

9. u = −i + 3j + k, v = −2i − 3j − 7k

10. u = −i + 3k, v = 4j

11. u = −i + 2j − 3k, v = −i − 3j + 4k

12. Let v = (2, 3). Suppose w ∈ R2 is perpendicular to v,
and that ‖w‖ = 5. This determines w up to sign. Find
one such w.

13. Find b and c so that (5, b, c) is orthogonal to both (1, 2,
3) and (1, −2, 1).

14. Let v1 = (0, 3, 0), v2 = (2, 2, 0), v3 = (1, 1, 3). These
three vectors with their tails at the origin determine a
parallelepiped P .

(a) Draw P .

(b) Determine the length of the main diagonal (from the
origin to its opposite vertex).

15. What is the geometric relation between the vectors v and
w if v · w = −‖v‖ ‖w‖?

16. Normalize the vectors in Exercises 6 to 8. (Only the
solution corresponding to Exercise 7 is in the Student
Guide.)

17. Find the angle between the vectors in Exercises 9 to 11.
If necessary, express your answer in terms of cos−1.

18. Find all values of x such that (x , 1, x) and (x , −6, 1) are
orthogonal.

19. Find all values of x such that (7, x , −10) and (3, x , x)
are orthogonal.

20. Find the projection of u = −i + j + k onto
v = 2i + j − 3k.

21. Find the projection of v = 2i + j − 3k onto
u = −i + j + k.

22. What restrictions must be made on the scalar b so that
the vector 2i + bj is orthogonal to (a) −3i + 2j + k and
(b) k?

23. Vectors v and w are sides of an equilateral triangle
whose sides have length 1. Compute v · w.

24. Let b = (3, 1, 1) and P be the plane through the origin
given by x + y + 2z = 0.

(a) Find an orthogonal basis for P . That is, find two
nonzero orthogonal vectors v1, v2 ∈ P .
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(b) Find the orthogonal projection of b onto P . That is,
find Projv1

b + Projv2
b.

25. Find two nonparallel vectors both orthogonal to (1, 1, 1).

26. Find the line through (3, 1, −2) that intersects and is
perpendicular to the line
x = −1 + t , y = −2 + t , z = −1 + t . [HINT: If
(x0, y0, z0) is the point of intersection, find its
coordinates.]

27. Using the dot product, prove the converse of the
Pythagorean theorem. That is, show that if the lengths of
the sides of a triangle satisfy a2 + b2 = c2, then the
triangle is a right triangle.

28. For v = (v1, v2, v3) let α, β, γ denote the angles
between v and the x , y, and z axes, respectively. Show
that cos2 α + cos2 β + cos2 γ = 1.

29. A ship at position (1, 0) on a nautical chart (with north
in the positive y direction) sights a rock at position (2,
4). What is the vector joining the ship to the rock? What
angle θ does this vector make with due north? (This is
called the bearing of the rock from the ship.)

30. Suppose that the ship in Exercise 29 is pointing due
north and traveling at a speed of 4 knots relative to the
water. There is a current flowing due east at 1 knot. The
units on the chart are nautical miles; 1 knot = 1 nautical
mile per hour.

(a) If there were no current, what vector u would
represent the velocity of the ship relative to the sea
bottom?

(b) If the ship were just drifting with the current, what
vector v would represent its velocity relative to the sea
bottom?

(c) What vector w represents the total velocity of the
ship?

(d) Where would the ship be after 1 hour?

(e) Should the captain change course?

(f) What if the rock were an iceberg?

31. An airplane is located at position (3, 4, 5) at noon and
traveling with velocity 400i + 500j − k kilometers per
hour. The pilot spots an airport at position (23, 29, 0).

(a) At what time will the plane pass directly over the
airport? (Assume that the plane is flying over flat ground
and that the vector k points straight up.)

(b) How high above the airport will the plane be when it
passes?

32. The wind velocity v1 is 40 miles per hour (mi/h) from
east to west while an airplane travels with air speed v2 of
100 mi/h due north. The speed of the airplane relative to
the ground is the vector sum v1 + v2.

(a) Find v1 + v2.

(b) Draw a figure to scale.

33. A force of 50 lb is directed 50◦ above horizontal,
pointing to the right. Determine its horizontal and
vertical components. Display all results in a figure.

34. Two persons pull horizontally on ropes attached to a
post, the angle between the ropes being 60◦. Person A
pulls with a force of 150 lb, while person B pulls with a
force of 110 lb.

(a) The resultant force is the vector sum of the two
forces. Draw a figure to scale that graphically represents
the three forces.

(b) Using trigonometry, determine formulas for the
vector components of the two forces in a conveniently
chosen coordinate system. Perform the algebraic
addition, and find the angle the resultant force makes
with A.

35. A 1-kilogram (1-kg) mass located at the origin is
suspended by ropes attached to the two points (1, 1, 1)
and (−1, −1, 1). If the force of gravity is pointing in the
direction of the vector −k, what is the vector describing
the force along each rope? [HINT: Use the symmetry of
the problem. A 1-kg mass weighs 9.8 newtons (N).]

36. Suppose that an object moving in direction i + j is acted
on by a force given by the vector 2i + j. Express this
force as the sum of a force in the direction of motion and
a force perpendicular to the direction of motion.

37. A force of 6 N makes an angle of π/4 radian with the y
axis, pointing to the right. The force acts against the
movement of an object along the straight line connecting
(1, 2) to (5, 4).

(a) Find a formula for the force vector F.

(b) Find the angle θ between the displacement direction
D = (5 − 1)i + (4 − 2)j and the force direction F.

(c) The work done is F · D, or, equivalently,
‖F‖‖D‖ cos θ . Compute the work from both formulas
and compare.
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38. Show that in any parallelogram the sum of the squares of
the lengths of the four sides equals the sum of the
squares of the lengths of the two diagonals.

39. Using vectors, show that the diagonals of a rectangle are
perpendicular if and only if the rectangle is a square.

1.3 Matrices, Determinants, and the Cross Product

In Section 1.2 we defined a product of vectors that was a scalar. In this section we shall
define a product of vectors that is a vector; that is, we shall show how, given two vectors
a and b, we can produce a third vector a × b, called the cross product of a and b. This
new vector will have the pleasing geometric property that it is perpendicular to the plane
spanned (determined) by a and b. The definition of the cross product is based on the
notions of the matrix and the determinant, and so these are developed first. Once this
has been accomplished, we can study the geometric implications of the mathematical
structure we have built.

2 × 2 Matrices
We define a 2 × 2 matrix to be an array

[
a11 a12

a21 a22

]
,

where a11, a12, a21, and a22 are four scalars. For example,

[
2 1
0 4

]
,

[−1 0
1 1

]
, and

[
13 7
6 11

]

are 2 × 2 matrices. The determinant

∣∣∣∣a11 a12

a21 a22

∣∣∣∣
of such a matrix is the real number defined by the equation

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21. (1)

example 1
∣∣∣∣1 1
1 1

∣∣∣∣ = 1 − 1 = 0;

∣∣∣∣1 2
3 4

∣∣∣∣ = 4 − 6 = −2;

∣∣∣∣5 6
7 8

∣∣∣∣ = 40 − 42 = −2
▲

3 × 3 Matrices
A 3 × 3 matrix is an array

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ ,
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where, again, each ai j is a scalar; ai j denotes the entry in the array that is in the i th row
and the j th column. We define the determinant of a 3 × 3 matrix by the rule

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣. (2)

Without some mnemonic device, formula (2) would be difficult to memorize. The rule
to learn is that you move along the first row, multiplying a1 j by the determinant of the
2 × 2 matrix obtained by canceling out the first row and the j th column, and then you
add these up, remembering to put a minus in front of the a12 term. For example, the
determinant multiplied by the middle term of formula (2), namely,

∣∣∣∣a21 a23

a31 a33

∣∣∣∣,

is obtained by crossing out the first row and the second column of the given 3×3 matrix:

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦.

example 2
∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1

∣∣∣∣1 0
0 1

∣∣∣∣ − 0

∣∣∣∣0 0
0 1

∣∣∣∣ + 0

∣∣∣∣0 1
0 0

∣∣∣∣ = 1.

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = 1

∣∣∣∣5 6
8 9

∣∣∣∣ − 2

∣∣∣∣4 6
7 9

∣∣∣∣ + 3

∣∣∣∣4 5
7 8

∣∣∣∣ = −3 + 12 − 9 = 0

▲

Properties of Determinants
An important property of determinants is that interchanging two rows or two columns
results in a change of sign. For 2×2 determinants, this is a consequence of the definition
as follows: For rows, we have

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12 = −(a21a12 − a11a22) = −
∣∣∣∣a21 a22

a11 a12

∣∣∣∣
and for columns,

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = −(a12a21 − a11a22) = −
∣∣∣∣a12 a11

a22 a21

∣∣∣∣.

We leave it to you to verify this property for the 3 × 3 case.
A second fundamental property of determinants is that we can factor scalars out of

any row or column. For 2 × 2 determinants, this means

∣∣∣∣αa11 a12

αa21 a22

∣∣∣∣ =
∣∣∣∣a11 αa12

a21 αa22

∣∣∣∣ = α

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ =
∣∣∣∣αa11 αa12

a21 a22

∣∣∣∣ =
∣∣∣∣ a11 a12

αa21 αa22

∣∣∣∣.
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Similarly, for 3 × 3 determinants we have
∣∣∣∣∣∣
αa11 αa12 αa13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = α

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a11 αa12 a13

a21 αa22 a23

a31 αa32 a33

∣∣∣∣∣∣,

and so on. These results follow from the definitions. In particular, if any row or column
consists of zeros, then the value of the determinant is zero.

A third fundamental fact about determinants is the following: If we change a row
(or column) by adding another row (or, respectively, column) to it, the value of the
determinant remains the same. For the 2 × 2 case, this means that

∣∣∣∣a1 a2

b1 b2

∣∣∣∣ =
∣∣∣∣a1 + b1 a2 + b2

b1 b2

∣∣∣∣ =
∣∣∣∣ a1 a2

b1 + a1 b2 + a2

∣∣∣∣
=

∣∣∣∣a1 + a2 a2

b1 + b2 b2

∣∣∣∣ =
∣∣∣∣a1 a1 + a2

b1 b1 + b2

∣∣∣∣.

For the 3 × 3 case, this means
∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a1 + b1 a2 + b2 a3 + b3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a1 + a2 a2 a3

b1 + b2 b2 b3

c1 + c2 c2 c3

∣∣∣∣∣∣,

and so on. Again, this property can be proved using the definition of the determinant.

example 3 Suppose

a = αb + βc; that is, a = (a1, a2, a3) = α(b1, b2, b3) + β(c1, c2, c3).

Show that
∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ = 0.

solut ion We shall prove the case α �= 0, β �= 0. The case α = 0 = β is trivial, and the case
where exactly one of α, β is zero is a simple modification of the case we prove. Using
the fundamental properties of determinants, the determinant in question is

∣∣∣∣∣∣
αb1 + βc1 αb2 + βc2 αb3 + βc3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣

= − 1

α

∣∣∣∣∣∣
αb1 + βc1 αb2 + βc2 αb3 + βc3

−αb1 −αb2 −αb3

c1 c2 c3

∣∣∣∣∣∣
(factoring −1/α out of the second row)

=
(

− 1

α

)(
− 1

β

) ∣∣∣∣∣∣
αb1 + βc1 αb2 + βc2 αb3 + βc3

−αb1 −αb2 −αb3

−βc1 −βc2 −βc3

∣∣∣∣∣∣
(factoring −1/β out of the third row)
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= 1

αβ

∣∣∣∣∣∣
βc1 βc2 βc3

−αb1 −αb2 −αb3

−βc1 −βc2 −βc3

∣∣∣∣∣∣ (adding the second row to the first row)

= 1

αβ

∣∣∣∣∣∣
0 0 0

−αb1 −αb2 −αb3

−βc1 −βc2 −βc3

∣∣∣∣∣∣ (adding the third row to the first row)

= 0. ▲

Closely related to these properties is the fact that we can expand a 3×3 determinant
along any row or column using the signs in the following checkerboard pattern:

∣∣∣∣∣∣
+ − +
− + −
+ − +

∣∣∣∣∣∣
For instance, you can check that we can expand “by minors” along the middle row:

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = −a21

∣∣∣∣∣∣
a12 a13

a32 a33

∣∣∣∣∣∣ + a22

∣∣∣∣∣∣
a11 a13

a31 a33

∣∣∣∣∣∣ − a23

∣∣∣∣∣∣
a11 a12

a31 a32

∣∣∣∣∣∣ .

Let us redo the second determinant in Example 2 using this formula:

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = −4

∣∣∣∣∣∣
2 3

8 9

∣∣∣∣∣∣ + 5

∣∣∣∣∣∣
1 3

7 9

∣∣∣∣∣∣ − 6

∣∣∣∣∣∣
1 2

7 8

∣∣∣∣∣∣ = (−4)(−6) + (5)(12) + (−6)(6) = 0.

Historical Note

Determinants appear to have been invented and first used by Leibniz in 1693, in
connection with solutions of linear equations. Maclaurin and Cramer developed
their properties between 1729 and 1750; in particular, they showed that the
solution of the system of equations

a11x 1 + a12x 2 + a13x3 = b1

a21x 1 + a22x 2 + a23x3 = b2

a31x 1 + a32x 2 + a33x3 = b3

is

x1 = 1
�

∣∣∣∣∣∣
b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣∣, x2 = 1
�

∣∣∣∣∣∣
a11 b1 a13

a21 b2 a23

a31 b3 a33

∣∣∣∣∣∣, x3 = 1
�

∣∣∣∣∣∣
a11 a12 b1

a21 a22 b2

a31 a32 b3

∣∣∣∣∣∣ ,

where

� =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣,



Marsden-3620111 VC September 27, 2011 9:19 35

1.3 Matrices, Determinants, and the Cross Product 35

a fact now known as Cramer's rule. While this method is rather inefficient from a
numerical point of view, it is of theoretical importance in matrix theory. Later,
Vandermonde (1772) and Cauchy (1812), treating determinants as a separate
topic worthy of special attention, developed the field more systematically, with
contributions by Laplace, Jacobi, and others. Formulas for volumes of
parallelepipeds in terms of determinants are due to Lagrange (1775). We shall
study these later in this section. Although during the nineteenth century
mathematicians studied matrices and determinants, the subjects were
considered to be distinct disciplines. For the full history up to 1900, see T. Muir, The
Theory of Determinants in the Historical Order of Development (reprinted by
Dover, New York, 1960).

Cross Products
Now that we have established the necessary properties of determinants and discussed
their history, we are ready to proceed with the cross product of vectors.

Definition The Cross Product Suppose that a = a1i + a2j + a3k and b =
b1i + b2j + b3k are vectors in R3. The cross product or vector product of a and
b, denoted a × b, is defined to be the vector

a × b =
∣∣∣∣a2 a3

b2 b3

∣∣∣∣ i −
∣∣∣∣a1 a3

b1 b3

∣∣∣∣ j +
∣∣∣∣a1 a2

b1 b2

∣∣∣∣ k,

or, symbolically,

a × b =
∣∣∣∣∣∣

i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ .

Even though we only defined determinants for arrays of real numbers, this formal
expression involving vectors is a useful memory aid for the cross product.

example 4 Find (3i − j + k) × (i + 2j − k).

solut ion

(3i − j + k) × (i + 2j − k) =
∣∣∣∣∣∣
i j k
3 −1 1
1 2 −1

∣∣∣∣∣∣ = −i + 4j + 7k.

▲

Certain algebraic properties of the cross product follow from the definition. If a, b,
and c are vectors and α, β, and γ are scalars, then

(i) a × b = −(b × a)

(ii) a × (βb + γ c) = β(a × b) + γ (a × c) and (αa +βb) × c = α(a × c) +β(b × c).

Note that a × a = −(a × a), by property (i). Thus, a × a = 0. In particular,

i × i = 0, j × j = 0, k × k = 0.
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Also,

i × j = k, j × k = i, k × i = j,

which can be remembered by cyclicly permuting i, j, k like this:

i

jk

To give a geometric interpretation of the cross product, we first introduce the triple
product. Given three vectors a, b, and c, the real number

(a × b) · c

is called the triple product of a, b, and c (in that order). To obtain a formula for it, let
a = a1i + a2j + a3k, b = b1i + b2j + b3k, and c = c1i + c2j + c3k. Then

(a × b) · c =
(∣∣∣∣a2 a3

b2 b3

∣∣∣∣ i −
∣∣∣∣a1 a3

b1 b3

∣∣∣∣ j +
∣∣∣∣a1 a2

b1 b2

∣∣∣∣ k

)
· (c1i + c2j + c3k)

=
∣∣∣∣a2 a3

b2 b3

∣∣∣∣ c1 −
∣∣∣∣a1 a3

b1 b3

∣∣∣∣ c2 +
∣∣∣∣a1 a2

b1 b2

∣∣∣∣ c3.

This is the expansion by minors of the third row of the determinant, so

(a × b) · c =
∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ .

If c is a vector in the plane spanned by the vectors a and b, then the third row in the
determinant expression for (a × b) · c is a linear combination of the first and second
rows, and therefore (a × b) · c = 0. In other words, the vector a × b is orthogonal to
any vector in the plane spanned by a and b, in particular to both a and b.

Next, we calculate the length of a × b. Note that

‖a × b‖2 =
∣∣∣∣a2 a3

b2 b3

∣∣∣∣
2

+
∣∣∣∣a1 a3

b1 b3

∣∣∣∣
2

+
∣∣∣∣a1 a2

b1 b2

∣∣∣∣
2

= (a2b3 − a3b2)2 + (a1b3 − b1a3)2 + (a1b2 − b1a2)2.

If we expand the terms in the last expression, we can recollect them to give

(a2
1 + a2

2 + a2
3)(b2

1 + b2
2 + b2

3) − (a1b1 + a2b2 + a3b3)2,

which equals

‖a‖2‖b‖2 − (a · b)2 = ‖a‖2‖b‖2 − ‖a‖2‖b‖2 cos2 θ = ‖a‖2‖b‖2 sin2 θ ,

where θ is the angle between a and b, 0 ≤ θ ≤ π . Taking square roots and using√
k2 = |k|, we find that ‖a × b‖ = ‖a‖‖b‖|sin θ |.
Combining our results, we conclude that a×b is a vector perpendicular to the plane

P spanned by a and b with length ‖a‖‖b‖|sin θ |. We see from Figure 1.3.1 that this
length is also the area of the parallelogram (with base ‖a‖ and height ‖b sin θ‖) spanned
by a and b. There are still two possible vectors that satisfy these conditions because
there are two choices of direction that are perpendicular (or normal) to P . This is clear
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a

b

0 ||b|| sin uu

n1

−n1 = n2

P

figure 1.3.1 n1 and n2 are the two possible vectors
orthogonal to both a and b, and with norm
‖ a ‖ ‖ b ‖ | sin θ |.

from Figure 1.3.1, which shows the two choices n1 and −n1 perpendicular to P , with
‖n1‖ = ‖−n1‖ = ‖a‖‖b‖|sin θ |.

Which vector represents a × b, n1 or −n1? The answer is n1. Try a few cases such
as k = i × j to verify this. The following “right-hand rule” determines the direction of
a × b in general. Take your right hand and place it so your fingers curl from a toward b
through the acute angle θ , as in Figure 1.3.2. Then your thumb points in the direction
of a × b.

a × b
b

a

q

figure 1.3.2 The
right-hand rule for
determining in which of
the two possible
directions a × b points.

The Cross Product Geometric definition: a × b is the vector such that:

(1) ‖a × b‖ = ‖a‖‖b‖ sin θ , the area of the parallelogram spanned by a and b
(θ is the angle between a and b; 0 ≤ θ ≤ π ); see Figure 1.3.3.

(2) a × b is perpendicular to a and b, and the triple (a, b, a × b) obeys the
right-hand rule.

Component formula:

(a1i + a2j + a3k) × (b1i + b2j + b3k) =
∣∣∣∣∣∣

i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
= (a2b3 − a3b2)i − (a1b3 − a3b1)j + (a1b2 − a2b1)k.

Algebraic rules:

1. a × b = 0 if and only if a and b are parallel or a or b is zero.

2. a × b = −b × a.

3. a × (b + c) = a × b + a × c.

4. (a + b) × c = a × c + b × c.

5. (αa) × b = α(a × b).

Multiplication table:

Second factor
× i j k

i 0 k −j
First j −k 0 i
factor k j −i 0
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a

a � b

y
x

Length = ||b|| |sin u |

b

u

z

figure 1.3.3 The length of a × b is the
area of the parallelogram formed by
a and b.

example 5 Find the area of the parallelogram spanned by the two vectors a = i + 2j + 3k and
b = −i − k.

solut ion We calculate the cross product of a and b by applying the component or determinant
formula, with a1 = 1, a2 = 2, a3 = 3, b1 = −1, b2 = 0, b3 = −1:

a × b = [(2)(−1) − (3)(0)]i + [(3)(−1) − (1)(−1)]j + [(1)(0) − (2)(−1)]k
= −2i − 2j + 2k.

Thus, the area is

‖a × b‖ =
√

(−2)2 + (−2)2 + (2)2 = 2
√

3. ▲

example 6 Find a unit vector orthogonal to the vectors i + j and j + k.

solut ion A vector perpendicular to both i + j and j + k is their cross product, namely, the vector

(i + j) × ( j + k) =
∣∣∣∣∣∣
i j k
1 1 0
0 1 1

∣∣∣∣∣∣ = i − j + k.

Because ‖i − j + k‖ = √
3, the vector

1√
3

(i − j + k)

is a unit vector perpendicular to i + j and j + k. ▲

example 7 Derive an identity relating the dot and cross products from the formulas

‖u × v‖ = ‖u‖‖v‖ sin θ and u · v = ‖u‖‖v‖ cos θ

by eliminating θ .

solut ion Seeing sin θ and cos θ multiplied by the same expression suggests squaring the two
formulas and adding the results. We get

‖u × v‖2 + (u · v)2 = ‖u‖2‖v‖2(sin2 θ + cos2 θ ) = ‖u‖2‖v‖2,
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so

‖u × v‖2 = ‖u‖2‖v‖2 − (u · v)2.

This identity is interesting because it establishes a link between the dot and cross
products. ▲

Geometry of Determinants
Using the cross product, we may obtain a basic geometric interpretation of 2 × 2 and
3 × 3 determinants. Let a = a1i + a2j and b = b1i + b2j be two vectors in the plane. If
θ is the angle between a and b, we have seen that ‖a × b‖ = ‖a‖‖b‖|sin θ | is the area
of the parallelogram with adjacent sides a and b. The cross product as a determinant is

a × b =
∣∣∣∣∣∣

i j k
a1 a2 0
b1 b2 0

∣∣∣∣∣∣ =
∣∣∣∣a1 a2

b1 b2

∣∣∣∣ k.

Thus, the area ‖a × b‖ is the absolute value of the determinant

∣∣∣∣a1 a2

b1 b2

∣∣∣∣ = a1b2 − a2b1.

Geometry of 2×2 Determinants The absolute value of the determinant∣∣∣a1 a2

b1 b2

∣∣∣ is the area of the parallelogram whose adjacent sides are the vectors a =
a1i + a2j and b = b1i + b2j. The sign of the determinant is + when, rotating in
the counterclockwise direction, the angle from a to b is less than π.

example 8 Find the area of the triangle with vertices at the points (1, 1), (0, 2), and (3, 2) (see
Figure 1.3.4).

2

1

3

(a) (b)

21

1

10 0−1 2

2

c − ab − a

b

a
c

x

y

x

y

figure 1.3.4 (a) Find the area A of the shaded triangle by expressing the sides as
vector differences (b) to get A = ‖ (b − a) × (c − a) ‖/2.
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s o l u t i o n Let a = i + j, b = 2j, and c = 3i + 2j. It is clear that the triangle whose vertices
are the endpoints of the vectors a, b, and c has the same area as the triangle with
vertices at 0, b − a, and c − a (Figure 1.3.4). Indeed, the latter is merely a translation
of the former triangle. Because the area of this translated triangle is one-half the area
of the parallelogram with adjacent sides b − a = −i + j, and c − a = 2i + j, we
find that the area of the triangle with vertices (1, 1), (0, 2), and (3, 2) is the absolute
value of

1

2

∣∣∣∣ −1 1
2 1

∣∣∣∣ = −3

2
,

that is, 3/2. ▲

There is an interpretation of determinants of 3 × 3 matrices as volumes that is
analogous to the interpretation of determinants of 2 × 2 matrices as areas.

Geometry of 3 × 3 Determinants The absolute value of the determinant

D =
∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
is the volume of the parallelepiped whose adjacent sides are the vectors

a = a1i + a2j + a3k, b = b1i + b2j + b3k, and c = c1i + c2j + c3k.

To prove the statement in the preceding box, we refer to Figure 1.3.5 and note that
the length of the cross product, namely, ‖a × b‖, is the area of the parallelogram with
adjacent sides a and b. Moreover, (a × b) · c = ‖a × b‖‖c‖ cos ψ , where ψ is the angle
that c makes with the normal to the plane spanned by a and b. Because the volume of
the parallelepiped with adjacent sides a, b, and c is the product of the area of the base
‖a × b‖ and the altitude ‖c‖| cos ψ |, it follows that the volume is |(a × b) · c)|. We saw
earlier that (a × b) · c = D, so the volume equals the absolute value of D.

x

y

z

a

b

c

a  b

h
y

figure 1.3.5 The volume of the
parallelepiped spanned by a, b, c is
the absolute value of the
determinant of the 3 × 3 matrix
having a, b, c as its rows.
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example 9 Find the volume of the parallelepiped spanned by the three vectors i + 3k, 2i + j − 2k,
and 5i + 4k.

solut ion The volume is the absolute value of ∣∣∣∣∣∣
1 0 3
2 1 −2
5 0 4

∣∣∣∣∣∣ .

If we expand this determinant by minors by going down the second column, the only
nonzero term is ∣∣∣∣1 3

5 4

∣∣∣∣(1) = −11,

so the volume equals 11. ▲

Equations of Planes
Let P be a plane in space, P0 = (x0, y0, z0) a point on that plane, and suppose that
n = Ai+ Bj+Ck is a vector normal to that plane (see Figure 1.3.6). Let P = (x , y, z)
be a point in R3. Then P lies on the plane P if and only if the vector

−→
P0P = (x − x0)i +

(y − y0)j + (z − z0)k is perpendicular to n, that is,
−→
P0P · n = 0, or, equivalently,

( Ai + Bj + Ck) · [(x − x0)i + (y − y0)j + (z − z0)k] = 0.

Thus,

A(x − x0) + B(y − y0) + C(z − z0) = 0.

Equation of a Plane in Space The equation of the plane P through
(x0, y0, z0) that has a normal vector n = Ai + Bj + Ck is

A(x − x0) + B( y − y0) + C(z − z0) = 0;

that is, (x , y, z) ∈ P if and only if

Ax + By + Cz + D = 0,

where D = −Ax0 − By0 − Cz0.

P

x
y

P0

P

z

n

figure 1.3.6 The points P of the plane through P0 and
perpendicular to n satisfy the equation

−→
P0P · n = 0.

wujiayao
高亮
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The four numbers A, B, C, and D are not determined uniquely by the plane P . To see
this, note that (x , y, z) satisfies the equation Ax + By + Cz + D = 0 if and only if it
also satisfies the relation

(λA)x + (λB)y + (λC)z + (λD) = 0

for any constant λ �= 0. Furthermore, if A, B, C, D and A′, B ′, C ′, D′ determine the
same plane P , then A = λA′, B = λB ′, C = λC ′, D = λD′ for a scalar λ. Conse-
quently, A, B, C, D are determined by P up to a scalar multiple.

example 10 Determine an equation for the plane that is perpendicular to the vector i + j + k and
contains the point (1, 0, 0).

solut ion Using the general form A(x − x0) + B(y − y0) + C(z − z0) = 0, the plane is
1(x − 1) + 1(y − 0) + 1(z − 0) = 0; that is, x + y + z = 1. ▲

example 11 Find an equation for the plane containing the three points (1, 1, 1), (2, 0, 0), and
(1, 1, 0).

solut ion Method 1. This is a “brute force” method that you can use if you have forgotten the
vector methods. The equation for any plane is of the form Ax + By + Cz + D = 0.
Because the points (1, 1, 1), (2, 0, 0), and (1, 1, 0) lie in the plane, we have

A + B + C + D = 0,

2A + D = 0,

A + B + D = 0.

Proceeding by elimination, we reduce this system of equations to the form

2A + D = 0 (second equation)
2B + D = 0 (2 × third − second),

C = 0 (first − third).

Because the numbers A, B, C, and D are determined only up to a scalar multiple, we
can fix the value of one of them, say A = 1, and then the others will be determined
uniquely. We get A = 1, D = −2, B = 1, C = 0. Thus, an equation of the plane that
contains the given points is x + y − 2 = 0.

Method 2. Let P = (1, 1, 1), Q = (2, 0, 0), R = (1, 1, 0). Any vector normal to the
plane must be orthogonal to the vectors

−→
QP and

−→
RP, which are parallel to the plane,

because their endpoints lie on the plane. Thus, n = −→
QP × −→

RP is normal to the plane.
Computing the cross product, we have

n =
∣∣∣∣∣∣

i j k
−1 1 1

0 0 1

∣∣∣∣∣∣ = i + j.

Because the point (2, 0, 0) lies on the plane, we conclude that the equation is given by
(x − 2) + ( y − 0) + 0 · (z − 0) = 0; that is, x + y − 2 = 0. ▲

Two planes are called parallel when their normal vectors are parallel. Thus, the
planes A1x + B1 y + C1z + D1 = 0 and A2x + B2 y + C2z + D2 = 0 are parallel
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when n1 = A1i + B1j + C1k and n2 = A2i + B2j + C2k are parallel; that is,
n1 = σn2 for a constant σ . For example, the planes

x − 2y + z = 0 and −2x + 4y − 2z = 10

are parallel, but the planes

x − 2y + z = 0 and 2x − 2y + z = 10

are not parallel.

Distance: Point to Plane
Let us now determine the distance from a point E = (x1, y1, z1) to the plane P described
by the equation A(x − x0) + B(y − y0) + C(z − z0) = Ax + By + Cz + D = 0. To
do so, consider the unit normal vector

n = Ai + Bj + Ck√
A2 + B2 + C2

,

which is a unit vector normal to the plane. Drop a perpendicular from E to the plane
and construct the triangle REQ shown in Figure 1.3.7. The distance d = ‖−→EQ‖ is the
length of the projection of v = −→

RE (the vector from R to E) onto n; thus,

Distance = |v · n| = |[(x1 − x0)i + ( y1 − y0)j + (z1 − z0)k] · n|

= |A(x1 − x0) + B(y1 − y0) + C(z1 − z0)|√
A2 + B2 + C2

.

If the plane is given in the form Ax + By + Cz + D = 0, then for any point (x0, y0, z0)
on it, D = −( Ax0 + By0 + Cz0). Substitution into the previous formula gives the
following:

Distance from a Point to a Plane The distance from (x1, y1, z1) to the
plane Ax + By + Cz + D = 0 is

Distance = |Ax1 + By1 + Cz1 + D|√
A2 + B2 + C2

.

R = (x0, y0, z0)

E = (x1, y1, z1)

v
n

Q

x
y

z

P

figure 1.3.7 The geometry for determining the
distance from the point E to plane P.
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example 12 Find the distance from Q = (2, 0, −1) to the plane 3x − 2y + 8z + 1 = 0.

solut ion We substitute into the formula in the preceding box the values x1 = 2y1 = 0, z1 = −1
(the point) and A = 3, B = −2, C = 8, D = 1 (the plane) to give

Distance = |3 · 2 + (−2) · 0 + 8(−1) + 1|√
32 + (−2)2 + 82

= |−1|√
77

= 1√
77

.
▲

Historical Note

The Origins of the Vector, Scalar, Dot, and Cross Products

QUADRATIC EQUATIONS, CUBIC EQUATIONS, AND IMAGINARY NUMBERS. We
know from Babylonian clay tablets that this great civilization possessed the
quadratic formula, enabling them (in verbal form) to solve quadratic equations.
Because the concept of negative numbers had to wait until the sixteenth century
to see the light of day, the Babylonians did not consider either negative
(or imaginary) solutions.

With the Renaissance and the rediscovery of ancient learning, Italian
mathematicians began to wonder about the solutions of cubic equations,
x3 + ax 2 + bx + c = 0, where a, b, and c are positive numbers.

Around 1500, Scipione del Ferro, a professor in Bologna (the oldest European
university), was able to solve cubics of the form x3 + bx = c, but kept his discovery
secret. Before his death, he passed his formula to his successor, Antonio Fior, who
for a while also kept the formula to himself. It remained a secret until a brilliant,
self-taught mathematician named Nicolo Fontana, also known as Tartaglia (the
stammerer), appeared on the scene. Tartaglia claimed he could solve the cubic,
and Fior felt he needed to protect the priority of del Ferro, and so in response
challenged Tartaglia to a public competition.

We are told that Tartaglia was able to solve all of the thirty cubic equations
posed by Fior. Amazingly, some scholars believe that Tartaglia discovered the
formula for solutions to x3 + cx = d only days before the contest was to take
place.

The greatest mathematician of the sixteenth century, Gerolamo
Cardano (1501--1576)---a Renaissance scholar, mathematician,
physician, and fortuneteller---gave the first published solution of the general
cubic. Although born of modest means, he (like Tartaglia) rose, through
effort and natural brilliance, to great fame. Cardano is the author of
the first book on games of chance (marking the beginning of modern
probability theory) and also of Ars Magna (the Great Art), which marks
the beginning of modern algebra. It was in this book that Cardano
published the solution to the general cubic x3 + ax 2 + bx + c = 0.
How did he get it?

While working on his algebra book, and aware that Tartaglia was able to
solve forms of cubic, Cardano, in 1539, wrote to Tartaglia asking for a meeting.
After some cajoling, Tartaglia agreed. It was at this meeting that, in exchange for
a pledge of secrecy (and we know how these generally go), Tartaglia revealed
his solution, from which Cardano was able to derive a solution to the general
equation, which then appeared in Ars Magna. Feeling betrayed, Tartaglia led a
scathing attack on Cardano, leading to a small soap opera.

What is important for us, at the moment, is that as a consequence of the
method of solution, something very strange occurred. Consider the cubic
x3 − 15x = 4. Its only positive root is 4. However, the Tartaglia--Cardano solution
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formula yields

x = 3
√

2 +
√

−121 + 3
√

2 −
√

−121 (3)

as the positive root. Thus, this number must be equal to 4. Yet this must be
nonsense, because inside the cube root we are taking the square root of a
negative number---at the time, an absolute impossibility. This was a real shock.
Over 100 years later, in 1702, when Leibniz, codiscoverer of calculus, showed the
great Dutch scientist Christian Huygens the formula

√
6 =

√
1 +

√
−3 +

√
1 −

√
−3 (4)

Huygens was completely flabbergasted, and remarked that this equality “defies
all human understanding.” [Try, informally, to verify both formulas (1) and (2) for
yourself.]

Whether nonsense or not, Tartaglia and Cardano's formula forced
mathematicians to confront square roots of negative numbers (or imaginary
numbers, as they are called today).

THE MATURING OF COMPLEX NUMBERS. For well over two centuries, numbers
like i =

√
−1 were looked at with great suspicion. The square root of any negative

number can be written in terms of i ; for example,
√−a =

√
(a)( − 1) = √

a
√

−1.
In the middle of the eighteenth century, the Swiss mathematician Leonhard Euler
connected the universal cosmic numbers eand π with the imaginary number i .
Whatever i was or meant, it necessarily follows that

eπi = −1,

that is, e“raised to the power πi equals −1.” Thus, these cosmic numbers,
reflecting perhaps some deeper mystery, are in fact connected to each other by
a very simple formula.

At the beginning of the nineteenth century, the German mathematician Karl
Friedrich Gauss was able to prove the fundamental theorem of algebra, which
says that any n th-degree polynomial has n roots (some or all of which may be
imaginary; that is, the roots have the form a + bi, where, as earlier, i =

√
−1 and

where a and b are real numbers).
By the middle of the nineteenth century, the French mathematician

Augustin-Louis Cauchy and the German mathematician Bernhard Riemann had
developed the differential calculus for functions of one complex variable. An
example of such a function is F (z) = zn, where z = a + bi. In this case, the usual
formula for the derivative, F ′(z) = nzn−1, still holds. However, by introducing
imaginary numbers, Cauchy was able to evaluate “real integrals” that
heretofore could not be evaluated. For example, it is possible to show that∫ ∞

0

sin x
x

dx = π

2

and that ∫ π

0

log sin x dx = −π log 2.

These were stunning results.
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In summary, the solution of the cubic equation, the fundamental theorem of
algebra, and the evaluation of real integrals proved how valuable it was to
consider imaginary numbers a+ bi, even though they were not (at least not yet)
on terra firma. Did they really exist or were they simply phantoms of our
imagination, and thus truly imaginary?

HAMILTON'S DEFINITION OF COMPLEX NUMBERS. Many mathematicians after
Cardano made important contributions to imaginary (or complex) numbers,
including Argand, Wessel, and Gauss---all of whom represented them
geometrically. However, the modern, intellectually rigorous definition of a
complex number is due to the great Irish mathematician William Rowan Hamilton
(see Figure 1.3.8). After Newton, who created the vector concept through his
invention of the notion of force, Hamilton was, beyond any doubt, the most
important and singular figure in the development of vector calculus. It was
Hamilton who gave us the terms vector and scalar quantity.figure 1.3.8 Sir William Rowan

Hamilton (1805--1865). William Rowan Hamilton was born in Dublin, Ireland, at midnight on August 3,
1805. In 1823, he entered Trinity College, Dublin. His university career, by any
standard, was phenomenal. By his third year, Trinity offered him a professorship,
the Andrew's Chair of Astronomy, and the State named him Royal Astronomer of
Ireland. These honors were based on his theoretical prediction (in 1824) of two
entirely new and unexpected optical phenomena, namely, internal and external
conical refraction.

By 1827 he had become interested in imaginary numbers. He wrote that “the
symbol

√
−1 is absurd, and denotes an impossible extraction . . .” He set out to

put the idea of a complex number on a firm logical foundation. His solution was
to define a complex number a + bi as a point (a, b) in the plane R2, much as we
do today. Thus, the imaginary number bi for Hamilton was simply the point (0, b)
on the y axis. The difference between complex numbers and the Cartesian plane
was that Hamilton followed the proforma multiplication of complex numbers:

(a+ bi )(c+ di ) = (ac− bd ) + (ad+ bc)i ,

and defined a new multiplication on the complex plane:

(a, b) · (c, d) = (ac− bd, ad+ bc).

Thus, i =
√

−1 just disappears into the point (0, 1), and the mystery and
confusion over complex numbers disappears along with it.

FROM COMPLEX NUMBERS TO QUATERNIONS. From Hamilton's interpretation,
complex numbers are nothing more than the extension of real numbers into a
new dimension, two dimensions. Hamilton, however, also did fundamental work
in mechanics, and he knew well that two dimensions were too limiting for the
space analysis necessary for understanding the physics of the three-dimensional
world. Therefore, Hamilton set out to find a triplet system; that is, an acceptable1

multiplication scheme on points (a, b, c) in R3, or, as it were, on vectors
ai + bj + ck.

1For him, “acceptable” meant that the associative law of multiplication would hold.
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By 1843, Hamilton realized that his quest was hopeless. But then, on October
16, 1843, Hamilton discovered that what he could not achieve for R3 he could
achieve for R4; he discovered quaternions, an entirely new number system.

Hamilton2 had realized that the multiplication he had been searching for
could be introduced on 4-tuples (a, b, c, d), which he had denoted by

a+ bi + cj + dk.

The awas called the scalar part and b i + cj + dk was called the vector part,
which in reality, as with complex numbers, meant the point (a, b, c, d ) in R4. The
multiplication table he introduced was

ij = k = −ji

ki = j = −ik

jk = i = −kj

i2 = j2 = k2 = ijk = −1.

Hamilton continued to passionately believe in his quaternions until the end of
his life. Unfortunately, historical development went in another direction.

The first step away from the quaternions was in fact taken by a
firm believer in the importance of quaternions, namely, Peter Guthrie Tait, who
was born in 1831 near Edinburgh, Scotland. In 1860, Tait was appointed to the
Chair of Natural Philosophy at Edinburgh University, where he remained until his
death in 1901. In 1867, he wrote his Elementary Treatises on Quaternions, a text
stressing physical applications. His third chapter was most significant. It was here
that Tait looked at the quaternionic product of two vectors:

v = ai + bj + ck and w = a′i + b′j + c′k.

Then the product vw, as defined by Hamilton, yields:

(ai + bj + ck)(a′i + b′j + c′k)
= −(aa ′ + bb′ + cc ′) + (bc′ − cb′)i + (ac′ − ca′)j + (ab′ − ba′)k

or, in modern form:

vw = −(v · w) + v × w,

where · is the modern dot or inner product of vectors and × is the cross product.
Tait discovered the formulas

v · w = ‖v‖‖w‖ cos θ and ‖v × w‖ = ‖v‖‖w‖ sin θ ,

where θ is the angle formed by v and w. Moreover, he showed that v × w was
orthogonal to v and w, therefore giving a geometric interpretation of the
quaternionic product of two vectors.

2North British Review, 14 (1858), p. 57.
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This began the move away from the study of quaternions and back to
Newton's vectors, with the quaternionic product eventually being replaced by
two separate products, the inner product and the cross product.

By the way, you might wonder why Hamilton did not at first discover the cross
product, since it is a product on R3. The reason is that it did not have a
fundamental property that he required---namely, it was not associative:3

0 = (i × i) × k �= i × (i × k) = −k.

Remarkably, Euler discovered the cross product in component form in 1750,
and three years before Hamilton, Olinde Rodrigues also discovered a form of
quartenionic multiplication.

THE MOVE AWAY FROM QUATERNIONS. The scientists ultimately
responsible for the demise of quaternions were James Clerk Maxwell
(see Figure 1.3.9), Oliver Heaviside, and Josiah Willard Gibbs, a founder of
statistical mechanics. In the 1860s, Maxwell wrote down his monumental
equations of electricity and magnetism. No vector notation was used (it did not
exist). Instead, Maxwell wrote out his equations in what we would now call
“component form.” Around 1870, Tait began to correspond with Maxwell,
piquing his interest in quaternions.

In 1873, Maxwell published his epic work, Treatise on Electricity and
Magnetism. Here (as we shall do in Chapter 8), Maxwell wrote down the
equations of the electromagnetic field using quaternions, thus motivating
physicists and mathematicians alike to take a closer look at them. From this
manuscript many have concluded that Maxwell was a supporter of the
“quaternionic approach” to physics. The truth, however, is that Maxwell was
reluctant to use quaternions. It was Maxwell, in fact, who began the process of
separating the vector part of a product of two quaternions (the cross product)
from its scalar part (the dot product).

It is known that Maxwell was troubled by the fact that the scalar part of the
“square” of a vector (vv) was always negative (−v · v), which in the case of a
velocity vector could be interpreted as negative kinetic energy---an
unacceptable idea!

It was Heaviside and Gibbs who made the final push away from quaternions.
Heaviside, an independent researcher interested in electricity and magnetism,
and Gibbs, a professor of mathematical physics at Yale, almost simultaneously---
and independently---created our modern system of vector analysis, which we
have just started to study.

3Interestingly, if one is willing to continue to live with nonassociativity, there is also a vector product
with most of the properties of the cross product in R7; this involves yet another number system called the
octonians, which exists in R8. The nonexistence of a cross product in other dimensions is a result that
goes beyond the scope of this text. For further information, see the American Mathematical Monthly, 74
(1967), pp. 188–194, and 90 (1983), p. 697, as well as J. Baez, “The Octonians,” Bulletin of the American
Mathematical Society, 39 (2002), pp. 145–206. One can show that systems like the quaternions and
octonians occur only in dimension 1 (the reals R), dimension 2 (the complex numbers), dimension 4
(the quaternions), and dimension 8 (the octonians). On the other hand, the “right” way to extend the
cross product is to introduce the notion of differential forms, which exists in any dimension. We discuss
their construction in Section 8.5.
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In 1879, Gibbs taught a course at Yale in vector analysis with applications to
electricity and magnetism. This treatise was clearly motivated by the advent of
Maxwell's equations, which we will be studying in Chapter 8. In 1884, he
published his Elements of Vector Analysis, a book in which all the properties of
the dot and cross products are fully developed. Knowing that much of what
Gibbs wrote was in fact due to Tait, Gibbs's contemporaries did not view his book
as highly original. However, it is one of the sources from which modern vector
analysis has come into existence.

figure 1.3.9 James Clerk
Maxwell (1831--1879).

Heaviside was also largely motivated by Maxwell's brilliant work. His great
Electromagnetic Theory was published in three volumes. Volume I (1893)
contained the first extensive treatment of modern vector analysis.

We all owe a great debt to E. B. Wilson's 1901 book Vector Analysis: A Textbook
for the Use of Students of Mathematics and Physics Founded upon the Lectures of
J. Willard Gibbs. Wilson was reluctant to take Gibbs's course, because he had just
completed a full-year course in quaternions at Harvard under J. M. Pierce, a
champion of quaternionic methods; but he was forced by a dean to add the
course to his program, and he did so in 1899. Wilson was later asked by the editor
of the Yale Bicentennial Series to write a book based on Gibbs's lectures. For a
picture of Gibbs and for additional historical comments on divergence and curl,
see the Historical Note in Section 4.4.

exercises

1. Verify that interchanging the first two rows of the 3 × 3
determinant ∣∣∣∣∣

1 2 1
3 0 1
2 0 2

∣∣∣∣∣
changes the sign of the determinant.

2. Evaluate the determinants

(a) 2 −1 0
4 3 2
3 0 1

(b) 36 18 17
45 24 20

3 5 −2

(c) 1 4 9
4 9 16
9 16 25

(d) 2 3 5
7 11 13

17 19 23

3. Compute a × b, where a = i − 2j + k, b = 2i + j + k.

4. Compute a · (b × c), where a and b are as in Exercise 3
and c = 3i − j + 2k.

5. Find the area of the parallelogram with sides a and b
given in Exercise 3.

6. A triangle has vertices (0, 0, 0), (1, 1, 1), and (0, −2, 3).
Find its area.

7. What is the volume of the parallelepiped with sides
2i + j − k, 5i − 3k, and i − 2j + k?

8. What is the volume of the parallelepiped with sides
i, 3j − k, and 4i + 2j − k?

In Exercises 9 to 12, describe all unit vectors orthogonal to both of the given vectors.

9. i, j

10. −5i + 9j − 4k, 7i + 8j + 9k

11. −5i + 9j − 4k, 7i + 8j + 9k

12. 2i − 4j + 3k, −4i + 8j − 6k

13. Compute u + v, u · v, ‖u‖, ‖v‖, and u × v, where
u = i − 2j + k, v = 2i − j + 2k.

14. Repeat Exercise 13 for
u = 3i + j − k, v = −6i − 2j − 2k.
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15. Find an equation for the plane that

(a) is perpendicular to v = (1, 1, 1) and passes through
(1, 0, 0).

(b) is perpendicular to v = (1, 2, 3) and passes through
(1, 1, 1).

(c) is perpendicular to the line
l(t) = (5, 0, 2)t + (3, −1, 1) and passes through
(5, −1, 0).

(d) is perpendicular to the line
l(t) = (−1, −2, 3)t + (0, 7, 1) and passes through
(2, 4, −1).

16. Find an equation for the plane that passes through

(a) (0, 0, 0), (2, 0, −1), and (0, 4, −3).

(b) (1, 2, 0), (0, 1, −2), and (4, 0, 1).

(c) (2, −1, 3), (0, 0, 5), and (5, 7, −1).

17. Show that the points (0, −2, −1), (1, 4, 0), (2, 10, 1) do
not determine a unique plane.

18. Let P be the plane defined by the equation
x + y + z = 1. Which of the following points are
contained in P?

(a) (0, 0, 0)

(b) (1, 1, −1)

(c) (−3, 8, −4)

(d) (1, 2, −3)

19. (a) Show that two parallel planes are either identical or
they never intersect.

(b) How do two nonparallel planes intersect?

20. Find the intersection of the planes x + 2y + z = 0 and
x − 3y − z = 0.

21. Find the intersection of the planes x + ( y − 1) + z = 0
and −x + ( y + 1) − z = 0.

22. Find the intersection of the two planes with equations
3(x − 1) + 2y + (z + 1) = 0 and
(x − 1) + 4y − (z + 1) = 0.

23. (a) Prove the two triple-vector-product identities

(a × b) × c = (a · c)b − (b · c)a

and

a × (b × c) = (a · c)b − (a · b)c.

(b) Prove (u × v) × w = u × (v × w) if and only if
(u × w) × v = 0.

(c) Also prove that
(u × v) × w + (v × w) × u + (w × u) × v = 0
(called the Jacobi identity).

24. (a) Prove, without recourse to geometry, that

u · (v × w) = v · (w × u) = w · (u × v) = −u · (w × v)
= −w · (v × u) = −v · (u × w).

(b) Use part (a) and Exercise 23(a) to prove that

(u × v) · (u′ × v′) = (u · u′)(v · v′) − (u · v′)(u′ · v)

=
∣∣∣u · u′ u · v′
u′ · v v · v′

∣∣∣.

25. Verify Cramer’s rule.

26. What is the geometric relation between the vectors v and
w if ‖v × w‖ = 1

2 ‖v‖ ‖w‖?

27. Let v = (1, 1, 0) and w = (0, 2, −1). Use the algebraic
rules and multiplication table on page 37 to compute
v × w without using determinants.

28. Find an equation for the plane that passes through the
point (2, −1, 3) and is perpendicular to the line
v = (1, −2, 2) + t (3, −2, 4).

29. Find an equation for the plane that passes through the
point (1, 2, −3) and is perpendicular to the line
v = (0, −2, 1) + t (1, −2, 3).

30. Find the equation of the line that passes through the
point (1, −2, −3) and is perpendicular to the plane
3x − y − 2z + 4 = 0.

31. Find an equation for the plane containing the two
(parallel) lines

v1 = (0, 1, −2) + t (2, 3, −1)

and

v2 = (2, −1, 0) + t (2, 3, −1).

32. Find a parametrization for the line perpendicular to
(2, −1, 1), parallel to the plane 2x + y − 4z = 1, and
passing through the point (1, 0, −3)

33. Find an equation for the plane containing the point
(1, 0, 1) and the line l(t) = (1, 2, −1) + t (1, 0, 5).
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34. Find the distance from the point (2, 1, −1) to the plane
x − 2y + 2z + 5 = 0.

35. Find an equation for the plane that contains the line
v = (−1, 1, 2) + t (3, 2, 4) and is perpendicular to the
plane 2x + y − 3z + 4 = 0.

36. Find an equation for the plane that passes through
(3, 2, −1) and (1, −1, 2) and that is parallel to the line
v = (1, −1, 0) + t (3, 2, −2).

37. Redo Exercises 25 and 26 of Section 1.1 using the dot
product and what you know about normals to planes.

38. Given vectors a and b, do the equations x × a = b and
x · a = ‖a‖ determine a unique vector x? Argue both
geometrically and analytically.

39. Determine the distance from the plane
12x + 13y + 5z + 2 = 0 to the point (1, 1, −5).

40. Find the distance to the point (6, 1, 0) from the plane
through the origin that is perpendicular to i − 2j + k.

41. (a) In mechanics, the moment M of a force F about a
point O is defined to be the magnitude of F times
the perpendicular distance d from O to the line of
action of F. The vector moment M is the vector of
magnitude M whose direction is perpendicular to the
plane of O and F, determined by the right-hand rule.
Show that M = R × F, where R is any vector from
O to the line of action of F. (See Figure 1.3.10.)

Line of action

d

O

R

F

figure 1.3.10 Moment of a
force.

(b) Find the moment of the force vector
F = i − j + 2k newtons about the origin if the line
of action is x = 1 + t , y = 1 − t , z = 2t .

42. Show that the plane that passes through the three points
A = (a1, a2, a3), B = (b1, b2, b3), and C = (c1, c2, c3)

consists of the points P = (x , y, z) given by

∣∣∣∣∣
a1 − x a2 − y a3 − z
b1 − x b2 − y b3 − z
c1 − x c2 − y c3 − z

∣∣∣∣∣ = 0.

(HINT: Write the determinant as a triple product.)

43. Two media with indices of refraction n1 and n2 are
separated by a plane surface perpendicular to the unit
vector N. Let a and b be unit vectors along the incident
and refracted rays, respectively, their directions being
those of the light rays. Show that n1(N × a) = n2(N × b)
by using Snell’s law, sin θ1/ sin θ2 = n2/n1, where θ1

and θ2 are the angles of incidence and refraction,
respectively. (See Figure 1.3.11.)

u2

Light rayN

u1

figure 1.3.11 Snell's law.

44. Justify the steps in the following computation:

∣∣∣∣∣
1 2 3
4 5 6
7 8 10

∣∣∣∣∣ =
∣∣∣∣∣
1 2 3
0 −3 −6
7 8 10

∣∣∣∣∣ =
∣∣∣∣∣
1 2 3
0 −3 −6
0 −6 −11

∣∣∣∣∣
=

∣∣∣−3 −6
−6 −11

∣∣∣ = 33 − 36 = −3.

45. Show that adding a multiple of the first row of a matrix
to the second row leaves the determinant unchanged;
that is,

∣∣∣∣∣
a1 b1 c1

a2 + λa1 b2 + λb1 c2 + λc1

a3 b3 c3

∣∣∣∣∣ =
∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣.

[In fact, adding a multiple of any row (column) of a
matrix to another row (column) leaves the determinant
unchanged.]

46. Suppose v, w ∈ R3 are orthogonal unit vectors. Let
u = v × w. Show that w = u × v and v = w × u.
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1.4 Cylindrical and Spherical Coordinates

A standard way to represent a point in the plane R2 is by means of rectangular coordinates
(x , y). However, as you have probably learned in elementary calculus, polar coordinates
in the plane can be extremely useful. As portrayed in Figure 1.4.1, the coordinates (r, θ )
are related to (x , y) by the formulas

x = r cos θ and y = r sin θ ,

where we usually take r ≥ 0 and 0 ≤ θ < 2π .

x

y

r

( )

q

,x y

figure 1.4.1 The polar coordinates of (x,y ) are (r , θ).

If you are not familiar with ploar coordinates, we advise you to study the relevant
section of their calculus texts. We now set forth two ways of representing points in
space other than by using rectangular Cartesian coordinates (x , y, z). These alternative
coordinate systems are particularly well suited for certain types of problems, such as
the evaluation of integrals using a change of variables.

In 1671, Isaac Newton wrote a manuscript entitled The Method of Fuxions and
Infinite Series, which contains many uses of coordinate geometry to sketch the
solutions of equations. In particular, he introduces the polar coordinate system,
among various other coordinate systems.

In 1691, Jacob Bernoulli published a paper also containing polar coordinates.
Because Newton's manuscript was not published until after his death in 1727,
credit for the discovery of polar coordinates is usually attributed to Bernoulli.

Historical Note

Cylindrical Coordinates

Definition The cylindrical coordinates (r, θ , z) of a point (x , y, z) are defined
by (see Figure 1.4.2)

x = r cos θ , y = r sin θ , z = z. (1)
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x

z

r

( )

q

,x y,

y

z

z
figure 1.4.2 Representing a point (x, y, z) in terms
of its cylindrical coordinates r, θ , and z.

r = a

a

y

x

z

figure 1.4.3 The graph of the points whose cylindrical
coordinates satisfy r = a is a cylinder.

To express r, θ , and z in terms of x , y, and z, and to ensure that θ lies between 0 and
2π, we can write

r = √
x2 + y2 , θ =

⎧⎪⎨
⎪⎩

tan−1( y/x) if x > 0 and y ≥ 0

π + tan−1( y/x) if x < 0

2π + tan−1( y/x) if x > 0 and y < 0,

z = z,

where tan−1( y/x) is taken to lie between −π/2 and π/2. The requirement that 0 ≤ θ <

2π uniquely determines θ and r ≥ 0 for a given x and y. If x = 0, then θ = π/2 for
y > 0 and 3π/2 for y < 0. If x = y = 0, θ is undefined.

In other words, for any point (x , y, z), we represent the first and second coordinates
in terms of polar coordinates and leave the third coordinate unchanged. Formula (1)
shows that, given (r, θ , z), the triple (x , y, z) is completely determined, and vice versa,
if we restrict θ to the interval [0, 2π ) (sometimes the range (−π, π ] is convenient) and
require that r > 0.

To see why we use the term cylindrical coordinates, note that if the conditions
0 ≤ θ < 2π, −∞ < z < ∞ hold and if r = a is some positive constant, then the
locus of these points is a cylinder of radius a (see Figure 1.4.3).

example 1 (a) Find and plot the cylindrical coordinates of (6, 6, 8). (b) If a point has cylindrical
coordinates (8, 2π/3, −3), what are its Cartesian coordinates? Plot.

solut ion For part (a), we have r = √
62 + 62 = 6

√
2 and θ = tan−1(6/6) = tan−1(1) = π/4.

Thus, the cylindrical coordinates are (6
√

2, π/4, 8). This is point P in Figure 1.4.4.
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p/6

p/4

x

y

P (6, 6, 8)

z

2

8

6

4

2

6

4

2

−2

−4

−3

4
6

3, −3)Q (−4, 4

2− 6

figure 1.4.4 Some examples of the conversion between
Cartesian and cylindrical coordinates.

For part (b), note that 2π/3 = π/2 + π/6 and compute

x = r cos θ = 8 cos
2π

3
= −8

2
= −4

and

y = r sin θ = 8 sin
2π

3
= 8

√
3

2
= 4

√
3.

Thus, the Cartesian coordinates are (−4, 4
√

3, −3). This is point Q in the figure. ▲

Spherical Coordinates
Cylindrical coordinates are not the only possible generalization of polar coordinates to
three dimensions. Recall that in two dimensions the magnitude of the vector x i + yj(
that is,

√
x2 + y2

)
is the r in the polar coordinate system. For cylindrical coordinates,

the length of the vector x i + yj + zk, namely,

ρ = √
x2 + y2 + z2,

is not one of the coordinates of that system—instead, we used the magnitude r =√
x2 + y2, the angle θ , and the “height” z.
We now modify this by introducing the spherical coordinate system, which does

use ρ as a coordinate. Spherical coordinates are often useful for problems that possess
spherical symmetry (symmetry about a point), whereas cylindrical coordinates can be
applied when cylindrical symmetry (symmetry about a line) is involved.
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x

z

r

( )

q

,x y,

y

z

r
zf figure 1.4.5 Spherical coordinates (ρ, θ , φ);

the graph of points satisfying ρ = a is a
sphere.

Given a point (x , y, z) ∈ R3, let

ρ = √
x2 + y2 + z2

and represent x and y by polar coordinates in the xy plane:

x = r cos θ , y = r sin θ , (2)

where r = √
x2 + y2 and θ is determined by formula (1) [see the expression for θ

following formula (1)]. The coordinate z is given by

z = ρ cos φ ,

where φ is the angle (chosen to lie between 0 and π , inclusive) that the radius vector
v = x i + yj + zk makes with the positive z axis, in the plane containing the vec-
tor v and the z axis (see Figure 1.4.5). Using the dot product, we can express φ as
follows:

cos φ = v · k

‖v‖ , that is, φ = cos−1

(
v · k

‖v‖
)

.

We take as our coordinates the quantities ρ , θ , φ. Because

r = ρ sin φ ,

we can use formula (2) to find x , y, z in terms of the spherical coordinates ρ , θ , φ.

Definition The spherical coordinates of points (x , y, z) in space are the triples
(ρ , θ , φ), defined as follows:

x = ρ sin φ cos θ , y = ρ sin φ sin θ , z = ρ cos φ , (3)

where

ρ ≥ 0, 0 ≤ θ < 2π, 0 ≤ φ ≤ π.
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Historical Note

In 1773, Joseph Louis Lagrange was working on Newton's gravitational theory as
it applied to ellipsoids of revolution. In attempting to calculate the total
gravitational attraction of such an ellipsoid, he encountered an integral that was
difficult to evaluate. Motivated by this application, he introduced spherical
coordinates, which allowed him to calculate the integral. We will be discussing
the method of changing coordinates as it applies to multiple integrals in Section
6.2, and applications to gravitation in Section 6.3, where we show how the inverse
square law of gravity allowed Newton to consider spherical masses as point
masses.

Spherical coordinates are also closely connected to navigation by latitude
and longitude. To see the connection, first note that the sphere of radius a
centered at the origin is described by a very simple equation in spherical
coordinates, namely, ρ = a . Fixing the radius a, the spherical coordinates θ and φ

are similar to the geographic coordinates of longitude and latitude if we take the
earth's axis to be the z axis. There are differences, though: The geographical
longitude is |θ | and is called east or west longitude, according to whether θ is a
positive or negative measure from the Greenwich meridian; the geographical
latitude is |π/2 − φ| and is called north or south latitude, according to whether
π/2 − φ is positive or negative.

example 2 (a) Find the spherical coordinates of the Cartesian point (1, −1, 1) and plot.

(b) Find the Cartesian coordinates of the spherical coordinate point (3, π/6, π/4) and
plot.

(c) Let a point have Cartesian coordinates (2, −3, 6). Find its spherical coordinates
and plot.

(d) Let a point have spherical coordinates (1, −π/2, π/4). Find its Cartesian
coordinates and plot.

solut ion (a) ρ = √
x2 + y2 + z2 = √

12 + (−1)2 + 12 = √
3,

θ = 2π + tan−1
( y

x

)
= 2π + tan−1

(−1

1

)
= 2π − π

4
= 7π

4

φ = cos−1

(
z

ρ

)
= cos−1

(
1√
3

)
≈ 0.955 ≈ 54.74◦.

See Figure 1.4.6(a) and the formula for θ following formula (1).

(b) x = ρ sin φ cos θ = 3 sin
(π

4

)
cos

(π

6

)
= 3

(
1√
2

) √
3

2
= 3

√
3

2
√

2
,

y = ρ sin φ sin θ = 3 sin
(π

4

)
sin

(π

6

)
= 3

(
1√
2

)(
1

2

)
= 3

2
√

2
,

z = ρ cos φ = 3 cos
(π

4

)
= 3√

2
= 3

√
2

2
.

See Figure 1.4.6(b).
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q

x

y

−

3

_
4
p

(1, −1, 1) =r 3

=

f = _
4
p

(a) (b)z z

x

y

f 55=
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figure 1.4.6 Finding (a) the spherical coordinates of the point (1, –1, 1),
and (b) the Cartesian coordinates of (3, π/6, π/4).

(c) ρ = √
x2 + y2 + z2 = √

22 + (−3)2 + 62 = √
49 = 7,

θ = 2π + tan−1
( y

x

)
= 2π + tan−1

(−3

2

)
≈ 5.3004 radians ≈ 303.69◦,

φ = cos−1

(
z

ρ

)
= cos−1

(
6

7

)
≈ 0.541 ≈ 31.0◦.

See Figure 1.4.7(a).

(d) x = ρ sin φ cos θ = 1 sin
(π

4

)
cos

(
−π

2

)
=

(√
2

2

)
· 0 = 0,

y = ρ sin φ sin θ = 1 sin
(π

4

)
sin

(
−π

2

)
=

(√
2

2

)
(−1) = −

√
2

2
,

z = ρ cos φ = 1 cos
(π

4

)
=

√
2

2
.

See Figure 1.4.7(b).

y y

xx

z z(a) (b)

31

7
1 p

4

p
2

−56

−

figure 1.4.7 Finding (a) the spherical coordinates of the
point (2, −3, 6), and (b) the Cartesian coordinates of
(1, −π/2, π/4). ▲
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figure 1.4.8 (a) Orthonormal
vectors er , eθ , and ez associated
with cylindrical coordinates. The
vector er is parallel to the line
labeled r . (b) Orthonormal
vectors eρ , eθ , and eφ associated
with spherical coordinates.
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example 3 Express (a) the surface xz = 1 and (b) the surface x2 + y2 − z2 = 1 in spherical
coordinates.

solut ion From formula (3), x = ρ sin φ cos θ , and z = ρ cos φ, and so the surface xz = 1 in
(a) consists of all (ρ , θ , φ) such that

ρ2 sin φ cos θ cos φ = 1, that is, ρ2 sin 2φ cos θ = 2.

For part (b), we can write

x2 + y2 − z2 = x2 + y2 + z2 − 2z2 = ρ2 − 2ρ2 cos2 φ ,

so that the surface is ρ2(1 − 2 cos2 φ) = 1; that is, −ρ2 cos (2φ) = 1. ▲

Associated with cylindrical and spherical coordinates are unit vectors that are the
counterparts of i, j, and k for rectangular coordinates. They are shown in Figure 1.4.8.
For example, er is the unit vector parallel to the xy plane and in the radial direction, so
that er = (cos θ )i + (sin θ )j. Similarly, in spherical coordinates, eφ is the unit vector
tangent to the curve parametrized by the variable φ with the variables ρ and θ held fixed.
We shall use these unit vectors later when we use cylindrical and spherical coordinates
in vector calculations.

exercises

1. Find the spherical coordinates of the Cartesian point
(
√

2, −√
6, −2

√
2).

2. Find the spherical coordinates of the Cartesian point
(
√

6, −√
2, −2

√
2).

3. (a) The following points are given in cylindrical
coordinates; express each in rectangular coordinates and
spherical coordinates: (1, 45◦, 1), (2, π/2, −4),
(0, 45◦, 10), (3, π/6, 4), (1, π/6, 0), and (2, 3π/4, −2).
(Only the first point is solved in the Study Guide.)

(b) Change each of the following points from
rectangular coordinates to spherical coordinates and to
cylindrical coordinates: (2, 1, −2), (0, 3, 4), (

√
2, 1, 1),

(−2
√

3, −2, 3). (Only the first point is solved in the
Study Guide.)

4. Describe the geometric meaning of the following
mappings in cylindrical coordinates:

(a) (r, θ , z) �→ (r, θ , −z)

(b) (r, θ , z) �→ (r, θ + π, −z)

(c) (r, θ , z) �→ (−r, θ − π/4, z)

5. Describe the geometric meaning of the following
mappings in spherical coordinates:

(a) (ρ , θ , φ) �→ (ρ , θ + π, φ)

(b) (ρ , θ , φ) �→ (ρ , θ , π − φ)

(c) (ρ , θ , φ) �→ (2ρ , θ + π/2, φ)
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6. Sketch the following solids:

(a) r ∈ [0, 1], θ ∈ [0, π ], z ∈ [−1, 1]

(b) r ∈ [0, 2], θ ∈ [0, π/2], z ∈ [0, 4]

(c) ρ ∈ [0, 1], θ ∈ [0, 2π ], φ ∈ [0, π/4]

(d) ρ ∈ [1, 2], θ ∈ [0, 2π ], φ ∈ [0, π/2]

7. Sketch the following surfaces:

(a) z = r2

(b) ρ = 4 csc φ sec θ

(c) r = 4 sin θ

(d) ρ sin φ = 2

8. (a) Describe the surfaces r = constant, θ = constant,
and z = constant in the cylindrical coordinate system.

(b) Describe the surfaces ρ = constant, θ = constant,
and φ = constant in the spherical coordinate system.

9. Show that to represent each point in R3 by spherical
coordinates, it is necessary to take only values of θ

between 0 and 2π , values of φ between 0 and π , and
values of ρ ≥ 0. Are coordinates unique if we allow
ρ ≤ 0?

10. Describe the following solids using inequalities. State
the coordinate system used.

(a) A cylindrical shell 8 units long, with inside
diameter 2 units and outside diameter 3 units

(b) A spherical shell with inside radius 4 units and
outside radius 6 units

(c) A hemisphere of diameter 5 units

(d) A cube of side length 2

11. Let S be the sphere of radius R centered at the origin.
Find the equation for S in cylindrical coordinates.

12. Using cylindrical coordinates and the orthonormal
(orthogonal normalized) vectors er , eθ , and ez (see
Figure 1.4.8),

(a) express each of er , eθ , and ez in terms of i, j, k and
(x , y, z); and

(b) calculate eθ × j both analytically, using part (a), and
geometrically.

13. Using spherical coordinates and the orthonormal
(orthogonal normalized) vectors eρ , eθ , and eφ [see
Figure 1.4.8(b)],

(a) express each of eρ , eθ , and eφ in terms of i, j, k and
(x , y, z); and

(b) calculate eθ × j and eφ × j both analytically and
geometrically.

14. Express the plane z = x in (a) cylindrical, and (b)
spherical coordinates.

15. Show that in spherical coordinates:

(a) ρ is the length of x i + yj + zk.
(b) φ = cos−1 (v · k/‖v‖), where v = x i + yj + zk.

(c) θ = cos−1 (u · i/‖u‖), where u = x i + yj.

16. Two surfaces are described in spherical coordinates by
the two equations ρ = f (θ , φ) and
ρ = −2 f (θ , φ), where f (θ , φ) is a function of two
variables. How is the second surface obtained
geometrically from the first?

17. A circular membrane in space lies over the region
x2 + y2 ≤ a2. The maximum z component of points in
the membrane is b. Assume that (x , y, z) is a point on
the membrane. Show that the corresponding point
(r, θ , z) in cylindrical coordinates satisfies the
conditions 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π, |z| ≤ b.

18. A tank in the shape of a right-circular cylinder of radius
10 ft and height 16 ft is half filled and lying on its side.
Describe the air space inside the tank by suitably chosen
cylindrical coordinates.

19. A vibrometer is to be designed that withstands the
heating effects of its spherical enclosure of diameter d,
which is buried to a depth d/3 in the earth, the upper
portion being heated by the sun (assume the surface is
flat). Heat conduction analysis requires a description of
the buried portion of the enclosure in spherical
coordinates. Find it.

20. An oil filter cartridge is a porous right-circular cylinder
inside which oil diffuses from the axis to the outer
curved surface. Describe the cartridge in cylindrical
coordinates, if the diameter of the filter is 4.5 inches, the
height is 5.6 inches, and the center of the cartridge is
drilled (all the way through) from the top to admit a
5
8 -inch-diameter bolt.

21. Describe the surface given in spherical coordinates by
ρ = cos 2θ .

22. (a) Find all points p ∈ R3 that have the same
representation in both Cartesian and spherical
coordinates.

(b) Find all points p ∈ R3 that have the same
representation in both Cartesian and cylindrical
coordinates.
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1.5 n-Dimensional Euclidean Space

Vectors in n-space
In Sections 1.1 and 1.2 we studied the spaces R = R1, R2, and R3 and gave geometric
interpretations to them. For example, a point (x , y, z) in R3 can be thought of as a
geometric object, namely, the directed line segment or vector emanating from the origin
and ending at the point (x , y, z). We can therefore think of R3 in either of two ways:

(i) Algebraically, as a set of triples (x , y, z), where x , y, and z are real numbers

(ii) Geometrically, as a set of directed line segments

These two ways of looking at R3 are equivalent. For generalization it is easier to
use definition (i). Specifically, we can define Rn , where n is a positive integer (possibly
greater than 3), to be the set of all ordered n-tuples (x1, x2, . . . , xn), where the xi are
real numbers. For instance, (1,

√
5, 2,

√
3) ∈ R4.

The set Rn so defined is known as euclidean n-space, and its elements, which we
write as x = (x1, x2, . . . , xn), are known as vectors or n-vectors. By setting n = 1, 2,
or 3, we recover the line, the plane, and three-dimensional space, respectively.

We launch our study of euclidean n-space by introducing several algebraic operations.
These are analogous to those introduced in Section 1.1 for R2 and R3. The first two,
addition and scalar multiplication, are defined as follows:

(i) (x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn);

and

(ii) for any real number α,

α(x1, x2, . . . , xn) = (αx1, αx2, . . . , αxn).

The geometric significance of these operations for R2 and R3 was discussed in
Section 1.1.

The n vectors

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1)

are called the standard basis vectors of Rn , and they generalize the three mutually
orthogonal unit vectors i, j, k of R3. The vector x = (x1, x2, . . . , xn) can then be written
as x = x1e1 + x2e2 + · · · + xnen .

For two vectors x = (x1, x2, x3) and y = ( y1, y2, y3) in R3, we defined the dot or
inner product x · y to be the real number x · y = x1 y1 + x2 y2 + x3 y3. This definition
easily extends to Rn; specifically, for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), we
define the inner product of x and y to be x · y = x1 y1 + x2 y2 + · · · + xn yn . In Rn , the
notation 〈x, y〉 is often used in place of x · y for the inner product.

Continuing the analogy with R3, we are led to define the notion of the length or norm
of a vector x by the formula

Length of x = ‖x‖ = √
x · x = √

x2
1 + x2

2 + · · · + x2
n .

If x and y are two vectors in the plane (R2) or in space (R3), then we know that the
angle θ between them is given by the formula

cos θ = x · y

‖x‖‖y‖ .

wujiayao
高亮
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The right side of this equation can be defined in Rn as well as in R2 or R3. It still
represents the cosine of the angle between x and y; this angle is geometrically well
defined, because x and y lie in a two-dimensional subspace of Rn (the plane determined
by x and y) and our usual geometry ideas apply to such planes.

It will be useful to have available some algebraic properties of the inner product.
These are summarized in the next theorem [compare with properties (i), (ii), (iii), and
(iv) of Section 1.2].

Theorem 3 For x, y, z ∈ Rn and α, β, real numbers, we have

(i) (αx + βy) · z = α(x · z) + β(y · z).

(ii) x · y = y · x.

(iii) x · x ≥ 0.

(iv) x · x = 0 if and only if x = 0.

proof Each of the four assertions can be proved by a simple computation. For ex-
ample, to prove property (i) we write

(αx + βy) · z = (αx1 + βy1, αx2 + βy2, . . . , αxn + βyn) · (z1, z2, . . . , zn)
= (αx1 + βy1)z1 + (αx2 + βy2)z2 + · · · + (αxn + βyn)zn

= ax1z1 + βy1z1 + αx2z2 + βy2z2 + · · · + αxnzn + βynzn

= α(x · z) + β(y · z).

The other proofs are similar. ■

In Section 1.2, we proved an interesting property of dot products, called the Cauchy–
Schwarz inequality.4 For R2 our proof required the use of the law of cosines. For Rn we
could also use this method, by confining our attention to a plane in Rn . However, we
can also give a direct, completely algebraic proof.

Theorem 4 Cauchy--Schwarz Inequality in Rn Let x, y be vectors in Rn .
Then

|x · y| ≤ ‖x‖‖y‖.

proof Let a = y · y and b = −x · y. If a = 0, the theorem is clearly valid, because
then y = 0 and both sides of the inequality reduce to 0. Thus, we may suppose a �= 0.

4Sometimes called the Cauchy–Bunyakovskii–Schwarz inequality, or simply the CBS inequality, be-
cause it was independently discovered in special cases by the French mathematician Cauchy, the Russian
mathematician Bunyakovskii, and the German mathematician Schwarz.

wujiayao
高亮
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By Theorem 3 we have

0 ≤ (ax + by) · (ax + by) = a2x · x + 2abx · y + b2y · y
= (y · y)2x · x − (y · y)(x · y)2.

Dividing by y · y gives 0 ≤ (y · y)(x · x) − (x · y)2, that is, (x · y)2 ≤ (x · x)(y · y) =
‖x‖2‖y‖2. Taking square roots on both sides of this inequality yields the desired
result. ■

There is a useful consequence of the Cauchy–Schwarz inequality in terms of lengths.
The triangle inequality is geometrically clear in R3 and was discussed in Section 1.2.
The analytic proof of the triangle inequality that we gave in Section 1.2 works exactly
the same in Rn and proves the following:

Corollary Triangle Inequality in Rn Let x, y be vectors in Rn . Then

‖x + y‖ ≤ ‖x‖ + ‖y‖.

If Theorem 4 and its corollary are written out algebraically, they become the following
useful inequalities:

∣∣∣∣∣
n∑

i=1

xi yi

∣∣∣∣∣ ≤
(

n∑
i=1

x2
i

)1/2 (
n∑

i=1

y2
i

)1/2

;

(
n∑

i=1

(xi + yi )
2

)1/2

≤
(

n∑
i=1

x2
i

)1/2

+
(

n∑
i=1

y2
i

)1/2

.

example 1 Let x = (1, 2, 0, −1) and y = (−1, 1, 1, 0). Verify Theorem 4 and its corollary in this
case.

solut ion ‖x‖ =
√

12 + 22 + 02 + (−1)2 =
√

6

‖y‖ =
√

(−1)2 + 12 + 12 + 02 =
√

3

x · y = 1(−1) + 2 · 1 + 0 · 1 + (−1)0 = 1

x + y = (0, 3, 1, −1)

‖x + y‖ =
√

02 + 32 + 12 + (−1)2 =
√

11.

We compute x · y = 1 ≤ 4.24 ≈ √
6
√

3 = ‖x‖‖y‖, which verifies Theorem 4. Similarly,
we can check its corollary:

‖x + y‖ =
√

11 ≈ 3.32
≤ 4.18 = 2.45 + 1.73 ≈

√
6 +

√
3 = ‖x‖ + ‖y‖. ▲

By analogy with R3, we can define the notion of distance in Rn; namely, if x and y
are points in Rn , the distance between x and y is defined to be ‖x − y‖, or the length of
the vector x − y. We do not attempt to define the cross product on Rn except for n = 3.
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General Matrices
Generalizing 2×2 and 3×3 matrices (see Section 1.3), we can consider m ×n matrices,
which are arrays of mn numbers:

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦.

We shall also write A as [aij]. We define addition and multiplication by a scalar
componentwise, just as we did for vectors. Given two m × n matrices A and B, we can
add them to obtain a new m × n matrix C = A + B, whose ij th entry cij is the sum of
aij and bij. It is clear that A + B = B + A.

example 2
(a)

[
2 1 0
3 4 1

]
+

[−1 1 3
0 0 7

]
=

[
1 2 3
3 4 8

]
.

(b) [1 2] + [0 − 1] = [1 1].

(c)

[
2 1
1 2

]
−

[
1 0
0 1

]
=

[
1 1
1 1

]
. ▲

Given a scalar λ and an m × n matrix A, we can multiply A by λ to obtain a new
m × n matrix λA = C , whose ij th entry cij is the product λaij.

example 3

3

⎡
⎣1 −1 2

0 1 5
1 0 3

⎤
⎦ =

⎡
⎣3 −3 6

0 3 15
3 0 9

⎤
⎦.

▲

Next we turn to matrix multiplication. If A = [aij], B = [bij] are n × n matrices,
then the product AB = C has entries given by

ci j =
n∑

k=1

aikbkj,

which is the dot product of the i th row of A and the j th column of B:

=

ann

cijith row

jth column

a11 ...

...n1a

1na b11

bn1

...

...

b1n

bnn

i1a ain

b1j

bnj

...
...

...

...

... ......

...

...

...

.
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example 4 Let

A =
⎡
⎣1 0 3

2 1 0
1 0 0

⎤
⎦ and B =

⎡
⎣0 1 0

1 0 0
0 1 1

⎤
⎦.

Then

AB =
⎡
⎣0 4 3

1 2 0
0 1 0

⎤
⎦ and B A =

⎡
⎣2 1 0

1 0 3
3 1 0

⎤
⎦.

Observe that AB �= BA. ▲

Similarly, we can multiply an m × n matrix (m rows, n columns) by an n × p matrix
(n rows, p columns) to obtain an m × p matrix (m rows, p columns) by the same rule.
Note that for AB to be defined, the number of columns of A must equal the number of
rows of B.

example 5 Let

A =
[

2 0 1
1 1 2

]
and B =

⎡
⎣1 0 2

0 2 1
1 1 1

⎤
⎦.

Then

AB =
[

3 1 5
3 4 5

]
,

and BA is not defined. ▲

example 6 Let

A =

⎡
⎢⎢⎣

1
2
1
3

⎤
⎥⎥⎦ and B = [2 2 1 2].

Then

AB =

⎡
⎢⎢⎣

2 2 1 2
4 4 2 4
2 2 1 2
6 6 3 6

⎤
⎥⎥⎦ and BA = [13].

▲

Any m × n matrix A determines a mapping of Rn to Rm defined as follows: Let
x = (x1, . . . , xn) ∈ Rn; consider the n × 1 column matrix associated with x, which we
shall temporarily denote xT

xT =

⎡
⎢⎣

x1
...

xn

⎤
⎥⎦ ,
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and multiply A by xT (considered to be an n × 1 matrix) to get a new m × 1 matrix:

AxT =

⎡
⎢⎣

a11 · · · a1n

...
...

am1 · · · amn

⎤
⎥⎦

⎡
⎢⎣

x1
...

xn

⎤
⎥⎦ =

⎡
⎢⎣

y1
...

ym

⎤
⎥⎦ = yT ,

corresponding to the vector y = (y1, . . . , ym).5 Thus, although it may cause some
confusion, we will write x = (x1, . . . , xn) and y = ( y1, . . . , ym) as column matrices

x =

⎡
⎢⎣

x1
...

xn

⎤
⎥⎦, y =

⎡
⎢⎣

y1
...

ym

⎤
⎥⎦

when dealing with matrix multiplication; that is, we will identify these two forms of
writing vectors. Thus, we will delete the T on xT and view xT and x as the same.

Thus, Ax = y will “really” mean the following: Write x as a column matrix, multiply
it by A, and let y be the vector whose components are those of the resulting column
matrix. The rule x �→ Ax therefore defines a mapping of Rn to Rm . This mapping is
linear; that is, it satisfies

A(x + y) = Ax + Ay
A(αx) = α( Ax), α a scalar,

as may be easily verified. One learns in a linear algebra course that, conversely, any
linear transformation of Rn to Rm is representable in this way by an m × n matrix.

If A = [ai j ] is an m × n matrix and e j is the j th standard basis vector of Rn , then
Ae j is a vector in Rm with components the same as the j th column of A. That is, the
i th component of Ae j is ai j . In symbols, ( Ae j )i = ai j .

example 7 If

A =

⎡
⎢⎢⎣

1 0 3
−1 0 1

2 1 2
−1 2 1

⎤
⎥⎥⎦,

then x �→ Ax of R3 to R4 is the mapping defined by

⎡
⎣ x1

x2

x3

⎤
⎦ �→

⎡
⎢⎢⎣

x1 + 3x3

−x1 + x3

2x1 + x2 + 2x3

−x1 + 2x2 + x3

⎤
⎥⎥⎦.

▲

5To use a matrix A to get a mapping from vectors x = (x1, . . . , xn) to vectors y = ( y1, . . . , yn)
according to the equation AxT = yT , we write the vectors in the column form xT instead of the row
form (x1, . . . , xn). This sudden switch from writing x as a row to writing x as a column is necessitated
by standard conventions on matrix multiplication.
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example 8 The following illustrates what happens to a specific point when mapped by a 4 × 3
matrix:

Ae2 =

⎡
⎢⎢⎣

4 2 9
3 5 4
1 2 3
0 1 2

⎤
⎥⎥⎦

⎡
⎣ 0

1
0

⎤
⎦ =

⎡
⎢⎢⎣

2
5
2
1

⎤
⎥⎥⎦ = 2nd column of A.

▲

Properties of Matrices
Matrix multiplication is not, in general, commutative: If A and B are n × n matrices,
then generally

AB �= BA,

as Examples 4, 5, and 6 show.
An n × n matrix is said to be invertible if there is an n × n matrix B such that

AB = BA = In ,

where

In =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

is the n × n identity matrix: In has the property that InC = C In = C for any n × n
matrix C . We denote B by A−1 and call A−1 the inverse of A. The inverse, when it
exists, is unique.

example 9 If

A =
⎡
⎣2 4 0

0 2 1
3 0 2

⎤
⎦, then A−1 = 1

20

⎡
⎣ 4 −8 4

3 4 −2
−6 12 4

⎤
⎦,

because AA−1 = I3 = A−1 A, as may be checked by matrix multiplication. ▲

Methods of computing inverses are learned in linear algebra; we won’t require these
methods in this book. If A is invertible, the equation Ax = y can be solved for the vector
x by multiplying both sides by A−1 to obtain6 x = A−1y.

In Section 1.3 we defined the determinant of a 3 × 3 matrix. This can be generalized
by induction to n × n determinants. We illustrate here how to write the determinant of

6In fact, Cramer’s rule from Section 1.3 provides one way to invert matrices. Numerically more efficient
methods based on elimination methods are learned in linear algebra or computer science.
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a 4 × 4 matrix in terms of the determinants of 3 × 3 matrices:

∣∣∣∣∣∣∣∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣
a22 a23 a24

a32 a33 a34

a42 a43 a44

∣∣∣∣∣∣ − a12

∣∣∣∣∣∣
a21 a23 a24

a31 a33 a34

a41 a43 a44

∣∣∣∣∣∣

+ a13

∣∣∣∣∣∣
a21 a22 a24

a31 a32 a34

a41 a42 a44

∣∣∣∣∣∣ − a14

∣∣∣∣∣∣
a21 a22 a23

a31 a32 a33

a41 a42 a43

∣∣∣∣∣∣

[see formula (2) of Section 1.3; the signs alternate +, −, +, −].
The basic properties of 3 × 3 determinants reviewed in Section 1.3 remain valid for

n×n determinants. In particular, we note the fact that if A is an n×n matrix and B is the
matrix formed by adding a scalar multiple of one row (or column) of A to another row
(or, respectively, column) of A, then the determinant of A is equal to the determinant of
B (see Example 10).

A basic theorem of linear algebra states that an n × n matrix A is invertible if and
only if the determinant of A is not zero. Another basic property is that the determinant is
multiplicative: det ( AB) = (det A)(det B). In this text, we shall not make use of many
details of linear algebra, and so we shall leave these assertions unproved.

example 10 Let

A =

⎡
⎢⎢⎣

1 0 1 0
1 1 1 1
2 1 0 1
1 1 0 2

⎤
⎥⎥⎦ .

Find det A. Does A have an inverse?

solut ion Adding (−1) × first column to the third column, we get

det A =

∣∣∣∣∣∣∣∣

1 0 0 0
1 1 0 1
2 1 −2 1
1 1 −1 2

∣∣∣∣∣∣∣∣
= 1

∣∣∣∣∣∣
1 0 1
1 −2 1
1 −1 2

∣∣∣∣∣∣ .

Adding (−1) × first column to the third column of this 3 × 3 determinant gives

det A =
∣∣∣∣∣∣
1 0 0
1 −2 0
1 −1 1

∣∣∣∣∣∣ =
∣∣∣∣−2 0
−1 1

∣∣∣∣ = −2.

Thus, det A = −2 �= 0, and so A has an inverse. ▲

If we have three matrices A, B, and C such that the products AB and BC are
defined, then the products ( AB)C and A(BC) are defined and are in fact equal (i.e.,
matrix multiplication is associative). We call this the triple product of matrices and
denote it by ABC .
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example 11 Let

A =
[

3
5

]
, B = [1 1], and C =

[
1
2

]
.

Then

ABC = A(BC) =
[

3
5

]
[3] =

[
9

15

]
.

▲

example 12
[

2 0
0 1

] [
1 1
1 1

] [
0 −1
1 1

]
=

[
2 0
0 1

] [
1 0
1 0

]
=

[
2 0
1 0

]
▲

Historical Note

figure 1.5.1 René Descartes
(1596–1650).

The founder of modern (coordinate) geometry was René Descartes (see
Figure 1.5.1), a great physicist, philosopher, and mathematician, as well as a
founder of modern biology.

Born in Touraine, France, in 1596, Descartes had a fascinating life. After
studying law, he settled in Paris, where he developed an interest in mathematics.
In 1628, he moved to Holland, where he wrote his only mathematical work, La
Geometrie, one of the origins of modern coordinate geometry.

Descartes had been highly critical of the geometry of the ancient Greeks, with
all their undefined terms and with their proofs requiring ever newer and more
ingenious approaches. For Descartes, this geometry was so tied to geometric
figures “that it can exercise the understanding only on condition of greatly
fatiguing the imagination.” He undertook to exploit, in geometry, the use of
algebra, which had recently been developed. The result was La Geometrie,
which made possible analytic or computational methods in geometry.

Remember that the Greeks were, like Descartes, philosophers as well as
mathematicians and physicists. Their answer to the question of the meaning of
space was “Euclidean geometry.” Descartes had therefore succeeded in
“algebrizing” the Greek model of space.

Gottfried Wilhelm Leibniz, cofounder (with Isaac Newton) of calculus, was also
interested in “space analysis,” but he did not think that Descartes’s algebra went
far enough. Leibniz called for a direct method of space analysis (analysis situs)
that could be interpreted as a call for the development of vector analysis.

On September 8, 1679, Leibniz outlined his ideas in a letter to Christian
Huygens:

I am still not satisfied with algebra, because it does not give the shortest
methods or the most beautiful constructions in geometry. This is why I
believe that, so far as geometry is concerned, we need still another
analysis which is distinctly geometrical or linear and which will express
situation (situs) directly as algebra expresses magnitude directly. And I
believe that I have found the way and that we can represent figures
and even machines and movements by characters, as algebra
represents numbers or magnitudes. I am sending you an essay which
seems to me to be important.

In the essay, Leibniz described his ideas in greater detail.
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exercises

1. Calculate the dot product of x = (1, −1, 0, 2) ∈ R4 and
y = (1, 2, 3, 4) ∈ R4.

2. In Rn show that

(a) 2‖x‖2 + 2‖y‖2 = ‖x + y‖2 + ‖x − y‖2 (This is
known as the parallelogram law.)

(b) ‖x − y‖‖x + y‖ ≤ ‖x‖2 + ‖y‖2

(c) 4〈x, y〉 = ‖x + y‖2 − ‖x − y‖2 (This is called the
polarization identity.)

Interpret these results geometrically in terms of the parallelogram formed by x and y.

Verify the Cauchy–Schwarz inequality and the triangle inequality for the vectors in Exercises 3 to 6.

3. x = (2, 0, −1), y = (4, 0, −2)

4. x = (1, 0, 2, 6), y = (3, 8, 4, 1)

5. x = (1, −1, 1, −1, 1), y = (3, 0, 0, 0, 2)

6. x = (1, 0, 0, 1), y = (−1, 0, 0, 1)

7. Let v, w ∈ Rn . If ‖v‖ = ‖w‖, show that v + w and
v − w are orthogonal.

8. Suppose T is a triangle formed by placing three points
on a circle, two of which lie on the circle’s diameter. Use
the previous problem to show T is a right triangle.

9. Compute AB, det A, det B, det ( AB), and det ( A + B)
for

A =
[

1 −1 0
0 3 2
3 1 1

]
and B =

[−2 0 2
−1 1 −1

1 4 3

]
.

10. Compute AB, det A, det B, det ( AB), and det ( A + B)
for

A =
[

3 0 1
1 2 −1
1 0 1

]
and B =

[
1 0 −1
2 0 1
0 1 0

]
.

11. Determine which of the following matrices are
invertible:

A =
[

1 2 3
0 1 1
0 3 3

]
B =

[
0 0 3

−1 1 19
2 3 π

]
C =

[
1 1
1 1

]

12. For matrix A in the previous problem, find a nonzero
x ∈ R3 such that Ax = 0.

13. Use induction on k to prove that if x1, . . . , xk ∈ Rn , then

‖x1 + · · · + xk‖ ≤ ‖x1‖ + · · · + ‖xk‖.

14. Using algebra, prove the identity of Lagrange: For real
numbers x1, . . . , xn and y1, . . . , yn .

( n∑
i=1

xi yi

)2

=
( n∑

i=1

x2
i

)( n∑
i=1

y2
i

)
−

∑
i< j

(xi y j − x j yi )
2.

Use this to give another proof of the Cauchy–Schwarz
inequality in Rn ,

15. Prove that if A is an n × n matrix, then

(a) det (λA) = λn det A; and

(b) if B is a matrix obtained from A by multiplying any
row or column by a scalar λ, then det B = λ det A.

In Exercises 16 to 18, A, B, and C denote n × n matrices.

16. Is det ( A + B) = det A + det B? Give a proof or
counterexample.

17. Does ( A + B)( A − B) = A2 − B2?

18. Assuming the law det ( AB) = (det A)(det B), prove
that det ( ABC) = (det A)(det B)(det C).

19. (This exercise assumes a knowledge of integration of
continuous functions of one variable.) Note that the
proof of the Cauchy–Schwarz inequality (Theorem 4)

depends only on the properties of the inner product
listed in Theorem 1. Use this observation to establish the
following inequality for continuous functions
f, g: [0, 1] → R:

∣∣∣∣
∫ 1

0
f (x)g(x) dx

∣∣∣∣ ≤
√∫ 1

0
[ f (x)]2 dx

√∫ 1

0
[g(x)]2 dx .

Do this by

(a) verifying that the space of continuous functions from
[0, 1] to R forms a vector space; that is, we may think of
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functions f, g abstractly as “vectors” that can be added
to each other and multiplied by scalars.

(b) introducing the inner product of functions

f · g =
∫ 1

0
f (x)g(x) dx

and verifying that it satisfies conditions (i) to (iv) of
Theorem 3.

20. Define the transpose AT of an n × n matrix A as
follows: the i j th element of AT is a ji where ai j is the
i j th entry of A. Show that AT is characterized by the
following property: For all x, y in Rn ,

( AT x) · y = x · ( Ay).

21. Verify that the inverse of

[
a b
c d

]
is

1

ad − bc

[
d −b

−c a

]
.

22. Use your answer in Exercise 21 to show that the solution
of the system

ax + by = e
cx + dy = f

is

[
x
y

]
= 1

ad − bc

[
d −b

−c a

][
e
f

]
.

23. Assuming the law det ( AB) = (det A)(det B), verify
that (det A)(det A−1) = 1 and conclude that if A has an
inverse, then det A �= 0.

24. Find two 2 × 2 matrices A and B such that AB = 0 but
B A �= 0.

review exercises for chapter 1

1. Let v = 3i + 4j + 5k and w = i − j + k. Compute
v + w, 3v, 6v + 8w, −2v, v · w, v × w. Interpret
each operation geometrically by graphing the
vectors.

2. Repeat Exercise 1 with v = 2j + k and w = −i − k.

3. (a) Find the equation of the line through (−1, 2, −1) in
the direction of j.

(b) Find the equation of the line passing through
(0, 2, −1) and (−3, 1, 0).

(c) Find the equation for the plane perpendicular to the
vector (−2, 1, 2) and passing through the point
(−1, 1, 3).

4. (a) Find the equation of the line through (0, 1, 0) in the
direction of 3i + k.

(b) Find the equation of the line passing through
(0, 1, 1) and (0, 1, 0).

(c) Find an equation for the plane perpendicular to the
vector (−1, 1, −1) and passing through the point
(1, 1, 1).

5. Find an equation for the plane containing the points
(2, 1, −1), (3, 0, 2), and (4, −3, 1).

6. Find an equation for a line that is parallel to the plane
2x − 3y + 5z − 10 = 0 and passes through the point
(−1, 7, 4). (There are lots of them.)

7. Compute v · w for the following sets of vectors:

(a) v = −i + j; w = k

(b) v = i + 2j − k; w = 3i + j

(c) v = −2i − j + k; w = 3i + 2j − 2k

8. Compute v × w for the vectors in Exercise 7. [Only
part (b) is solved in the Study Guide.]

9. Find the cosine of the angle between the vectors in
Exercise 7. [Only part (b) is solved in the Study Guide.]

10. Find the area of the parallelogram spanned by the vectors
in Exercise 7. [Only part (b) is solved in the Study
Guide.]

11. Use vector notation to describe the triangle in space
whose vertices are the origin and the endpoints of
vectors a and b.

12. Show that three vectors a, b, c lie in the same plane
through the origin if and only if there are three scalars
α, β, γ , not all zero, such that αa + βb + γ c = 0.
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13. For real numbers a1, a2, a3, b1, b2, b3, show that

(a1b1 + a2b2 + a3b3)2 ≤ (a2
1 + a2

2 + a2
3)(b2

1 + b2
2 + b2

3).

14. Let u, v, w be unit vectors that are orthogonal to each
other. If a = αu + βv + γ w, show that

α = a · u, β = a · v, γ = a · w.

Interpret the results geometrically.

15. Find the products AB and B A where

A =
[

1 5 2
0 2 3
1 0 2

]
B =

[
2 0 1
1 3 0
2 4 1

]
.

16. Find the products AB and B A where

A =
[

2 1 2
4 0 1
1 3 0

]
B =

[
3 0 5
1 2 1
0 3 1

]
.

17. Let a, b be two vectors in the plane,
a = (a1, a2), b = (b1, b2), and let λ be a real number.
Show that the area of the parallelogram determined by a
and b + λa is the same as that determined by a and b.
Sketch. Relate this result to a known property of
determinants.

18. Find the volume of the parallelepiped determined by the
vertices (0, 1, 0), (1, 1, 1), (0, 2, 0), (3, 1, 2).

19. Given nonzero vectors a and b in R3, show that the
vector v = ‖a‖b + ‖b‖a bisects the angle between a
and b.

20. Show that the vectors ‖b‖a + ‖a‖b and ‖b‖a − ‖a‖b are
orthogonal.

21. Use the triangle inequality to show that

‖v − w‖ ≥
∣∣∣‖v‖ − ‖w‖

∣∣∣.
22. Use vector methods to prove that the distance from the

point (x1, y1) to the line ax + by = c is

|ax1 + by1 − c|√
a2 + b2

.

23. Verify that the direction of b × c is given by the
right-hand rule, by choosing b, c to be two of the vectors
i, j, and k.

24. (a) Suppose a · b = a′ · b for all b. Show that a = a′.
(b) Suppose a × b = a′ × b for all b. Is it true that

a = a′?

25. (a) Using vector methods, show that the distance
between two nonparallel lines l1 and l2 is given by

d = |(v2 − v1) · (a1 × a2)|
‖a1 × a2‖ ,

where v1, v2 are any two points on l1 and l2, respectively,
and a1 and a2 are the directions of l1 and l2. [HINT:
Consider the plane through l2 that is parallel to l1. Show
that the vector (a1 × a2)/‖a1 × a2‖ is a unit normal for
this plane; now project v2 − v1 onto this normal
direction.]

(b) Find the distance between the line l1 determined by
the points (−1, −1, 1) and (0, 0, 0) and the line l2
determined by the points (0, −2, 0) and (2, 0, 5).

26. Show that two planes given by the equations
Ax + By + Cz + D1 = 0 and Ax + By + Cz + D2 = 0
are parallel, and that the distance between them is

|D1 − D2|√
A2 + B2 + C2

.

27. (a) Prove that the area of the triangle in the plane with
vertices (x1, y1), (x2, y2), (x3, y3) is the absolute
value of

1

2

∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣.

(b) Find the area of the triangle with vertices
(1, 2), (0, 1), (−1, 1).

28. Convert the following points from Cartesian to
cylindrical and spherical coordinates and plot:

(a) (0, 3, 4)

(b) (−√
2, 1, 0)

(c) (0, 0, 0)

(d) (−1, 0, 1)

(e) (−2
√

3, −2, 3)

29. Convert the following points from cylindrical to
Cartesian and spherical coordinates and plot:

(a) (1, π/4, 1)

(b) (3, π/6, −4)

(c) (0, π/4, 1)

(d) (2, −π/2, 1)

(e) (−2, −π/2, 1)

30. Convert the following points from spherical to Cartesian
and cylindrical coordinates and plot:

(a) (1, π/2, π )

(b) (2, −π/2, π/6)

(c) (0, π/8, π/35)

(d) (2, −π/2, −π )

(e) (−1, π, π/6)
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31. Rewrite the equation z = x2 − y2 using cylindrical and
spherical coordinates.

32. Using spherical coordinates, show that

φ = cos−1
(u · k

‖u‖
)

,

where u = x i + yj + zk. Interpret geometrically.

33. Verify the Cauchy–Schwarz and triangle inequalities for

x = (3, 2, 1, 0) and y = (1, 1, 1, 2).

34. Multiply the matrices

A =
[

3 0 1
2 0 1
1 0 1

]
and B =

[
1 0 1
1 1 1
0 0 1

]
.

Does AB = B A?

35. (a) Show that for two n × n matrices A and B, and
x ∈ Rn ,

( AB)x = A(Bx).

(b) What does the equality in part (a) imply about the
relationship between the composition of the
mappings x �→ Bx, y �→ Ay, and matrix
multiplication?

36. Find the volume of the parallelepiped spanned by the
vectors

(1, 0, 1), (1, 1, 1), and (−3, 2, 0).

37. (For students with some knowledge of linear algebra.)
Verify that a linear mapping T of Rn to Rn is determined
by an n × n matrix.

38. Find an equation for the plane that contains (3, −1, 2)
and the line with equation v = (2, −1, 0) + t (2, 3, 0).

39. The work W done in moving an object from (0, 0) to (7,
2) subject to a constant force F is W = F · r, where r is
the vector with its head at (7, 2) and tail at (0, 0). The
units are feet and pounds.

(a) Suppose the force F = 10 cos θ i + 10 sin θ j. Find
W in terms of θ .

(b) Suppose the force F has magnitude of 6 lb and
makes an angle of π/6 rad with the horizontal,
pointing right. Find W in foot-pounds.

40. If a particle with mass m moves with velocity v, its
momentum is p = mv. In a game of marbles, a marble
with mass 2 grams (g) is shot with velocity 2 meters per
second (m/s), hits two marbles with mass 1 g each, and
comes to a dead halt. One of the marbles flies off with a
velocity of 3 m/s at an angle of 45◦ to the incident
direction of the larger marble, as in Figure 1.R.1.
Assuming that the total momentum before and after the
collision is the same (according to the law of
conservation of momentum), at what angle and speed
does the second marble move?

1g/m2 s p /4

1g
g2

/m3 s

figure 1.R.1 Momentum and marbles.

41. Show that for all x , y, z,

∣∣∣∣∣
x + 2 y z

z y + 1 10
5 5 2

∣∣∣∣∣ = −
∣∣∣∣∣
y x + 2 z
1 z − x − 2 10 − z
5 5 2

∣∣∣∣∣.

42. Show that

∣∣∣∣∣
1 x x2

1 y y2

1 z z2

∣∣∣∣∣ �= 0

if x , y, and z are all different.

43. Show that

∣∣∣∣∣
66 628 246
88 435 24

2 −1 1

∣∣∣∣∣ =
∣∣∣∣∣
68 627 247
86 436 23

2 −1 1

∣∣∣∣∣.

44. Show that

∣∣∣∣∣
n n + 1 n + 2

n + 3 n + 4 n + 5
n + 6 n + 7 n + 8

∣∣∣∣∣
has the same value no matter what n is. What is this
value?

45. Are the following quantities vectors or scalars?

(a) The current population of Santa Cruz, California

(b) The torque a cyclist exerts on her bicycle

(c) The velocity of wind blowing through a weather
vane

(d) The temperature of a pizza in an oven
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46. Find a 4 × 4 matrix C such that for every 4 × 4 matrix A
we have C A = 3A.

47. Let

A =
[

1 1
0 1

]
B =

[
1 0
2 1

]

(a) Find A−1, B−1, and ( AB)−1.

(b) Show that ( AB)−1 �= A−1 B−1 but
( AB)−1 = B−1 A−1

48. Suppose

[
a b
c d

]
is invertible and has integer entries.

What conditions must be satisfied for A =
[

a b
c d

]−1

to have integer entries?

49. The volume of a tetrahedron with concurrent edges a, b,
c is given by V = 1

6 a · (b × c).

(a) Express the volume as a determinant.

(b) Evaluate V when
a = i + j + k, b = i − j + k, c = i + j.

Use the following definition for Exercises 50 and 51: Let r1, . . . , rn be vectors in R3 from 0 to the masses m1, . . . , mn. The
center of mass is the vector

c =
∑n

i = 1 mi ri∑n
i = 1 mi

.

50. A tetrahedron sits in xyz coordinates with one vertex at
(0, 0, 0), and the three edges concurrent at (0, 0, 0) are
coincident with the vectors a, b, c.

(a) Draw a figure and label the heads of the vectors
a, b, c.

(b) Find the center of mass of each of the four triangular
faces of the tetrahedron if a unit mass is placed at
each vertex.

51. Show that for any vector r, the center of mass of a
system satisfies

n∑
i=1

mi‖r − ri‖2 =
n∑

i=1

mi‖ri − c‖2 + m‖r − c‖2,

where m = ∑n
i=1 mi is the total mass of the system.

In Exercises 52 to 57, find a unit vector that has the given property.

52. Parallel to the line x = 3t + 1, y = 16t − 2,
z = −(t + 2)

53. Orthogonal to the plane x − 6y + z = 12

54. Parallel to both the planes 8x + y + z = 1 and
x − y − z = 0

55. Orthogonal to i + 2j − k and to k

56. Orthogonal to the line
x = 2t − 1, y = −t − 1, z = t + 2, and the vector i − j

57. At an angle of 30◦ to i and making equal angles with j
and k
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2

Differentiation

I turn away with fright and horror from the lamentable evil of functions which do not have

derivatives. ---Charles Hermite,

in a letter to Thomas Jan Stieltjes

This chapter extends the principles of differential calculus for functions

of one variable to functions of several variables. We begin in Section 2.1

with the geometry of real-valued functions and study the graphs of these

functions as an aid in visualizing them. Section 2.2 gives some basic def-

initions relating to limits and continuity. This subject is treated briefly, be-

cause it requires time and mathematical maturity to develop fully and is

therefore best left to a more advanced course. Fortunately, a complete

understanding of all the subtleties of the limit concept is not necessary for

our purposes; the student who has difficulty with this section should bear

this in mind. However, we hasten to add that the notion of a limit is cen-

tral to the definition of the derivative, but not to the computation of most

derivatives in specific problems, as we already know from one-variable

calculus. Sections 2.3 and 2.5 deal with the definition of the derivative,

and establish some basic rules of calculus: namely, how to differentiate

a sum, product, quotient, or composition. In Section 2.6, we study direc-

tional derivatives and tangent planes, relating these ideas to those in

Section 2.1. Finally, the Internet supplement gives some of the technical

proofs.

In generalizing calculus from one dimension to several, it is often con-

venient to use the language of matrix algebra. What we shall need has

been summarized in Section 1.5.

75
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2.1 The Geometry of Real-Valued Functions

We launch our investigation of real-valued functions by developing methods for visual-
izing them. In particular, we introduce the notions of a graph, a level curve, and a level
surface of such functions.

Functions and Mappings
Let f be a function whose domain is a subset A of Rn and with a range contained
in Rm . By this we mean that to each x = (x1, . . . , xn) ∈ A, f assigns a value f (x),
an m-tuple in Rm . Such functions f are called vector-valued functions1 if m > 1, and
scalar-valued functions if m = 1. For example, the scalar-valued function f (x , y, z) =
(x2 + y2 + z2)−3/2 maps the set A of (x , y, z) �= (0, 0, 0) in R3 (n = 3, in this case) to
R (m = 1). To denote f we sometimes write

f : (x , y, z) �→ (x2 + y2 + z2)−3/2.

Note that in R3 we often use the notation (x , y, z) instead of (x1, x2, x3). In general, the
notation x �→ f (x) is useful for indicating the value to which a point x ∈ Rn is sent.
We write f : A ⊂ Rn → Rm to signify that A is the domain of f (a subset of Rn) and the
range is contained in Rm . We also use the expression f maps A into Rm . Such functions
f are called functions of several variables if A ⊂ Rn , n > 1.

As another example we can take the vector-valued function g: R6 → R2 defined by
the rule

g(x) = g(x1, x2, x3, x4, x5, x6) =
(

x1x2x3x4x5x6,
√

x2
1 + x2

6

)
.

The first coordinate of the value of g at x is the product of the coordinates of x.
Functions from Rn to Rm are not just mathematical abstractions, they arise natu-

rally in problems studied in all the sciences. For example, to specify the temperature
T in a region A of space requires a function T : A ⊂ R3 → R (n = 3, m = 1);
thus, T (x , y, z) is the temperature at the point (x , y, z). To specify the velocity of
a fluid moving in space requires a map V: R4 → R3, where V(x , y, z, t) is the ve-
locity vector of the fluid at the point (x , y, z) in space at time t (see Figure 2.1.1).
To specify the reaction rate of a solution consisting of six reacting chemicals A, B,
C, D, E , F in proportions x , y, z, w , u, v requires a map σ : U ⊂ R6 → R, where
σ (x , y, z, w , u, v) gives the rate when the chemicals are in the indicated proportions.

(x, y, z) V(x(( , y, z, t ) = Fluid velocityVVV
figure 2.1.1 A fluid in motion defines
a vector field V by specifying the
velocity of the fluid particles at each
point in space and time.

1Some mathematicians would write such an f in boldface, using the notation f(x), because the function
is vector-valued. We did not do so, as a matter of personal taste. We use boldface primarily for mappings
that are vector fields, introduced later. The notion of function was developed over many centuries, with
the definition extended to cover more cases as they arose. For example, in 1667 James Gregory defined
a function as “a quantity obtained from other quantities by a succession of algebraic operations or
by any other operation imaginable.” In 1755 Euler gave the following definition: “If some quantities
depend on others in such a way as to undergo variation when the latter are varied then the former are
called functions of the latter.”
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To specify the cardiac vector (the vector giving the magnitude and direction of electric
current flow in the heart) at time t requires a map c: R → R3, t �→ c(t).

When f : U ⊂ Rn → R, we say that f is a real-valued function of n variables with
domain U . The reason we say “n variables” is simply that we regard the coordinates
of a point x = (x1, . . . , xn) ∈ U as n variables, and f (x) = f (x1, . . . , xn) depends on
these variables. We say “real-valued” because f (x1, . . . , xn) is a real number. A good
deal of our work will be with real-valued functions, so we give them special attention.

Graphs of Functions
For f : U ⊂ R → R (n = 1), the graph of f is the subset of R2 consisting of all points
(x , f (x)) in the plane, for x in U . This subset can be thought of as a curve in R2. In
symbols, we write this as

graph f = {(x , f (x)) ∈ R2 | x ∈ U },
where the curly braces mean “the set of all” and the vertical bar is read “such that.”
Drawing the graph of a function of one variable is a useful device to help visualize how
the function actually behaves (see Figure 2.1.2). It will be helpful to generalize the idea
of a graph to functions of several variables. This leads to the following definition:

Definition Graph of a Function Let f : U ⊂ Rn → R. Define the graph
of f to be the subset of Rn+1 consisting of all the points

(x1, . . . , xn , f (x1, . . . , xn))

in Rn+1 for (x1, . . . , xn) in U . In symbols,

graph f = {(x1, . . . , xn , f (x1, . . . , xn)) ∈ Rn+1 | (x1, . . . , xn) ∈ U }.

For the case n = 1, the graph is a curve in R2, while for n = 2, it is a surface in R3

(see Figure 2.1.2). For n = 3, it is difficult to visualize the graph, because, since we are
humans living in a three-dimensional world, it is hard for us to envisage sets in R4. To
help overcome this handicap, we introduce the idea of a level set.

Graph of f

x
U

y

Graph of f

U

x

(b)(a)

y

z

figure 2.1.2 The graphs of (a) a function of one variable, and (b) a function of two variables.
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figure 2.1.3 Level contours of a
function are defined in the same
manner as contour lines for a
topographical map.

(a)

h = 50

h = 100

h = 150

h = 200

(b)

h

Level Sets, Curves, and Surfaces
Suppose f (x , y, z) = x2 + y2 + z2. A level set is a subset of R3 on which f is
constant; for instance, the set where x2 + y2 + z2 = 1 is a level set for f . This we
can visualize: It is just a sphere of radius 1 in R3. Formally, a level set is the set of
(x , y, z) such that f (x , y, z) = c, where c is a constant. The behavior or structure of a
function is determined in part by the shape of its level sets; consequently, understanding
these sets aids us in understanding the function in question. Level sets are also useful
for understanding functions of two variables f (x , y), in which case we speak of level
curves or level contours.

The idea is similar to that used to prepare contour maps, where one draws lines to
represent constant altitudes; walking along such a line would mean walking on a level
path. In the case of a hill rising from the xy plane, a graph of all the level curves gives
us a good idea of the function h(x , y), which represents the height of the hill at point
(x , y) (see Figure 2.1.3).

example 1 The constant function f : R2 → R, (x , y) �→ 2—that is, the function f (x , y) = 2—has
as its graph the horizontal plane z = 2 in R3. The level curve of value c is empty if
c �= 2, and is the whole xy plane if c = 2. ▲

example 2 The function f : R2 → R, defined by f (x , y) = x + y +2, has as its graph the inclined
plane z = x + y + 2. This plane intersects the xy plane (z = 0) in the line y = −x − 2
and the z axis at the point (0, 0, 2). For any value c ∈ R, the level curve of value c is
the straight line y = −x + (c − 2); or in symbols, the set

Lc = {(x , y) | y = −x + (c − 2)} ⊂ R2.

We indicate a few of the level curves of the function in Figure 2.1.4. This is a contour
map of the function f .

f(x, y) = x + y + 2 = 4
Line of
intersection of 
plane z = x + y + 2
and the xy plane

y

x

f(x, y) = x + y + 2 = 2

f(x, y) = x + y + 2 = 0

figure 2.1.4 The level curves of f (x, y) = x + y + 2
show the sets on which f takes a given value.
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y

x

z

x + y + 2 = 4 Level curves lifted
to surface

x + y + 2 = 2

Level curve x + y + 2 = 0
x + y + 2 = 2 in xy plane

x + y + 2 = 4 in xy plane

2

2

−2

2

−2

figure 2.1.5 The relationship of level curves of Figure 2.1.4 to the graph of
the function f (x, y) = x + y + 2, which is the plane z = x + y + 2.

From level curves labeled with the value or “height” of the function, the shape of the
graph may be inferred by mentally elevating each level curve to the appropriate height,
without stretching, tilting, or sliding it. If this procedure is visualized for all level curves,
Lc—that is, for all values c ∈ R, they will assemble to give the entire graph of f , as
indicated by the shaded plane in Figure 2.1.5. If the graph is visualized using a finite
number of level curves, a contour model is produced. If f is a smooth function, its graph
will be a smooth surface, and so the contour model, mentally smoothed over, gives a
good impression of the graph. ▲

Definition Level Curves and Surfaces Let f : U ⊂ Rn → R and let c ∈
R. Then the level set of value c is defined to be the set of those points x ∈
U at which f (x) = c. If n = 2, we speak of a level curve (of value c);
and if n = 3, we speak of a level surface. In symbols, the level set of value
c is written

{x ∈ U | f (x) = c} ⊂ Rn.

Note that the level set is always in the domain space.

example 3 Describe the graph of the quadratic function

f : R2 → R, (x , y) �→ x2 + y2.

solut ion The graph is the paraboloid of revolution z = x2 + y2, oriented upward from the origin,
around the z axis. The level curve of value c is empty for c < 0; for c > 0 the level
curve of value c is the set {(x , y) | x2 + y2 = c}, a circle of radius

√
c centered at the

origin. Thus, raised to height c above the xy plane, the level set is a circle of radius
√

c,
indicating a parabolic shape (see Figures 2.1.6 and 2.1.7).
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1 432

x2 + y2 = 12 

x2 + y2 = 22 

x2 + y2 = 32 

x2 + y2 = 42 

y

x
figure 2.1.6 Some level curves for the function
f (x, y) = x2 + y2.

1

4

9

16 x2 + y2 = 42

y

z

x

x2 + y2 = 32

x2 + y2 = 22

x2 + y2 = 12

figure 2.1.7 Level curves in Figure 2.1.6 raised to
the graph.

▲

The Method of Sections
By a section of the graph of f we mean the intersection of the graph and a (vertical)
plane. For example, if P1 is the xz plane in R3, defined by y = 0, then the section of f
in Example 3 is the set

P1 ∩ graph f = {(x , y, z) | y = 0, z = x2},
which is a parabola in the xz plane. Similarly, if P2 denotes the yz plane, defined by
x = 0, then the section

P2 ∩ graph f = {(x , y, z) | x = 0, z = y2}
is a parabola in the yz plane (see Figure 2.1.8). It is usually helpful to compute at least
one section to complement the information given by the level sets.

example 4 The graph of the quadratic function

f : R2 → R, (x , y) �→ x2 − y2

is called a hyperbolic paraboloid, or saddle, centered at the origin. Sketch the graph.
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S1: z = x2, y = 0

z

S2: z = y2, x = 0

x

y

figure 2.1.8 Two sections of the graph
of f (x, y) = x2 + y2.

s o l u t i o n To visualize this surface, we first draw the level curves. To determine the level curves, we
solve the equation x2 − y2 = c. Consider the values c = 0, ±1, ±4. For c = 0, we have
y2 = x2, or y = ±x , so that this level set consists of two straight lines through the origin.
For c = 1, the level curve is x2 − y2 = 1, or y = ±√

x2 − 1, which is a hyperbola that
passes vertically through the x axis at the points (±1, 0) (see Figure 2.1.9). Similarly,
for c = 4, the level curve is defined by y = ±√

x2 − 4, the hyperbola passing vertically
through the x axis at (±2, 0). For c = −1, we obtain the curve x2 − y2 = −1—that is,
x = ±√

y2 − 1—the hyperbola passing horizontally through the y axis at (0, ±1). And
for c = −4, the hyperbola through (0, ±2) is obtained. These level curves are shown
in Figure 2.1.9. Because it is not easy to visualize the graph of f from these data alone,
we shall compute two sections, as in the previous example. For the section in the xz
plane, we have

P1 ∩ graph of f = {(x , y, z) | y = 0, z = x2},

which is a parabola opening upward; and for the yz plane,

P2 ∩ graph f = {(x , y, z) | x = 0, z = −y2},

−2

−1

1 2−1

−2

1

2

x2
 −

 y
2  =

 2
2

x

y

x2
 − 

y2
 = 

12

x
2  − y

2  = 0x2  − y
2  = −12

x 2 − y 2 = 2 2
x 2 − y 2 = 1 2

x 2 − y 2 = 0

figure 2.1.9 Level curves for the function f (x, y) = x2 − y2.
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x

y

z

z = x2, y = 0

x2 − − y2 = 12; z = 1

x2 − y2 = − (12); z = −1

z = −y2, x = 0

figure 2.1.10 Some level curves on the graph of
f (x, y) = x2 − y2.

x

y

z

−1

0

−2
0

x axis

y 
ax

is
1 2−2 −1

1

2

figure 2.1.11 The graph of z = x2 − y2 and its level curves.

which is a parabola opening downward. The graph may now be visualized by lifting the
level curves to the appropriate heights and smoothing out the resulting surface. Their
placement is aided by computing the parabolic sections. This procedure generates the
hyperbolic saddle indicated in Figure 2.1.10. Compare this with the computer-generated
graphs in Figure 2.1.11 (note that the orientation of the axes has been changed). ▲

example 5 Describe the level sets of the function

f : R3 → R, (x , y, z) �→ x2 + y2 + z2.

solut ion This is the three-dimensional analogue of Example 3. In this context, level sets are
surfaces in the three-dimensional domain R3. The graph, in R4, cannot be visualized
directly, but sections can nevertheless be computed.

The level set with value c is the set

Lc = {(x , y, z) | x2 + y2 + z2 = c},

which is the sphere centered at the origin with radius
√

c for c > 0, is a single point at
the origin for c = 0, and is empty for c < 0. The level sets for c = 0, 1, 4, and 9 are
indicated in Figure 2.1.12.
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x2 + y2 + z2 = 12

x2 + y2 + z2 = 22x2 + y2 + z2

x2 + y2 + z2 = 32

y

x

z

figure 2.1.12 Some level surfaces for
f (x, y, z) = x2 + y2 + z 2. ▲

example 6 Describe the graph of the function f : R3 → R defined by f (x , y, z) = x2 + y2 − z2,
which is the three-dimensional analogue of Example 4, and is also called a saddle.

solut ion Formally, the graph of f is a subset of four-dimensional space. If we denote points in
this space by (x , y, z, t), then the graph is given by

{(x , y, z, t) | t = x2 + y2 − z2}.
The level surfaces of f are defined by

Lc = {(x , y, z) | x2 + y2 − z2 = c}.
For c = 0, this is the cone z = ±√

x2 + y2 centered on the z axis. For c negative,
say, c = −a2, we obtain z = ±√

x2 + y2 + a2, which is a hyperboloid of two sheets
around the z axis, passing through the z axis at the points (0, 0, ±a). For c positive, say,
c = b2, the level surface is the single-sheeted hyperboloid of revolution around the

z axis defined by z = ±√
x2 + y2 − b2, which intersects the xy plane in the circle of

radius |b|. These level surfaces are sketched in Figure 2.1.13.

x2 + y2 − z2 = 22

x2 + y2 − z2 = 12

x2 + y2 − z2 = 02

x2 + y2 − z2 = −12

x2 + y2 − z2 = −22

x

1

2

2

z

1

y

figure 2.1.13 Some level surfaces of the function f (x, y, z) = x2 + y2 − z 2.



Marsden-3620111 VC September 27, 2011 9:27 84

84 Differentiation

x2 −− y2 = −1

x2 − y2 = 1

t = −z2, x = 0

z

x

t

figure 2.1.14 The y = 0 section of the graph of f (x, y, z) = x2 + y2 − z 2.

Another view of the graph may be obtained from a section. For example, the subspace
Sy=0 = {(x , y, z, t) | y = 0} intersects the graph in the section

Sy=0 ∩ graph f = {(x , y, z, t) | y = 0, t = x2 − z2},
that is, the set of points of the form (x , 0, z, x2 − z2), which may be considered to be a
surface in xzt space (see Figure 2.1.14). ▲

−2
−1

0
1

2

−2
−1

0
1

2

0

1

2

3

0
1

2

0

1

2

3

−2

0
1

2

−2
−1

0
1

2

0

1

2

3

−1
0

1
2

0

1

2

3

x axisy axis
y axis

(a) (b)

−2 −1 0 1 2

−2

−1

0

1

2

x axis

y axis

(c)

x axis

figure 2.1.15 Computer-generated graph of z = (x2 + 3y2) exp (1 − x2 − y2) represented in three
ways: (a) by sections, (b) by level curves on a graph, and (c) by level curves in the xy plane.
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We have seen how the methods of sections and level sets can be used to under-
stand the behavior of a function and its graph; these techniques can be quite useful to
people who desire comprehensive visualization of complicated data. There are many
computer programs available to do this, and we show the results of one such program
in Figure 2.1.15.

exercises

1. Are the following functions vector-valued or
scalar-valued?

(a) f (x , y, z) = ex zx sin y

(b) g(x , y) = (x2 y2, 2x − 1)

(c) h(t) = (cos t , sin t , t2, t3)

2. Are the following functions vector-valued or
scalar-valued?

(a) f (u, v, w) = (u2v, weu , 5v)

(b) g(x) = log
√

x

(c) h(x , y) = x5 y−3

In the following two exercises, match the given level curves with their visual descriptions.

3. (a) f (x , y) = x2 − y2 = c, c = 0, 1, −1 (b) f (x , y) = 2x2 + 3y2 = c, c = 6, 12

(iv) (v)

x

y

x

y

x

y

x

y

(ii)(i) (iii)

x

y
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4. (a) f (x , y) = (x − y)2 = c, c = 0, 1, 4 (b) f (x , y) = (x + y)2 = c, c = 0, 1, 4

x

y

x

y

(v)(iv) (vi)

x

y

x

y

x

y

(ii) (iii)(i)

x

y

5. Draw the level curves for f of values c.

(a) f (x , y) = x3 − y, c = −1, 0, 1

(b) f (x , y) = y − 2 log x , c = −3, 0, 3

(c) f (x , y) = y csc x , c = 0, 1, 2

(d) f (x , y) = x/(x2 + y2), c = −2, 0, 4

6. Let f (x , y) = 9x2 + y2. Sketch the following.

(a) The level curves for f of values c = 0, 1, 9

(b) The sections of the graph of f in the planes
x = −1, x = 0, x = 1

(c) The sections of the graph of f in the planes
y = −1, y = 0, y = 1

(d) The graph of f

7. Sketch the level curves and graphs of the following
functions:

(a) f : R2 → R, (x , y) �→ x − y + 2

(b) f : R2 → R, (x , y) �→ x2 + 4y2

(c) f : R2 → R, (x , y) �→ −xy

8. Sketch level sets of values c = 0, 1, 4, 9 for both
f (x , y) = x2 + y2 and g(x , y) =

√
x2 + y2. How are

the graphs of f and g different? How are their sections
different?

9. Let S be the surface in R3 defined by the equation
x2 y6 − 2z = 3.

(a) Find a real-valued function f (x , y, z) of three
variables and a constant c such that S is the level set
of f of value c.

(b) Find a real-valued function g(x , y) of two variables
such that S is the graph of g.

10. Describe the behavior, as c varies, of the level curve
f (x , y) = c for each of these functions:

(a) f (x , y) = x2 + y2 + 1

(b) f (x , y) = 1 − x2 − y2

(c) f (x , y) = x3 − x

11. For the functions in Examples 2, 3, and 4, compute the
section of the graph defined by the plane

Sθ = {(x , y, z) | y = x tan θ}

for a given constant θ . Do this by expressing z as a
function of r , where x = r cos θ , y = r sin θ .
Determine which of these functions f have the property
that the shape of the section Sθ ∩ graph f is independent
of θ . (The solution for Example 3 only is in the Study
Guide.)
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In Exercises 10 to 16, draw the level curves (in the xy plane) for the given function f and specified values of c. Sketch
the graph of z = f (x , y).

12. f (x , y) = 4 − 3x + 2y, c = 0, 1, 2, 3, −1, −2, −3

13. f (x , y) = (100 − x2 − y2)1/2, c = 0, 2, 4, 6, 8, 10

14. f (x , y) = (x2 + y2)1/2, c = 0, 1, 2, 3, 4, 5

15. f (x , y) = x2 + y2, c = 0, 1, 2, 3, 4, 5

16. f (x , y) = 3x − 7y, c = 0, 1, 2, 3, −1, −2, −3

17. f (x , y) = x2 + xy, c = 0, 1, 2, 3, −1, −2, −3

18. f (x , y) = x/y, c = 0, 1, 2, 3, −1, −2, −3

In Exercises 17 to 19, sketch or describe the level surfaces and a section of the graph of each function.

19. f : R3 → R, (x , y, z) �→ −x2 − y2 − z2

20. f : R3 → R, (x , y, z) �→ 4x2 + y2 + 9z2

21. f : R3 → R, (x , y, z) �→ x2 + y2

In Exercises 20 to 24, describe the graph of each function by computing some level sets and sections.

22. f : R3 → R, (x , y, z) �→ xy

23. f : R3 → R, (x , y, z) �→ xy + yz

24. f : R3 → R, (x , y, z) �→ xy + z2

25. f : R2 → R, (x , y) �→ |y|

26. f : R2 → R, (x , y) �→ max (|x |, |y|)

Sketch or describe the surfaces in R3 of the equations presented in Exercises 25 to 37.

27. 4x2 + y2 = 16

28. x + 2z = 4

29. z2 = y2 + 4

30. x2 + y2 − 2x = 0

31.
x

4
= y2

4
+ z2

9

32.
y2

9
+ z2

4
= 1 + x2

16

33. z = x2

34. y2 + z2 = 4

35. z = y2

4
− x2

9

36. y2 = x2 + z2

37. 4x2 − 3y2 + 2z2 = 0

38.
x2

9
+ y2

12
+ z2

9
= 1

39. x2 + y2 + z2 + 4x − by + 9z − b = 0, where b is a
constant

40. Using polar coordinates, describe the level curves of the
function defined by

f (x , y) = 2xy/(x2 + y2) if (x , y) �= (0, 0) and f (0, 0) = 0.

41. Let f : R2\{0} → R be given in polar coordinates by
f (r, θ ) = (cos 2θ )/r2. Sketch a few level curves in the
xy plane. Here, R2\{0} = {x ∈ R2 | x �= 0}.

42. Show that in Figure 2.1.15, the level “curve” z = 3
consists of two points.
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2.2 Limits and Continuity

This section develops the concepts of open sets, limits, and continuity; open sets are
needed to understand limits, and limits are in turn needed to understand continuity and
differentiability.

As in elementary calculus, it is not necessary to completely master the limit concept
in order to work problems in differentiation. For this reason, instructors may treat the
following material with varying degrees of rigor. The student should consult with the
instructor about the depth of understanding required.

Open Sets
We begin formulating the concept of an open set by defining an open disk. Let x0 ∈ Rn

and let r be a positive real number. The open disk (or open ball ) of radius r and center
x0 is defined to be the set of all points x such that ‖x − x0‖ < r . This set is denoted
Dr (x0) and is the set of points x in Rn whose distance from x0 is less than r . Notice that
we include only those x for which strict inequality holds. The disk Dr (x0) is illustrated
in Figure 2.2.1 for n = 1, 2, 3. For the case n = 1 and x0 ∈ R, the open disk Dr (x0) is
the open interval (x0 − r, x0 + r ), which consists of all numbers x ∈ R strictly between
x0 − r and x0 + r . For the case n = 2, x0 ∈ R2, Dr (x0) is the “inside” of the disk of
radius r centered at x0. For the case n = 3, x0 ∈ R3, Dr (x0) is the part strictly “inside”
of the ball of radius r centered at x0.

Definition Open Sets Let U ⊂ Rn (that is, let U be a subset of Rn). We
call U an open set when for every point x0 in U there exists some r > 0 such
that Dr (x0) is contained within U ; symbolically, we write Dr (x0) ⊂ U (see
Figure 2.2.2).

The number r > 0 can depend on the point x0, and generally r will shrink as x0 gets
closer to the “edge” of U . Intuitively speaking, a set U is open when the “boundary”
points of U do not lie in U . In Figure 2.2.2, the dashed line is not included in U .

r

Dr

+
x

n =1
x

y

n =

x

z

y

32n =

x0 − x0 rx0

( )x0

r

x0

x0

r

(a) (b)

Dr ( )x0

Dr ( )x0

(c)

figure 2.2.1 What disks Dr (x0) look like in (a) one, (b) two, and (c) three dimensions.
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x

y

Dr x0( )x0

U

figure 2.2.2 An open set U is one that
completely encloses some disk Dr (x0) about
each of its points x0.

We establish the convention that the empty set ∅ (the set consisting of no elements) is
open.

We have defined an open disk and an open set. From our choice of terms it would
seem that an open disk should also be an open set. A little thought shows that this fact
requires some proof. The following theorem does this.

Theorem 1 For each x0 ∈ Rn and r > 0, Dr (x0) is an open set.

proof Let x ∈ Dr (x0); that is, let ‖x − x0‖ < r . According to the definition of an
open set, we must find an s > 0 such that Ds(x) ⊂ Dr (x0). Referring to Figure 2.2.3,
we see that s = r −‖x − x0‖ is a reasonable choice; note that s > 0, but that s becomes
smaller if x is nearer the edge of Dr (x0).

To prove that Ds(x) ⊂ Dr (x0), let y ∈ Ds(x); that is, let ‖y − x‖ < s. We want
to prove that y ∈ Dr (x0) as well. Proving this, in view of the definition of an r -disk,
entails showing that ‖y − x0‖ < r . This is done by using the triangle inequality for
vectors in Rn:

‖y − x0‖ = ‖(y − x) + (x − x0)‖ ≤ ‖y − x‖ + ‖x − x0‖ < s + ‖x − x0‖ = r.

Hence, ‖y − x0‖ < r . ■

The following example illustrates some techniques that are useful in establishing the
openness of sets.

figure 2.2.3 The geometry of the
proof that an open disk is an
open set.

d

rs
x0

x0d

r

=
||= ||
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|| −x

x

y

x0 ||

s
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example 1 Prove that A = {(x , y) ∈ R2 | x > 0} is an open set.

solut ion The set is pictured in Figure 2.2.4.

y

A

x

figure 2.2.4 Show that A is an open set.

Intuitively, this set is open, because no points on the “boundary,” x = 0, are contained
in the set. Such an argument will often suffice after one becomes accustomed to the
concept of openness. At first, however, we should give details. To prove that A is open,
we show that for every point (x , y) ∈ A there exists an r > 0 such that Dr (x , y) ⊂ A.
If (x , y) ∈ A, then x > 0. Choose r = x . If (x1, y1) ∈ Dr (x , y), we have

|x1 − x | = √
(x1 − x)2 ≤ √

(x1 − x)2 + ( y1 − y)2 < r = x ,

and so x1 − x < x and x − x1 < x . The latter inequality implies x1 > 0, that is,
(x1, y1) ∈ A. Hence Dr (x , y) ⊂ A, and therefore A is open (see Figure 2.2.5). ▲

y

A

x

Dr(x, y)

x y

x y,( )

x1

(x1, y1)
− )2( (+ y1− )2

−| |xx1

figure 2.2.5 The construction of a
disk about a point in A that is
completely enclosed in A.

It is useful to have a special name for an open set containing a given point x,
because this idea arises often in the study of limits and continuity. Thus, by a neighbor-
hood of x ∈ Rn we merely mean an open set U containing the point x. For example,
Dr (x0) is a neighborhood of x0 for any r > 0. The set A in Example 1 is a neighborhood
of the point x0 = (3, −10).

Boundary
Let us formally introduce the concept of a boundary point, which we alluded to in
Example 1.

Definition Boundary Points Let A ⊂ Rn . A point x ∈ Rn is called a bound-
ary point of A if every neighborhood of x contains at least one point in A and at
least one point not in A.

In this definition, x itself may or may not be in A; if x ∈ A, then x is a boundary point
if every neighborhood of x contains at least one point not in A (it already contains a point
of A, namely, x). Similarly, if x is not in A, it is a boundary point if every neighborhood
of x contains at least one point of A.

We shall be particularly interested in boundary points of open sets. By the definition
of an open set, no point of an open set A can be a boundary point of A. Thus, a point x

wujiayao
高亮



Marsden-3620111 VC September 27, 2011 9:27 91

2.2 Limits and Continuity 91

is a boundary point of an open set A if and only if x is not in A and every neighborhood
of x has a nonempty intersection with A.

This expresses in precise terms the intuitive idea that a boundary point of A is a
point just on the “edge” of A. In many examples it is perfectly clear what the boundary
points are.

example 2 (a) Let A = (a, b) in R. Then the boundary points of A consist of the points a and b.
A consideration of Figure 2.2.6 and the definition will make this clear. [The reader will
be asked to prove this in Exercise 28(c).]

Boundary points

a
x

b

figure 2.2.6 The boundary points of the interval
(a, b).

(b) Let A = Dr (x0, y0) be an r -disk about (x0, y0) in the plane. The boundary consists
of points (x , y) with (x − x0)2 + ( y − y0)2 = r 2 (Figure 2.2.7).

Boundary

A = Dr (x0, y0)

x

y

(x0, y0) 

figure 2.2.7 The boundary of A consists of points on
the edge of A.

(c) Let A = {(x , y) ∈ R2 | x > 0}. Then the boundary of A consists of all points on
the y axis (draw a figure that depicts this).

(d) Let A be Dr (x0) minus the point x0 (a “punctured” disk about x0). Then x0 is a
boundary point of A. ▲

Limits
We now turn our attention to the concept of a limit. Throughout the following discussions
the domain of definition of the function f will be an open set A. We are interested in
finding the limit of f as x ∈ A approaches either a point of A or a boundary point of A.

You should appreciate the fact that the limit concept is a basic and useful tool for the
analysis of functions; it enables us to study derivatives, and hence maxima and minima,
asymptotes, improper integrals, and other important features of functions, as well as
being useful for infinite series and sequences. We will present a theory of limits for
functions of several variables that includes the theory for functions of one variable as a
special case.

In one-variable calculus, you have encountered the notion of limitx→x0 f (x) = l for
a function f : A ⊂ R → R from a subset A of the real numbers to the real numbers.
Intuitively, this means that as x gets closer and closer to x0, the values f (x) get closer
and closer to (the limiting value) l. To put this intuitive idea on a firm, mathematical
foundation, either the “epsilon (ε) and delta (δ) method” or the “neighborhood method”
is usually introduced. The same is true for functions of several variables. In what follows
we develop the neighborhood approach to limits. The epsilon-delta approach is left for
optional study at the end of this section.

wujiayao
高亮

wujiayao
高亮

wujiayao
高亮
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U
A

b

z

y

x

x x( )f, )(

x

x0

N

figure 2.2.8 Limits in terms of neighborhoods; If x
is in U , then f (x) will be in N. (The little open circle
denotes that the point does not lie on the graph.)
In the figure, f : A = {(x, y) | x2 + y2 < 1} → R. (The
dashed line is not in the graph of f .)

Definition Limit Let f : A ⊂ Rn → Rm , where A is an open set. Let x0 be in
A or be a boundary point of A, and let N be a neighborhood of b ∈ Rm . We say
f is eventually in N as x approaches x0 if there exists a neighborhood U of x0

such that x �= x0, x ∈ U , and x ∈ A imply f (x) ∈ N . [The geometric meaning of
this assertion is illustrated in Figure 2.2.8; note that x0 need not be in the set A, so
that f (x0) is not necessarily defined.] We say f (x) approaches b as x approaches
x0, or, in symbols,

limit
x→x0

f (x) = b or f (x) → b as x → x0,

when, given any neighborhood N of b, f is eventually in N as x approaches x0

[that is, “ f (x) is close to b if x is close to x0”]. It may be that as x approaches x0,
the values f (x) do not get close to any particular vector. In this case, we say that
limitx→x0 f (x) does not exist.

Henceforth, whenever we consider the notion limitx→x0 f (x), we shall always assume
that x0 either belongs to some open set on which f is defined or is on the boundary of
such a set.

One reason we insist on x �= x0 in the definition of limit will become clear if we
remember from one-variable calculus that we want to be able to define the derivative
f ′(x0) of a function f at a point x0 by

f ′(x0) = limit
x → x0

f (x) − f (x0)

x − x0
,

and this expression is not defined at x = x0.

example 3 (a) This example illustrates a limit that does not exist. Consider the function f : R → R

defined by

f (x) =
{

1 if x > 0
−1 if x ≤ 0.
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The limitx→0 f (x) does not exist, since there are points x1 arbitrarily close to 0 with
f (x1) = 1 and also points x2 arbitrarily close to 0 with f (x2) = −1; that is, there is no
single number that f is close to when x is close to 0 (see Figure 2.2.9). If f is restricted
to the domain (0, 1) or (−1, 0), then the limit does exist. Can you say why?

f x

y

( )1

f x( ) 12 =

=

−

1

x1

x 2
x

figure 2.2.9 The limit of this function
as x → 0 does not exist.

y

x

(0, 1)
figure 2.2.10 The limit of this function as x → 0
is zero.

(b) This example illustrates a function whose limit does exist, but whose limiting value
does not equal its value at the limiting point. Define f : R → R by

f (x) =
{

0 if x �= 0
1 if x = 0.

It is true that limitx→0 f (x) = 0, since for any neighborhood U of 0, x ∈ U and
x �= 0 implies that f (x) = 0. We see from the graph in Figure 2.2.10 that f approaches
0 as x → 0; we do not care that f happens to take on some other value at 0. ▲

example 4 Use the definition to verify that the “obvious” limit x→x0 x = x0 holds, where x and
x0 ∈ Rn .

solut ion Let f be the function defined by f (x) = x, and let N be any neighborhood of x0. We
must show that f (x) is eventually in N as x → x0. According to the definition, we must
find a neighborhood U of x0 with the property that if x �= x0 and x ∈ U , then f (x) ∈ N .

Pick U = N . If x ∈ U , then x ∈ N ; because x = f (x), it follows that f (x) ∈ N . Thus,
we have shown that limitx→x0 x = x0. In a similar way, we have

limit
(x , y)→(x0, y0)

x = x0, etc. ▲

In what follows, you may assume, without proof, the validity of limits from one-
variable calculus. For example, limitx→1

√
x = √

1 = 1 and limitθ→0 sin θ = sin 0 = 0
may be used.
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example 5 (This example demonstrates another case in which the limit cannot simply be “read off”
from the function.) Find limitx→1g(x) where

g: x �→ x − 1√
x − 1

.

solut ion This function is graphed in Figure 2.2.11(a).

1

a

1

1

1

1

g: x
x x
x − 1

− 1
g  : x* +

( )) ( b

x

y

x

y

figure 2.2.11 These graphs are the same except that in part (a), g is undefined at x = 1,
whereas in part (b), g ∗ is defined for all x ≥ 0.

We see that g(1) is not defined, because division by zero is not defined. However, if
we multiply the numerator and denominator of g(x) by

√
x + 1, we find that for all x

in the domain of g we have

g(x) = x − 1√
x − 1

= √
x + 1, x �= 1.

The expression g∗(x) = √
x + 1 is defined and takes the value 2 at x = 1; from one-

variable calculus, g∗(x) → 2 as x → 1. But because g∗(x) = g(x) for all x ≥ 0, x �= 1,
we must have as well that g(x) → 2 as x → 1. ▲

We will consider other examples in two variables shortly.

Properties of Limits
To properly speak of the limit, we should establish that f can have at most one limit
as x → x0. This is intuitively clear and we now state it formally. (See the Internet
supplement for the proof.)

Theorem 2 Uniqueness of Limits

If limit
x→x0

f (x) = b1 and limit
x→x0

f (x) = b2, then b1 = b2.

To carry out practical computations with limits, we require some rules for limits; for
example, that the limit of a sum is the sum of the limits. These rules are summarized in
the following theorem (see the Internet supplement for Chapter 2 for the proof).
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Theorem 3 Properties of Limits Let f : A ⊂ Rn → Rm , g: A ⊂ Rn → Rm ,
x0 be in A or be a boundary point of A, b ∈ Rm , and c ∈ R; then

(i) If limitx→x0 f (x) = b, then limitx→x0 c f (x) = cb, where c f : A → Rm is
defined by x �→ c( f (x)).

(ii) If limitx→x0 f (x) = b1 and limitx→x0 g(x) = b2, then limitx→x0 ( f + g)(x) =
b1 + b2, where ( f + g): A → Rm is defined by x �→ f (x) + g(x).

(iii) If m = 1, limitx→x0 f (x) = b1, and limitx→x0 g(x) = b2, then
limitx→x0 ( f g)(x) = b1b2, where ( f g): A → R is defined by x �→ f (x)g(x).

(iv) If m = 1, limitx→x0 f (x) = b �= 0, and f (x) �= 0 for all x ∈ A, then
limitx→x0 1/ f (x) = 1/b, where 1/ f : A → R is defined by x �→ 1/ f (x).

(v) If f (x) = ( f1(x), . . . , fm(x)), where fi : A → R, i = 1, . . . , m, are the
component functions of f , then limitx→x0 f (x) = b = (b1, . . . , bm) if and
only if limitx→x0 fi (x) = bi for each i = 1, . . . , m.

These results ought to be intuitively clear. For instance, rule (ii) says that if
f (x) is close to b1 and g(x) is close to b2 when x is close to x0, then f (x) + g(x)
is close to b1 + b2 when x is close to x0. The following example illustrates how this
works.

example 6 Let f : R2 → R, (x , y) �→ x2 + y2 + 2. Compute the limit

limit
(x , y) → (0,1)

f (x , y).

solut ion Here f is the sum of the three functions (x , y) �→ x2, (x , y) �→ y2, and (x , y) �→ 2.
The limit of a sum is the sum of the limits, and the limit of a product is the product of
the limits (Theorem 3). Hence, using the fact that limit(x , y)→(x0, y0)x = x0 (Example 4),
we obtain

limit
(x , y)→(x0, y0)

x2 =
(

limit x
(x , y)→(x0, y0)

) (
limit x

(x , y)→(x0, y0)

)
= x2

0

and, using the same reasoning, limit(x , y)→(x0, y0) y2 = y2
0 . Consequently,

limit
(x , y)→(0,1)

f (x , y) = 02 + 12 + 2 = 3. ▲

Continuous Functions
In single-variable calculus we learned that the idea of a continuous function is based on
the intuitive notion of a function whose graph is an unbroken curve; that is, a curve that
has no jumps, or the kind of curve that would be traced by a particle in motion or by a
moving pencil point that is not lifted from the paper.
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(b)

x

y y

x

g : 2x x

(a)

−1

1

figure 2.2.12 The function f in part (a) is not continuous, because its value jumps as x crosses 0,
whereas the function g in part (b) is continuous.

To perform a detailed analysis of functions, we need concepts more precise than this
rather vague notion. An example may clarify these ideas. Consider the specific function
f : R → R defined by f (x) = −1 if x ≤ 0 and f (x) = 1 if x > 0. The graph of f is
shown in Figure 2.2.12(a). [The little open circle denotes the fact that the point (0, 1)
does not lie on the graph of f .] Clearly, the graph of f is broken at x = 0. Consider
also the function g: x �→ x2. This function is pictured in Figure 2.2.12(b). The graph
of g is not broken at any point.

If we examine examples of functions like f , whose graphs are broken at some point
x0, and functions like g, whose graphs are not broken, we see that the principal difference
between them is that for a function like g, the values of g(x) get closer to g(x0) as x
gets closer and closer to x0. The same idea works for functions of several variables. But
the notion of closer and closer does not suffice as a mathematical definition; thus, we
shall formulate these concepts precisely in terms of limits.

Because the condition limitx→x0 f (x) = f (x0) means that f (x) is close to f (x0)
when x is close to x0, we see that this limit condition does indeed correspond to the
requirement that the graph of f be unbroken (see Figure 2.2.13, where we illustrate the
case f : R → R). The case of several variables is easiest to visualize if we deal with
real-valued functions, say f : R2 → R. In this case, we can visualize f by drawing its
graph, which consists of all points (x , y, z) in R3 with z = f (x , y). The continuity of
f thus means that its graph has no “breaks” in it (see Figure 2.2.14).

figure 2.2.13 (a) Discontinuous
function for which limitx→x0

f (x)
does not exist.
(b) Continuous function for
which this limit exists and equals
f (x0).
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z
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x

z

y

x

Break in the
surface z = f(x, y)

Set of discontinuities of f;
i.e., the set of points 
where f is discontinuous

f(x
0
)

x
0

z = f(x, y)

(a) (b)

figure 2.2.14 (a) A discontinuous function of two variables. (b) A continuous function.

Definition Continuity Let f : A ⊂ Rn → Rm be a given function with
domain A. Let x0 ∈ A. We say f is continuous at x0 if and only if

limit
x→x0

f (x) = f (x0).

If we just say that f is continuous, we shall mean that f is continuous at each
point x0 of A. If f is not continuous at x0, we say f is discontinuous at x0. If f
is discontinuous at some point in its domain, we say f is discontinuous.

example 7 Any polynomial p(x) = a0 +a1x +· · ·+an xn is continuous from R to R. Indeed, from
Theorem 3 and Example 4,

limit
x→x0

(
a0 + a1x + · · · + an xn

) = limit
x→x0

a0 + limit
x→x0

a1x + · · · + limit
x→x0

an xn

= a0 + a1x0 + · · · + an xn
0 ,

because the limit of a product is the product of the limits, which gives

limit
x→x0

xn =
(

limit
x→x0

x
)n

= xn
0 . ▲

example 8 Let f : R2 → R, f (x , y) = xy. Then f is continuous, because, by the limit theorems
and Example 4,

limit
(x , y)→(x0, y0)

xy =
(

limit
(x , y)→(x0, y0)

x

)(
limit

(x , y)→(x0, y0)
y

)
= x0 y0. ▲

We can see by the same method that any polynomial p(x , y) [for example, p(x , y) =
3x2 − 6xy2 + y3] in x and y is continuous.
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example 9 The function f : R2 → R defined by

f (x , y) =
{

1 if x ≤ 0 or y ≤ 0
0 otherwise

is not continuous at (0, 0) or at any point on the positive x axis or positive y axis. Indeed,
if (x0, y0) = u is such a point (i.e., x0 = 0 and y0 ≥ 0, or y0 = 0 and x0 ≥ 0) and δ > 0,
there are points (x , y) ∈ Dδ(u), a neighborhood of u, with f (x , y) = 1 and other points
(x , y) ∈ Dδ(u) with f (x , y) = 0. Thus, it is not true that f (x , y) → f (x0, y0) = 1 as
(x , y) → (x0, y0). ▲

To prove that specific functions are continuous, we can avail ourselves of the limit
theorems (see Theorem 3 and Example 7). If we transcribe those results in terms of
continuity, we are led to the following:

Theorem 4 Properties of Continuous Functions Suppose that f : A ⊂
Rn → Rm , g: A ⊂ Rn → Rm , and let c be a real number.

(i) If f is continuous at x0, so is c f , where (c f )(x) = c[ f (x)].

(ii) If f and g are continuous at x0, so is f + g, where the sum of f and g is
defined by ( f + g)(x) = f (x) + g(x).

(iii) If f and g are continuous at x0 and m = 1, then the product function fg
defined by ( fg)(x) = f (x)g(x) is continuous at x0.

(iv) If f : A ⊂ Rn → R is continuous at x0 and nowhere zero on A, then the
quotient 1/ f is continuous at x0, where (1/ f )(x) = 1/ f (x).

(v) If f : A ⊂ Rn → Rm and f (x) = ( f1(x), . . . , fm(x)), then f is continuous
at x0 if and only if each of the real-valued functions f1, . . . , fm is continuous
at x0.

A variant of (iv) is often used: If f (x0) �= 0 and f is continuous, then f (x) �= 0 in a
neighborhood of x0 and so 1/ f is defined in that neighborhood, and 1/ f is continuous
at x0.

example 10 Let f : R2 → R2, (x , y) �→ (x2 y, ( y + x3)/(1 + x2)). Show that f is continuous.

solut ion To see this, it is sufficient, by property (v) of Theorem 4, to show that each component
is continuous. As we have mentioned, any polynomial in two variables is continuous;
thus, the map (x , y) �→ x2 y is continuous. Because 1 + x2 is continuous and nonzero,
by property (iv), we know that 1/(1 + x2) is continuous; hence, ( y + x3)/(1 + x2) is a
product of continuous functions, and by (iii) is continuous. ▲

Similar reasoning applies to examples like the function c: R → R3 given by c(t) =
(t2, 1, t3/(1 + t2)) to show they are continuous as well.
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figure 2.2.15 The composition
of f on g.
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f ◦ g

fg

Composition
Next we discuss composition, another basic operation that can be performed on func-
tions. If g maps A to B and f maps B to C , the composition of g with f , or of f on
g, denoted by f ◦ g, maps A to C by sending x �→ f (g(x)) (see Figure 2.2.15). For
example, sin (x2) is the composition of x �→ x2 with y �→ sin y.

Theorem 5 Continuity of Compositions Let g: A ⊂ Rn → Rm and let
f : B ⊂ Rm → Rp. Suppose g( A) ⊂ B, so that f ◦ g is defined on A. If g is
continuous at x0 ∈ A and f is continuous at y0 = g(x0), then f ◦ g is continuous
at x0.

The intuition behind this is easy; the formal proof in the Internet supplement follows
a similar pattern. Intuitively, we must show that as x gets close to x0, f (g(x)) gets close
to f (g(x0)). But as x gets close to x0, g(x) gets close to g(x0) (by continuity of g at x0);
and as g(x) gets close to g(x0), f (g(x)) gets close to f (g(x0)) [by continuity of f at
g(x0)].

example 11 Let f (x , y, z) = (x2 + y2 + z2)30 + sin z3. Show that f is continuous.

solut ion Here we can write f as a sum of the two functions (x2+y2+z2)30 and sin z3, so it suffices
to show that each is continuous. The first is the composite of (x , y, z) �→ (x2 + y2 + z2)
with u �→ u30, and the second is the composite of (x , y, z) �→ z3 with u �→ sin u, and
so we have continuity by Theorem 5. ▲

Limits in Terms of ε’s and δ’s
We now state a theorem (proved in the Internet supplement for Chapter 2) giving
a useful formulation of the notion of limit in terms of epsilons and deltas that is
often taken as the definition of limit. This is, in fact, another way of making precise the
intuitive statement that “ f (x) is close to b when x is close to x0.” To help understand this
formulation, the reader should consider it with respect to each of the examples already
presented.

Theorem 6 Let f : A ⊂ Rn → Rm and let x0 be in A or be a boundary point of
A. Then limitx→x0 f (x) = b if and only if for every number ε > 0 there is a δ > 0
such that for any x ∈ A satisfying 0 < ‖x − x0‖ < δ, we have ‖ f (x) − b‖ < ε

(see Figure 2.2.16).
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figure 2.2.16 The geometry of
the ε-δ definition of limit.
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To illustrate the methodology of the epsilon-delta technique in Theorem 6, we con-
sider the following examples.

example 12 Show that limit(x , y)→(0,0)x = 0 using the ε-δ method.

solut ion Note that if δ > 0, ‖(x , y) − (0, 0)‖ = √
x2 + y2 < δ implies |x − 0| = |x | = √

x2 ≤√
x2 + y2 < δ. Thus, if ‖(x , y) − (0, 0)‖ < δ, then |x − 0| is also less than δ. Given

ε > 0, we are required to find a δ > 0 (generally depending on ε) with the property that
0 < ‖(x , y) − (0, 0)‖ < δ implies |x − 0| < ε. What are we to pick as our δ? From
the preceding calculation, we see that if we choose δ = ε, then ‖(x , y) − (0, 0)‖ < δ

implies |x − 0| < ε. This shows that limit(x , y)→(0,0)x = 0. Given ε > 0, we could have
also chosen δ = ε/2 or ε/3, but it suffices to find just one δ satisfying the requirements
of the definition of a limit. ▲

example 13 Consider the function

f (x , y) = sin (x2 + y2)

x2 + y2
.

Even though f is not defined at (0, 0), determine whether f (x , y) approaches some
number as (x , y) approaches (0, 0).

solut ion From one-variable calculus or L’Hôpital’s rule we know that

limit
α→0

sin α

α
= 1.

Thus, it is reasonable to guess that

limit
v→(0,0)

f (v) = limit
v→(0,0)

sin ‖v‖2

‖v‖2
= 1.

Indeed, because limitα→0 (sin α)/α = 1, given ε > 0 we are able to find a δ > 0, with
0 < δ < 1, such that 0 < |α| < δ implies that |( sin α)/α − 1| < ε. If 0 < ‖v‖ < δ,
then 0 < ‖v‖2 < δ2 < δ, and therefore

| f (v) − 1| =
∣∣∣∣ sin ‖v‖2

‖v‖2
− 1

∣∣∣∣ < ε.
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figure 2.2.17 Graph of the function f (x, y) = [sin (x2 + y2)]/(x2 + y2).

Thus, limitv→(0,0) f (v) = 1. If we plot [sin (x2 + y2)]/(x2 + y2) on a computer, we get
a graph that is indeed well behaved near (0, 0) (Figure 2.2.17). ▲

example 14 Show that

limit
(x , y)→(0,0)

x2√
x2 + y2

= 0.

solut ion We must show that x2/
√

x2 + y2 is small when (x , y) is close to the origin. To do this,
we use the following inequality:

0 ≤ x2√
x2 + y2

≤ x2 + y2√
x2 + y2

(because y2 ≥ 0)

= √
x2 + y2.

Given ε > 0, choose δ = ε. Then ‖(x , y) − (0, 0)‖ = ‖(x , y)‖ = √
x2 + y2, and so

‖(x , y) − (0, 0)‖ < δ implies that
∣∣∣∣∣

x2√
x2 + y2

− 0

∣∣∣∣∣ = x2√
x2 + y2

≤ √
x2 + y2 = ‖(x , y) − (0, 0)‖ < δ = ε.

Thus, the conditions of Theorem 6 have been fulfilled and the limit is verified. ▲

example 15 (a) Does

limit
(x , y)→(0,0)

x2/(x2 + y2)

exist? [See Figure 2.2.18(a).]
(b) Prove that [see Figure 2.2.18(b)]

limit
(x , y) → (0,0)

2x2 y

x2 + y2
= 0.
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(0, 0) in this 
valley, z      0
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(0, 0) along this 
ridge, z     1

figure 2.2.18 (a) The function z = x2/(x2 + y2) has no limit at (0, 0). (b) The function
z = (2x2 y)/(x2 + y2) has limit 0 at (0, 0).

s o l u t i o n (a) If the limit exists, x2/(x2 + y2) should approach a definite value, say a, as (x , y)
gets near (0, 0). In particular, if (x , y) approaches zero along any given path, then
x2/(x2 + y2) should approach the limiting value a. If (x , y) approaches (0, 0) along the
line y = 0, the limiting value is clearly 1 ( just set y = 0 in the preceding expression to
get x2/x2 = 1). If (x , y) approaches (0, 0) along the line x = 0, the limiting value is

lim
y → 0

02

02 + y2
= 0 �= 1.

Hence, limit(x , y)→(0,0)x2/(x2 + y2) does not exist.

(b) Note that

∣∣∣∣ 2x2 y

x2 + y2

∣∣∣∣ ≤
∣∣∣∣2x2 y

x2

∣∣∣∣ = 2|y|.

Thus, given ε > 0, choose δ = ε/2; then 0 < ‖(x , y) − (0, 0)‖ = √
x2 + y2 < δ

implies |y| < δ, and thus

∣∣∣∣ 2x2 y

x2 + y2
− 0

∣∣∣∣ < 2δ = ε.
▲

Using the ε-δ notation, we are led to the following reformulation of the definition of
continuity.

Theorem 7 Let f : A ⊂ Rn → Rm be given. Then f is continuous at x0 ∈ A
if and only if for every number ε > 0 there is a number δ > 0 such that

x ∈ A and ‖x − x0‖ < δ implies ‖ f (x) − f (x0)‖ < ε.

The proof is almost immediate. Notice that in Theorem 6 we insisted that 0 <

‖x−x0‖; that is, x �= x0. That is not imposed here; indeed, the conclusion of Theorem 7
is certainly valid when x = x0, and so there is no need to exclude this case. Here we do
care about the value of f at x0; we want f at nearby points to be close to this value.
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exercises

In the following exercises you may assume that the exponential, sine, and cosine functions are continuous and may freely use
techniques from one-variable calculus, such as L’Hôpital’s rule.

1. Let f : R2 → R and suppose that

lim
(x , y)→(1,3)

f (x , y) = 5. What can you say about the

value f (1, 3)?

2. Let f : R2 → R is continuous and suppose that
lim(x , y)→(1,3) f (x , y) = 5. What can you say about the

value f (1, 3)?

3. Compute the limits:

(a) limit
(x , y) → (0,1)

x3 y

(b) limit
x→0

cos x − 1

x2

(c) limit
h→0

eh − 1

h

4. Compute the following limits:

(a) limit
(x , y) → (0,1)

ex y

(b) limit
x→0

sin2 x

x

(c) limit
x→0

sin2 x

x2

5. Compute the following limits:

(a) limit
x→3

(x2 − 3x + 5)

(b) limit
x→0

sin x

(c) limit
h→0

(x + h)2 − x2

h

6. Let

f (x , y) =
{

xy3

x2+y6 if (x , y) �= (0, 0)

0 if (x , y) = (0, 0).

(a) Compute the limit as (x , y) → (0, 0) of f along the
path x = 0.

(b) Compute the limit as (x , y) → (0, 0) of f along the
path x = y3.

(c) Show that f is not continuous at (0, 0).

7. Let f (x , y, z) = ex+y

1 + z2 . Compute

limh→0
f (1,2+h,3)− f (1,2,3)

h .

8. Compute the following limits if they exist:

(a) limit
(x , y) → (0,0)

(x + y)2 − (x − y)2

xy

(b) limit
(x , y) → (0,0)

sin xy

y

(c) limit
(x , y) → (0,0)

x3 − y3

x2 + y2

9. Compute the following limits if they exist:

(a) limit
(x , y) → (0,0)

exy − 1

y

(b) limit
(x , y) → (0,0)

cos (xy) − 1

x2 y2

(c) limit
(x , y) → (0,0)

xy

x2 + y2 + 2

10. Compute the following limits if they exist:

(a) limit
(x , y) → (0,0)

exy

x + 1

(b) limit
(x , y) → (0,0)

cos x − 1 − (x2/2)

x4 + y4

(c) limit
(x , y) → (0,0)

(x − y)2

x2 + y2

11. Compute the following limits if they exist:

(a) limit
(x , y) → (0,0)

sin xy

xy

(b) limit
(x , y,z) → (0,0,0)

sin (xyz)

xyz
(c) limit

(x , y,z) → (0,0,0)
f (x , y, z), where f (x , y, z) =

(x2 + 3y2)/(x + 1)

12. Compute the following limits if they exist:

(a) limit
x → 0

sin 2x − 2x

x3

(b) limit
(x , y) → (0,0)

sin 2x − 2x + y

x3 + y

(c) limit
(x , y,z) → (0,0,0)

2x2 y cos z

x2 + y2

13. Compute limitx→x0 f (x), if it exists, for the following
cases:

(a) f : R → R, x �→ |x |, x0 = 1

(b) f : Rn → R, x �→ ‖x‖, arbitrary x0
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(c) f : R → R2, x �→ (x2, ex ), x0 = 1

(d) f : R2\{(0, 0)} → R2, (x , y) �→ (sin (x − y),
ex( y+1) − x − 1)/‖(x , y)‖, x0 = (0, 0)

14. Let f (x , y, z) = 1
x2+y2+z2−1 . Describe geometrically

the set in R3 where f fails to be continuous.

15. Where is the function f (x , y) = 1
x2+y2 continuous?

16. Let A =
[

1 2
3 4

]
.

(a) Considering A: R2 → R2 as a linear map, explicitly
write the component functions of A.

(b) Show that A is continuous on all of R2.

17. Find lim
(x , y)→(0,0)

(3x2 + 3y2) log(x2 + y2). (HINT: Use

polar coordinates.)

Show that the subsets of the plane in Exercises 18–21 are open:

18. A = {(x , y) | −1 < x < 1, −1 < y < 1}

19. B = {(x , y) | y > 0}

20. C = {(x , y) | 2 < x2 + y2 < 4}

21. D = {(x , y) | x �= 0 and y �= 0}

22. Let A ⊂ R2 be the open unit disk D1(0, 0) with the
point x0 = (1, 0) added, and let f : A → R, x �→ f (x)
be the constant function f (x) = 1. Show that
limitx→x0 f (x) = 1.

23. If f : Rn → R and g: Rn → R are continuous, show
that the functions

f 2g: Rn → R, x �→ [ f (x)]2g(x)

and

f 2 + g: Rn → R, x �→ [ f (x)]2 + g(x)

are continuous.

24. (a) Show that f : R → R, x �→ (1 − x)8 + cos (1 + x3)
is continuous.

(b) Show that the map
f : R → R, x �→ x2ex/(2 − sin x) is continuous.

25. (a) Can [sin (x + y)]/(x + y) be made continuous by
suitably defining it at (0, 0)?

(b) Can xy/(x2 + y2) be made continuous by suitably
defining it at (0, 0)?

(c) Prove that
f : R2 → R, (x , y) �→ yex + sin x + (xy)4 is
continuous.

26. Using either ε’s and δ’s or spherical coordinates, show
that

limit
(x , y,z) → (0,0,0)

xyz

x2 + y2 + z2 = 0.

27. Use the ε-δ formulation of limits to prove that x2 → 4
as x → 2. Give another proof using Theorem 3.

28. (a) Prove that for x ∈ Rn and s < t , Ds (x) ⊂ Dt (x).

(b) Prove that if U and V are neighborhoods of x ∈ Rn ,
then so are U ∩ V and U ∪ V .

(c) Prove that the boundary points of an open interval
(a, b) ⊂ R are the points a and b.

29. Suppose x and y are in Rn and x �= y. Show that there
is a continuous function f : Rn → R with f (x) = 1,
f (y) = 0, and 0 ≤ f (z) ≤ 1 for every z in Rn .

30. Let f : A ⊂ Rn → R be given and let x0 be a boundary
point of A. We say that limitx→x0 f (x) = ∞ if for every
N > 0 there is a δ > 0 such that 0 < ‖x − x0‖ < δ and
x ∈ A implies f (x) > N .

(a) Prove that limitx→1 (x − 1)−2 = ∞.

(b) Prove that limitx→01/|x | = ∞. Is it true that
limitx→01/x = ∞?

(c) Prove that limit(x , y) → (0,0)1/(x2 + y2) = ∞.

31. Let b ∈ R and f : R\[b] → R be a function. We write
limitx→b− f (x) = L and say that L is the left-hand
limit of f at b if for every ε > 0 there is a δ > 0 such
that x < b and 0 < |x − b| < δ implies | f (x) − L| < ε.

(a) Formulate a definition of right-hand limit, or
limitx→b+ f (x).

(b) Find limitx→0−1/(1 + e1/x ) and
limitx→0+1/(1 + e1/x ).

(c) Sketch the graph of 1/(1 + e1/x ).

32. Show that f is continuous at x0 if and only if

limit
x→x0

‖ f (x) − f (x0)‖ = 0.

33. Let f : A ⊂ Rn → Rm satisfy
‖ f (x) − f (y)‖ ≤ K‖x − y‖α for all x and y in A for
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positive constants K and α. Show that f is continuous.
(Such functions are called Hölder-continuous or, if
α = 1, Lipschitz-continuous.)

34. Show that f : Rn → Rm is continuous at all points if
and only if the inverse image of every open set is open.

35. (a) Find a specific number δ > 0 such that if |a| < δ,
then |a3 + 3a2 + a| < 1/100.

(b) Find a specific number δ > 0 such that if
x2 + y2 < δ2, then

|x2 + y2 + 3xy + 180xy5| < 1/10,000.

2.3 Differentiation

In Section 2.1 we considered a few methods for graphing functions. By these meth-
ods alone it may be impossible to compute enough information to grasp even the
general features of a complicated function. From elementary calculus, we know that
the idea of the derivative can greatly aid us in this task; for example, it enables us
to locate maxima and minima and to compute rates of change. The derivative also
has many applications beyond this, as you have surely has discovered in elementary
calculus.

Intuitively, we know from our work in Section 2.2 that a continuous function is one
that has no “breaks” in its graph. A differentiable function from R2 to R ought to be
such that not only are there no breaks in its graph, but there is a well-defined plane
tangent to the graph at each point. Thus, there must not be any sharp folds, corners, or
peaks in the graph (see Figure 2.3.1). In other words, the graph must be smooth.

Partial Derivatives
To make these ideas precise, we need a sound definition of what we mean by the phrase
“ f (x1, . . . , xn) is differentiable at x = (x1, . . . , xn).” Actually, this definition is not quite
as simple as one might think. Toward this end, however, let us introduce the notion of the
partial derivative. This notion relies only on our knowledge of one-variable calculus.
(A quick review of the definition of the derivative in a one-variable calculus text might
be advisable at this point.)

x

y

z

z = f(x, y) Peak

Pit

Fold

x

y

z

(a) (b)

Corner

figure 2.3.1 (a) A smooth graph and (b) a nonsmooth one.
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Definition Partial Derivatives Let U ⊂ Rn be an open set and suppose
f : U ⊂ Rn → R is a real-valued function. Then ∂ f/∂x1, . . . , ∂ f/∂xn , the partial
derivatives of f with respect to the first, second, . . . , nth variable, are the real-
valued functions of n variables, which, at the point (x1, . . . , xn) = x, are defined
by

∂ f

∂x j
(x1, . . . , xn) = lim

h→0

f (x1, x2, . . . , x j + h, . . . , xn) − f (x1, . . . , xn)

h

= lim
h→0

f (x + he j ) − f (x)

h

if the limits exist, where 1 ≤ j ≤ n and e j is the j th standard basis vector defined
by e j = (0, . . . , 1, . . . , 0), with 1 in the j th slot (see Section 1.5). The domain of
the function ∂ f/∂x j is the set of x ∈ Rn for which the limit exists.

In other words, ∂ f/∂x j is just the derivative of f with respect to the variable x j ,
with the other variables held fixed. If f : R3 → R, we shall often use the notation
∂ f/∂x , ∂ f/∂y, ∂ f/∂z in place of ∂ f/∂x1, ∂ f/∂x2, ∂ f/∂x3. If f : U ⊂ Rn → Rm , then
we can write

f (x1, . . . , xn) = ( f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

so that we can speak of the partial derivatives of each component; for example, ∂ fm/∂xn

is the partial derivative of the mth component with respect to xn , the nth variable.

example 1 If f (x , y) = x2 y + y3, find ∂ f/∂x and ∂ f/∂y.

solut ion To find ∂ f/∂x we hold y constant (think of it as some number, say 1) and differentiate
only with respect to x ; this yields

∂ f

∂x
= ∂(x2 y + y3)

∂x
= 2xy.

Similarly, to find ∂ f/∂y we hold x constant and differentiate only with respect to y:

∂ f

∂y
= ∂(x2 y + y3)

∂y
= x2 + 3y2.

▲

To indicate that a partial derivative is to be evaluated at a particular point, for example,
at (x0, y0), we write

∂ f

∂x
(x0, y0) or

∂ f

∂x

∣∣∣∣
x=x0, y=y0

or
∂ f

∂x

∣∣∣∣
(x0, y0)

.

When we write z = f (x , y) for the dependent variable, we sometimes write ∂z/∂x for
∂ f/∂x . Strictly speaking, this is an abuse of notation, but it is common practice to use
these two notations interchangeably.
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example 2 If z = cos xy + x cos y = f (x , y), find the two partial derivatives (∂z/∂x) (x0, y0) and
(∂z/∂y)(x0, y0).

solut ion First we fix y0 and differentiate with respect to x , giving

∂z

∂x
(x0, y0) = ∂(cos xy0 + x cos y0)

∂x

∣∣∣∣
x=x0

= (−y0 sin xy0 + cos y0)|x=x0

= −y0 sin x0 y0 + cos y0.

Similarly, we fix x0 and differentiate with respect to y to obtain

∂z

∂y
(x0, y0) = ∂(cos x0 y + x0 cos y)

∂y

∣∣∣∣
y=y0

= (−x0 sin x0 y − x0 sin y)|y=y0

= −x0 sin x0 y0 − x0 sin y0. ▲

example 3 Find ∂ f/∂x if f (x , y) = xy/
√

x2 + y2.

solut ion By the quotient rule,

∂ f

∂x
= y

√
x2 + y2 − xy(x/

√
x2 + y2)

x2 + y2
= y(x2 + y2) − x2 y

(x2 + y2)3/2
= y3

(x2 + y2)3/2
.

▲

A definition of differentiability that requires only the existence of partial derivatives
turns out to be insufficient. Many standard results, such as the chain rule for functions
of several variables, would not follow, as Example 4 shows. Below, we shall see how to
rectify this situation.

example 4 Let f (x , y) = x1/3 y1/3. By definition,

∂ f

∂x
(0, 0) = limit

h→0

f (h, 0) − f (0, 0)

h
= limit

h→0

0 − 0

h
= 0,

and, similarly, (∂ f/∂y)(0, 0) = 0 (these are not indeterminate forms!). It is necessary
to use the original definition of partial derivatives, because the functions x1/3 and y1/3

are not themselves differentiable at 0. Suppose we restrict f to the line y = x to get
f (x , x) = x2/3 (see Figure 2.3.2). We can view the substitution y = x as the composition
f ◦ g of the function g: R → R2, defined by g(x) = (x , x), and f : R2 → R, defined
by f (x , y) = x1/3 y1/3.

Thus, the composite f ◦ g is given by ( f ◦ g)(x) = x2/3. Each component of g is
differentiable in x , and f has partial derivatives at (0, 0), but f ◦ g is not differentiable
at x = 0, in the sense of one-variable calculus. In other words, the composition of
f with g is not differentiable in contrast to the calculus of functions of one variable,
where the composition of differentiable functions is differentiable. Later, we shall give
a definition of differentiability that has the pleasant consequence that the composition
of differentiable functions is differentiable.

There is another reason for being dissatisfied with the mere existence of partial
derivatives of f (x , y) = x1/3 y1/3: There is no plane tangent, in any reasonable sense, to
the graph at (0, 0). The xy plane is tangent to the graph along the x and y axes because
f has slope zero at (0, 0) along these axes; that is, ∂ f/∂x = 0 and ∂ f/∂y = 0 at (0, 0).
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x = y

y

z

x

figure 2.3.2 The portion of the graph of
x1/3 y1/3 in the first quadrant.

Thus, if there is a tangent plane, it must be the xy plane. However, as is evident from
Figure 2.3.2, the xy plane is not tangent to the graph in other directions, because the
graph has a severe crinkle, and so the xy plane cannot be said to be tangent to the graph
of f . ▲

The Linear or Affine Approximation
To “motivate” our definition of differentiability, let us compute what the equation of the
plane tangent to the graph of f : R2 → R, (x , y) �→ f (x , y) at (x0, y0) ought to be if
f is smooth enough. In R3, a nonvertical plane has an equation of the form

z = ax + by + c.

If it is to be the plane tangent to the graph of f , the slopes along the x and y axes
must be equal to ∂ f/∂x and ∂ f/∂y, the rates of change of f with respect to x and y.
Thus, a = ∂ f/∂x , b = ∂ f/∂y [evaluated at (x0, y0)]. Finally, we may determine the
constant c from the fact that z = f (x0, y0) when x = x0, y = y0. Thus, we get the
linear approximation (or, more accurately said, affine approximation):

z = f (x0, y0) +
[
∂ f

∂x
(x0, y0)

]
(x − x0) +

[
∂ f

∂y
(x0, y0)

]
( y − y0), (1)

which should be the equation of the plane tangent to the graph of f at (x0, y0), if f is
“smooth enough” (see Figure 2.3.3).

Our definition of differentiability will mean in effect that the plane defined by the
linear approximation (1) is a “good” approximation of f near (x0, y0). To get an idea of

z

y

x
(x, y)

 0 0

Tangent plane 
of graph f at

0 0(x y, , 0 0(x y, ))f

0 0(x y, , 0 0(x y, ))f

(x , y )

figure 2.3.3 For points (x, y) near (x0, y0),
the graph of the tangent plane is close to
the graph of f .

wujiayao
高亮
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what we might mean by a good approximation, let us return for a moment to one-variable
calculus. If f is differentiable at a point x0, then we know that

limit
�x→0

f (x0 + �x) − f (x0)

�x
= f ′(x0).

Let x = x0 + �x and rewrite this as

limit
x→x0

f (x) − f (x0)

x − x0
= f ′(x0).

Using the trivial limit limitx→x0 f ′(x0) = f ′(x0), we can rewrite the preceding equation
as

limit
x→x0

f (x) − f (x0)

x − x0
= limit

x→x0

f ′(x0);

that is,

limit
x→x0

[
f (x) − f (x0)

x − x0
− f ′(x0)

]
= 0;

that is,

limit
x→x0

f (x) − f (x0) − f ′(x0)(x − x0)

x − x0
= 0.

Thus, the tangent line l through (x0, f (x0)) with slope f ′(x0) is close to f in the sense
that the difference between f (x) and l(x) = f (x0) + f ′(x0)(x − x0), the equation of
the tangent line goes to zero even when divided by x − x0 as x goes to x0. This is the
notion of a “good approximation” that we will adapt to functions of several variables,
with the tangent line replaced by the tangent plane [see equation (1), given earlier].

Differentiability for Functions of Two Variables
Using the linear approximation, we are ready to define the notion of differentiability.

Definition Differentiable: Two Variables Let f : R2 → R. We say f is
differentiable at (x0, y0), if ∂ f/∂x and ∂ f/∂y exist at (x0, y0) and if

f (x , y) − f (x0, y0) −
[
∂ f

∂x
(x0, y0)

]
(x − x0) −

[
∂ f

∂y
(x0, y0)

]
( y − y0)

‖(x , y) − (x0, y0)‖ → 0
(2)

as (x , y) → (x0, y0). This equation expresses what we mean by saying that

f (x0, y0) +
[
∂ f

∂x
(x0, y0)

]
(x − x0) +

[
∂ f

∂y
(x0, y0)

]
( y − y0)

is a good approximation to the function f .

It is not always easy to use this definition to see whether f is differentiable, but it
will be easy to use another criterion, given shortly in Theorem 9.

wujiayao
高亮
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Tangent Plane
We have used the informal notion of the plane tangent to the graph of a function to
motivate our definition of differentiability. Now we are ready to adopt a formal definition
of the tangent plane.

Definition Tangent Plane Let f : R2 → R be differentiable at x0 = (x0, y0).
The plane in R3 defined by the equation

z = f (x0, y0) +
[
∂ f

∂x
(x0, y0)

]
(x − x0) +

[
∂ f

∂y
(x0, y0)

]
( y − y0)

is called the tangent plane of the graph of f at the point (x0, y0, f (x0, y0)).

example 5 Compute the plane tangent to the graph of z = x2 + y4 + exy at the point (1, 0, 2).

solut ion Use formula (1), with x0 = 1, y0 = 0, and z0 = f (x0, y0) = 2. The partial derivatives
are

∂z

∂x
= 2x + yexy and

∂z

∂y
= 4y3 + xexy .

At (1, 0, 2), these partial derivatives are 2 and 1, respectively. Thus, by formula (1), the
tangent plane is

z = 2(x − 1) + 1( y − 0) + 2, that is, z = 2x + y. ▲

Let us write Df (x0, y0) for the row matrix
[
∂ f

∂x
(x0, y0)

∂ f

∂y
(x0, y0)

]
,

so that the definition of differentiability asserts that

f (x0, y0) + Df (x0, y0)
[ x − x0

y − y0

]

= f (x0, y0) +
[
∂ f

∂x
(x0, y0)

]
(x − x0) +

[
∂ f

∂y
(x0, y0)

]
( y − y0) (3)

is our good approximation to f near (x0, y0). As earlier, “good” is taken in the sense that
expression (3) differs from f (x , y) by something small times

√
(x − x0)2 + ( y − y0)2.

We say that expression (3) is the best linear approximation to f near (x0, y0).

Differentiability: The General Case
Now we are ready to give a definition of differentiability for maps f of Rn to Rm , using
the preceding discussion as motivation. The derivative Df (x0) of f = ( f1, . . . , fm) at
a point x0 is a matrix T whose elements are ti j = ∂ fi/∂x j evaluated at x0.2

2It turns out that we need to postulate the existence of only some matrix giving the best linear approxi-
mation near x0 ∈ Rn , because in fact this matrix is necessarily the matrix whose i j th entry is ∂ fi/∂x j

(see the Internet supplement for Chapter 2).
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Definition Differentiable, n Variables, m Functions Let U be an open
set in Rn and let f : U ⊂ Rn → Rm be a given function. We say that f is
differentiable at x0 ∈ U if the partial derivatives of f exist at x0 and if

limit
x→x0

‖ f (x) − f (x0) − T(x − x0)‖
‖x − x0‖ = 0, (4)

where T = Df (x0) is the m × n matrix with matrix elements ∂ fi/∂x j evaluated
at x0 and T(x − x0) means the product of T with x − x0 (regarded as a column
matrix). We call T the derivative of f at x0.

We shall always denote the derivative T of f at x0 by D f (x0), although in some
books it is denoted d f (x0) and referred to as the differential of f . In the case where
m = 1, the matrix T is just the row matrix

[
∂ f

∂x1
(x0) · · · ∂ f

∂xn
(x0)

]
.

(Sometimes, when there is danger of confusion, we separate the entries by commas.)
Furthermore, setting n = 2 and putting the result back into equation (4), we see that
conditions (2) and (4) do agree. Thus, if we let h = x − x0, a real-valued function f of
n variables is differentiable at a point x0 if

limit
h→0

1

‖h‖
∣∣∣∣ f (x0 + h) − f (x0) −

n∑
j=1

∂ f

∂x j
(x0)h j

∣∣∣∣ = 0,

because

Th =
n∑

j=1

h j
∂ f

∂x j
(x0).

For the general case of f mapping a subset of Rn to Rm , the derivative is the m × n
matrix given by

Df (x0) =

⎡
⎢⎢⎢⎢⎢⎣

∂ f1

∂x1
· · · ∂ f1

∂xn
...

...

∂ fm

∂x1
· · · ∂ fm

∂xn

⎤
⎥⎥⎥⎥⎥⎦

,

where ∂ fi/∂x j is evaluated at x0. The matrix Df (x0) is, appropriately, called the matrix
of partial derivatives of f at x0.

example 6 Calculate the matrices of partial derivatives for these functions.

(a) f (x , y) = (ex+y + y, y2x)

(b) f (x , y) = (x2 + cos y, yex )

(c) f (x , y, z) = (zex , −yez)
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s o l u t i o n (a) Here f : R2 → R2 is defined by f1(x , y) = ex+y + y and f2(x , y) = y2x . Hence,
Df (x , y) is the 2 × 2 matrix

Df (x , y) =
[

ex+y ex+y + 1
y2 2xy

]
.

(b) We have

Df (x , y) =
[

2x −sin y
yex ex

]
.

(c) In this case,

Df (x , y, z) =
[

zex 0 ex

0 −ez −yez

]
. ▲

Gradients
For real-valued functions we use special terminology for the derivative.

Definition Gradient Consider the special case f : U ⊂ Rn → R. Here Df (x)
is a 1 × n matrix:

Df (x) =
[

∂ f

∂x1
· · · ∂ f

∂xn

]
.

We can form the corresponding vector (∂ f/∂x1, . . . , ∂ f/∂xn), called the gradient
of f and denoted by ∇ f , or grad f .

From the definition, we see that for f : R3 → R,

∇ f = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k,

while for f : R2 → R,

∇ f = ∂ f

∂x
i + ∂ f

∂y
j.

The geometric significance of the gradient will be discussed in Section 2.6. In terms
of inner products, we can write the derivative of f as

Df (x)(h) = ∇ f (x) · h.

example 7 Let f : R3 → R, f (x , y, z) = xey . Then

∇ f =
(

∂ f

∂x
,
∂ f

∂y
,
∂ f

∂z

)
= (ey , xey , 0).

▲

wujiayao
高亮

wujiayao
高亮

wujiayao
高亮
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example 8 If f : R2 → R is given by (x , y) �→ exy + sin xy, then

∇ f (x , y) = ( yexy + y cos xy)i + (xexy + x cos xy)j
= (exy + cos xy)( yi + xj). ▲

In one-variable calculus it is shown that if f is differentiable, then f is continuous.
We will state in Theorem 8 that this is also true for differentiable functions of several
variables. As we know, there are plenty of functions of one variable that are continuous
but not differentiable, such as f (x) = |x |. Before stating the result, let us give an
example of a function of two variables whose partial derivatives exist at a point, but
which is not continuous at that point.

example 9 Let f : R2 → R be defined by

f (x , y) =
{

1 if x = 0 or if y = 0
0 otherwise.

Because f is constant on the x and y axes, where it equals 1,

∂ f

∂x
(0, 0) = 0 and

∂ f

∂y
(0, 0) = 0.

But f is not continuous at (0, 0), because limit(x , y) → (0,0) f (x , y) does not exist. ▲

Some Basic Theorems
The first of these basic theorems relates differentiability and continuity.

Theorem 8 Let f : U ⊂ Rn → Rm be differentiable at x0 ∈ U . Then f is
continuous at x0.

This result is very reasonable, because “differentiability” means that there is enough
smoothness to have a tangent plane, which is stronger than just being continuous. Consult
the Internet supplement for Chapter 2 for the formal proof.

As we have seen, it is usually easy to tell when the partial derivatives of a function
exist using what we know from one-variable calculus. However, the definition of differ-
entiability looks somewhat complicated, and the required approximation condition in
equation (4) may seem, and sometimes is, difficult to verify. Fortunately, there is a simple
criterion, given in the following theorem, that tells us when a function is differentiable.

Theorem 9 Let f : U ⊂ Rn → Rm . Suppose the partial derivatives ∂ fi/∂x j

of f all exist and are continuous in a neighborhood of a point x ∈ U . Then f is
differentiable at x.
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We give the proof in the Internet supplement for Chapter 2. Notice the following
hierarchy:

� �

Definition
Theorem 9 of derivative

Continuous partials ⇒ Differentiable ⇒ Partials exist

Each converse statement, obtained by reversing an implication, is invalid. [For a coun-
terexample to the converse of the first implication, use f (x) = x2 sin (1/x), f (0) = 0;
for the second, see Example 1 in the Internet supplement for Chapter 2 or use Example 4
in this section.]

A function whose partial derivatives exist and are continuous is said to be of class
C1. Thus, Theorem 9 says that any C1 function is differentiable.

example 10 Let

f (x , y) = cos x + exy

x2 + y2
.

Show that f is differentiable at all points (x , y) �= (0, 0).

solut ion Observe that the partial derivatives

∂ f

∂x
= (x2 + y2)( yexy − sin x) − 2x(cos x + exy)

(x2 + y2)2

∂ f

∂y
= (x2 + y2)xexy − 2y(cos x + exy)

(x2 + y2)2

are continuous except when x = 0 and y = 0 (by the results in Section 2.2). Thus, f is
differentiable by Theorem 9. ▲

In the Internet supplement we show that f (x , y) = xy/
√

x2 + y2 [with f (0, 0) = 0]
is continuous, has partial derivatives at (0, 0), yet is not differentiable there. See Fig-
ure 2.3.4. By Theorem 9, its partial derivatives cannot be continuous at (0, 0).

z

y

x

figure 2.3.4 This function is not differentiable
at (0, 0), because it is “crinkled.”
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exercises

1. Find ∂ f/∂x , ∂ f/∂y if

(a) f (x , y) = xy

(b) f (x , y) = exy

(c) f (x , y) = x cos x cos y

(d) f (x , y) = (x2 + y2) log (x2 + y2)

2. Evaluate the partial derivatives ∂z/∂x , ∂z/∂y for the
given function at the indicated points.

(a) z =
√

a2 − x2 − y2; (0, 0), (a/2, a/2)

(b) z = log
√

1 + xy; (1, 2), (0, 0)

(c) z = eax cos (bx + y); (2π/b, 0)

3. In each case following, find the partial derivatives
∂w/∂x , ∂w/∂y.

(a) w = xex2+ y2

(b) w = x2 + y2

x2 − y2

(c) w = exy log (x2 + y2)

(d) w = x/y

(e) w = cos ( yexy) sin x

4. Decide which of the following functions are C1, which
are just differentiable.

(a) f (x , y) = 2xy

(x2 + y2)2

(b) f (x , y) = x

y
+ y

x

(c) f (r, θ ) = 1
2 r sin 2θ , r > 0

(d) f (x , y) = xy√
x2 + y2

(e) f (x , y) = x2 y

x4 + y2

5. Find the equation of the plane tangent to the surface
z = x2 + y3 at (3, 1, 10).

6. Let f (x , y) = ex+y . Find the equation for the tangent
plane to the graph of f at the point (0, 0).

7. Let f (x , y) = ex−y . Find the equation for the tangent
plane to the graph of f at the point (1, 1).

8. Using the respective functions in Exercise 1, compute
the plane tangent to the graphs at the indicated points.

(a) (0, 0)

(b) (0, 1)

(c) (0, π )

(d) (0, 1)

9. Compute the matrix of partial derivatives of the
following functions:

(a) f : R2 → R2, f (x , y) = (x , y)

(b) f : R2 → R3, f (x , y) = (xey + cos y, x , x + ey)

(c) f : R3 → R2, f (x , y, z) = (x + ez + y, yx2)

(d) f : R2 → R3, f (x , y) = (xyexy , x sin y, 5xy2)

10. Compute the matrix of partial derivatives of

(a) f (x , y) = (ex , sin xy)

(b) f (x , y, z) = (x − y, y + z)

(c) f (x , y) = (x + y, x − y, xy)

(d) f (x , y, z) = (x + z, y − 5z, x − y)

11. Find the equation of the tangent plane to
f (x , y) = x2 − 2xy + 2y2 having slope 2 in the positive
x direction and slope 4 in the positive y direction.

12. Let f (x , y) = e(2x+3y) .

(a) Find the tangent plane to f at (0, 0).

(b) Use this to approximate f (.1, 0) and f (0, .1).

(c) With a calculator, find the exact values of f (.1, 0)
and f (0, .1).

13. Where does the plane tangent to z = ex−y at (1, 1, 1)
meet the z axis?

14. Why should the graphs of f (x , y) = x2 + y2 and
g(x , y) = −x2 − y2 + xy3 be called “tangent” at (0, 0)?

15. Let f (x , y) = exy . Show that x(∂ f/∂x) = y(∂ f/∂y).

16. Use the linear approximation to approximate a suitable
function f (x , y) and thereby estimate the following:

(a) (0.99e0.02)8

(b) (0.99)3 + (2.01)3 − 6(0.99)(2.01)

(c)
√

(4.01)2 + (3.98)2 + (2.02)2

17. Let P be the tangent plane to the graph of
g(x , y) = 8 − 2x2 − 3y2 at the point (1, 2, −6). Let
f (x , y) = 4 − x2 − y2. Find the point on the graph of f
which has tangent plane parallel to P .

18. Let f (x , y) = xey2 − yex2
.

(a) Find the equation for the tangent plane to the graph
of f at (1, 2).



Marsden-3620111 VC September 27, 2011 9:27 116

116 Differentiation

(b) What point on the surface z = x2 − y2 has a
tangent plane parallel to the plane found in part (a)?

19. Compute the gradients of the following functions:

(a) f (x , y, z) = x exp (−x2 − y2 − z2) (Note that
exp u = eu .)

(b) f (x , y, z) = xyz

x2 + y2 + z2

(c) f (x , y, z) = z2ex cos y

20. Compute the tangent plane at (1, 0, 1) for each of the
functions in Exercise 19. [The solution to part (c) only is
in the Study Guide.]

21. Find the equation of the tangent plane to z = x2 + 2y3

at (1, 1, 3).

22. Let

f (x , y) =
{

x2 y4

x4+6y8 if (x , y) �= (0, 0)

0 if (x , y) = (0, 0)

(a) Show that ∂ f
∂x (0, 0) and ∂ f

∂y (0, 0) exist.

(b) Show that f is not differentiable at (0,0) by showing
that f is not continuous at (0,0).

23. Let P be the tangent plane to f (x , y) = x2 y3 at
(1, 2, 8). Let l be the line contained in P which passes
through the point (1, 3, 20) and passes directly above
(2, 1). That is, l contains the point (1, 3, 20) and a point
of the form (2, 1, z). Find a parametrization for l.

24. Calculate ∇h(1, 1, 1) if h(x , y, z) = (x + z)ex−y .

25. Let f (x , y, z) = x2 + y2 − z2. Calculate ∇ f (0, 0, 1).

26. Evaluate the gradient of f (x , y, z) = log (x2 + y2 + z2)
at (1, 0, 1).

27. Describe all Hölder-continuous functions with α > 1
(see Exercise 33, Section 2.2). (HINT: What is the
derivative of such a function?)

28. Suppose f : Rn → Rm is a linear map. What is the
derivative of f ?

2.4 Introduction to Paths and Curves

In this section, we introduce some of the basic geometry and computational methods
for paths in the plane and space. This will be an important ingredient for the chain rule
treated in the next section. We will return to paths with additional topics in Chapter 4.

Paths and Curves
We often think of a curve as a line drawn on paper, such as a straight line, a circle,
or a sine curve. It is useful to think of a curve C mathematically as the set of values
of a function that maps an interval of real numbers into the plane or space. We shall
call such a map a path. We usually denote a path by c. The image C of the path then
corresponds to the curve we see on paper (see Figure 2.4.1). Often we write t for the

figure 2.4.1 The map c is the
path; its image C is the curve we
“see.”

path

curve C image of c

c

b

x

y

z

=

a

( )c

 =

b

a( )c
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independent variable and imagine it to be time, so that c(t) is the position at time t of
a moving particle, which traces out a curve as t varies. We also say c parametrizes C .
Strictly speaking, we should distinguish between c(t) as a point in space and as a vector
based at the origin.

example 1 The straight line L in R3 through the point (x0, y0, z0) in the direction of vector v is the
image of the path

c(t) = (x0, y0, z0) + tv

for t ∈ R (see Figure 2.4.2). Thus, our notion of curve includes straight lines as special
cases.

v

v

c

x

y

t

z

= 0

||

( ) ( x , y0, z0)

0(x , y0, z0)||t

L

+ tv

figure 2.4.2 L is the straight line in space
through (x0, y0, z0) and in direction v; its
equation is c(t) = (x0, y0, z0) + tv.

▲

example 2 The unit circle C : x2 + y2 = 1 in the plane is the image of the path

c : R → R2, c(t) = (cos t , sin t), 0 ≤ t ≤ 2π

(see Figure 2.4.3). The unit circle is also the image of the path c̃(t) = (cos 2t , sin 2t),
0 ≤ t ≤ π . Thus, different paths may parametrize the same curve. ▲sin t

t

t)

cos

c(

t

y

x

figure 2.4.3 c(t) = ( cos t, sin t ) is a
path whose image C is the unit
circle.

Paths and Curves A path in Rn is a map c : [a, b] → Rn; it is a path in the
plane if n = 2 and a path in space if n = 3. The collection C of points c(t) as t
varies in [a, b] is called a curve, and c(a) and c(b) are its endpoints. The path c
is said to parametrize the curve C . We also say c(t) traces out C as t varies.

If c is a path in R3, we can write c(t) = (x(t), y(t), z(t)), and we call x(t), y(t),
and z(t) the component functions of c. We form component functions similarly
in R2 or, generally, in Rn . We also consider paths whose domain is the whole real
line as in the next example.

example 3 The path c(t) = (t , t2) traces out a parabolic arc. This curve coincides with the graph
f (x) = x2 (see Figure 2.4.4).
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c(−1) = (−1, 1) (1, 1) =  c(1)

c(0) = (0, 0)
x

y

y = x 2

figure 2.4.4 The image of c(t) = (t, t2) is the
parabola y = x2.

▲

example 4 A wheel of radius R rolls to the right along a straight line at speed v. Use vector methods
to find the path c(t) of the point on the wheel that initially lies at a distance r below the
center.

solut ion We place the wheel in the xy plane with its center initially at (0, R), so that the position
of the center at time t is given by the path C(t) = (vt , R). (Refer to Figure 2.4.5.)

The position of the point c(t) relative to the center is given by the vector d(t) =
c(t) − C(t) that has the initial value −r j and rotates in the clockwise direction. The
rate of rotation is such that the wheel makes a full rotation after the center has moved
a distance 2πR (equal to the circumference of the wheel). This takes a time 2πR/v, so
the angular velocity dθ/dt of the wheel is v/R. Because the rotation is clockwise, the
vector function d(t) is of the form

d(t) = r

(
cos

[
− v

R
t + θ

]
i + sin

[
− v

R
t + θ

]
j

)

for some initial angle θ . Because d(0) = −r j, we have cos θ = 0 and sin θ = −1, so
θ = −π/2, and hence

d(t) = r

(
cos

[
− v

R
t − π

2

]
i + sin

[
− v

R
t − π

2

]
j

)
.

d(0)
C(0)

c(0)

c(t )1

d(t )1
C(t )1

  C
dt

id =

c 2( )t

2( )tC

2( )td

v

figure 2.4.5 The vector d(t) points from the wheel's center, C(t), to the position c(t) of a point
on the wheel and rotates in the clockwise direction while the wheel moves to the right.
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y

x

c(t ) = ( t − sin t, 1 − cos t )

2p

figure 2.4.6 The curve traced by a point moving on the rim of
a rolling circle is called a cycloid.

Using cos (ϕ−π/2) = sin ϕ and sin (ϕ−π/2) = − cos ϕ, along with cos (−ϕ) = cos ϕ

and sin (−ϕ) = −sin ϕ, we get

d(t) = r

(
−sin

vt

R
i − cos

vt

R
j

)
.

Finally, the path c(t) is given by adding the components of the vector function d(t) to
the coordinates of the path C(t); the result is

c(t) =
(

vt − r sin
vt

R
, R − r cos

vt

R

)
.

In the special case v = R = r = 1, we get c(t) = (t − sin t , 1 − cos t). The image
curve C of this path c is shown in Figure 2.4.6; it is called a cycloid. ▲

5

7.5

2.5

2.5 5 7.52.5−7.5− −5
2.5−

−5

7.5−

figure 2.4.7 An example of a
hypocycloid.

The preceding example considered the path of a point not necessarily on the rim of a
wheel rolling along a straight line. When the wheel rolls on a circle, the resulting curve
is called an epicycle. These are the epicycles discussed in the Ptolemaic theory in the
introduction. If the wheel is outside the circle and the point is on the rim, the curve is
called an epicycloid, and when the wheel is inside the circle, it is a hypocycloid. An
example of the latter is shown in Figure 2.4.7.

The French mathematician Blaise Pascal studied the cycloid in 1649 as a
way of distracting himself at a time when he was suffering from a painful
toothache. When the pain disappeared, he took it as a sign that God was
not displeased with his thoughts. Pascal’s results stimulated other mathematicians
to investigate this curve, and subsequently numerous remarkable properties
were found. One of these was discovered by the Dutchman Christian Huygens,
who used it in the construction of a “perfect” pendulum clock.

Historical Note

Velocity and Tangents to Paths
If we think of c(t) as the curve traced out by a particle and t as time, it is reasonable to
define the velocity vector as follows.
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Definition Velocity Vector If c is a path and it is differentiable, we say c is a
differentiable path. The velocity of c at time t is defined by3

c′(t) = lim
h→0

c(t + h) − c(t)

h
.

We normally draw the vector c′(t) with its tail at the point c(t). The speed of
the path c(t) is s = ‖c′(t)‖, the length of the velocity vector. If c(t) = (x(t), y(t))
in R2, then

c′(t) = (x ′(t), y′(t)) = x ′(t)i + y′(t)j

and if c(t) = (x(t), y(t), z(t)) in R3, then

c′(t) = (x ′(t), y′(t), z′(t)) = x ′(t)i + y′(t)j + z′(t)k.

Here, x ′(t) is the one-variable derivative dx/dt . If we accept limits of vectors interpreted
componentwise, the formulas for the velocity vector follow from the definition of the
derivative. However, the limit can be interpreted in the sense of vectors as well. In
Figure 2.4.8, we see that [c(t + h) − c(t)]/h approaches the tangent to the path as
h → 0.

Tangent Vector The velocity c′(t) is a vector tangent to the path c(t) at time
t . If C is a curve traced out by c and if c′(t) is not equal to 0, then c′(t) is a vector
tangent to the curve C at the point c(t).

figure 2.4.8 The vector c'(t) is
tangent to the path c(t).

C

z

y

x

c' (t)

c(t + h) − c(t)

c(t)
c(t + h)

3If t lies at the endpoint of an interval, we should, as in one-variable calculus, take right- or left-handed
limits.

wujiayao
高亮
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If we think of the derivative Dc(t) as a matrix, it will be a column vector with the
entries x ′(t), y′(t), and z′(t). Thus, the derivative here is consistent with our earlier
notion.

example 5 Compute the tangent vector to the path c(t) = (t , t2, et ) at t = 0.

solut ion Here c′(t) = (1, 2t , et ), and so at t = 0 we obtain the tangent vector (1, 0, 1). ▲

example 6 Describe the path c(t) = (cos t , sin t , t). Find the velocity vector at the point on the
image curve where t = π/2.

solut ion For a given t , the point (cos t , sin t , 0) lies on the circle x2 + y2 = 1 in the xy plane.
Therefore, the point (cos t , sin t , t) lies t units above the point (cos t , sin t , 0) if t is
positive and −t units below (cos t , sin t , 0) if t is negative. As t increases, (cos t , sin t , t)
wraps around the cylinder x2 + y2 = 1 with the z coordinate increasing. The curve this
traces out is called a helix, which is depicted in Figure 2.4.9. At t = π/2, c′(π/2) =
(−sin π/2, cos π/2, 1) = (−1, 0, 1) = −i + k.

x2 + y2 = 1

(cos t, sin t, 0)

(cos t, sin t, t)

c´(π/2) = −j + k

z

x

y

figure 2.4.9 The helix c(t) = ( cos t, sin t, t) wraps
around the cylinder x2 + y2 = 1.

▲

example 7 The cycloidal path of a particle on the edge of a wheel of radius R with speed v is given
by c(t) = (vt − R sin (vt/R), R − R cos (vt/R)). (See Example 4.) Find the velocity
c′(t) of the particle as a function of t . When is the velocity zero? Is the velocity vector
ever vertical?

solut ion To find the velocity, we differentiate:

c′(t) =
(

d

dt

(
vt − R sin

vt

R

)
,

d

dt

(
R − R cos

vt

R

))

=
(

v − v cos
vt

R
, v sin

vt

R

)
.

In vector notation, c′(t) = (v − v cos (vt/R))i + (v sin (vt/R))j. The component in the
direction of i is v(1−cos (vt/R)), which is zero whenever vt/R is an integer multiple of
2π . For such values of t , sin (vt/R) is zero as well, so the only times at which the velocity
is zero are when t = 2πn R/v for some integer n. At such times, c(t) = (2πn R, 0),
so the moving point is touching the ground. These moments occur at time intervals of
2πR/v (more frequently for small wheels, as well as for rapidly rolling ones).

The velocity vector is never vertical, because the horizontal component vanishes
only when the vertical one does as well. ▲
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x

y

figure 2.4.10 Velocity vectors for the
curve traced out by a point on the rim of
a rolling wheel.

Figure 2.4.10 shows some velocity vectors superimposed on the cycloidal path of
Figure 2.4.6.

Tangent Line
The tangent line to a path at a point is the line through the point in the direction
of the tangent vector. Using the point-direction form of the equation of a line, we obtain
the parametric equation for the tangent line.

Tangent Line to a Path If c(t) is a path, and if c′(t0) �= 0, the equation of its
tangent line at the point c(t0) is

l(t) = c(t0) + (t − t0)c′(t0).

If C is the curve traced out by c, then the line traced out by l is the tangent line to
the curve C at c(t0).

Notice that we have written the equation in such a way that l goes through the point
c(t0) at t = t0 (rather than t = 0). See Figure 2.4.11.

example 8 A path in R3 goes through the point (3, 6, 5) at t = 0 with tangent vector i − j. Find the
equation of the tangent line.

solut ion The equation of the tangent line is

l(t) = (3, 6, 5) + t (i − j) = (3, 6, 5) + t (1, −1, 0) = (3 + t , 6 − t , 5).

In (x , y, z) coordinates, the tangent line is x = 3 + t , y = 6 − t , z = 5. ▲

Physically, we can interpret motion along the tangent line as the path that a particle
on a curve would follow if it were set free at a certain moment.

l

c

c

t

t

t

( )

0

0

)( )(

)( t

l figure 2.4.11 The tangent line to a path.
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example 9 Suppose that a particle follows the path c(t) = (et , e−t , cos t) until it flies off on a
tangent at t = 1. Where is it at t = 3?

solut ion The velocity vector is (et , −e−t , −sin t), which at t = 1 is the vector (e, −1/e, −sin 1).
The particle is at (e, 1/e, cos 1) at t = 1. The equation of the tangent line is l(t) =
(e, 1/e, cos 1) + (t − 1)(e, −1/e, −sin 1). At t = 3, the position on this line is

l(3) =
(

e,
1

e
, cos 1

)
+ 2

(
e, −1

e
, −sin 1

)
=

(
3e, −1

e
, cos 1 − 2 sin 1

)

∼= (8.155, −0.368, −1.143). ▲

exercises

Sketch the curves that are the images of the paths in Exercises 1 to 4.

1. x = sin t , y = 4 cos t , where 0 ≤ t ≤ 2π

2. x = 2 sin t , y = 4 cos t , where 0 ≤ t ≤ 2π

3. c(t) = (2t − 1, t + 2, t)

4. c(t) = (−t , 2t , 1/t), where 1 ≤ t ≤ 3

5. Consider the circle C of radius 2, centered at the origin.

(a) Find a parametrization for C inducing a
counterclockwise orientation and starting at
(2, 0).

(b) Find a parametrization for C inducing a clockwise
orientation and starting at (0, 2).

(c) Find a parametrization for C if it is now centered at
the point (4, 7).

6. Give a parametrization for each of the following curves:

(a) The line passing through (1, 2, 3) and (−2, 0, 7)

(b) The graph of f (x) = x2

(c) The square with vertices (0, 0), (0, 1), (1, 1), and
(1, 0) (Break it up into line segments.)

(d) The ellipse given by x2

9 + y2

25 = 1

In Exercises 7 to 10, determine the velocity vector of the given path.

7. c(t) = 6t i + 3t2j + t3k

8. c(t) = (sin 3t)i + (cos 3t)j + 2t3/2k

9. r(t) = (cos2 t , 3t − t3, t)

10. r(t) = (4e′, 6t4, cos t)

In Exercises 11 to 14, compute the tangent vectors to the given path.

11. c(t) = (et , cos t)

12. c(t) = (3t2, t3)

13. c(t) = (t sin t , 4t)

14. c(t) = (t2, e2)

15. When is the velocity vector of a point on the rim of a
rolling wheel horizontal? What is the speed at this
point?

16. If the position of a particle in space is (6t , 3t2, t3) at
time t , what is its velocity vector at t = 0?

In Exercises 17 and 18, determine the equation of the tangent line to the given path at the specified value of t .

17. (sin 3t , cos 3t , 2t5/2); t = 1 18. (cos2 t , 3t − t3, t); t = 0
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In Exercises 19 to 22, suppose that a particle following the given path c(t) flies off on a tangent at t = t0. Compute the
position of the particle at the given time t1.

19. c(t) = (t2, t3 − 4t , 0), where t0 = 2, t1 = 3

20. c(t) = (et , e−t , cos t), where t0 = 1, t1 = 2

21. c(t) = (4et , 6t4, cos t), where t0 = 0, t1 = 1

22. c(t) = (sin et , t , 4 − t3), where t0 = 1, t1 = 2

23. The position vector for a particle moving on a helix is
c(t) = (cos(t), sin(t), t2).

(a) Find the speed of the particle at time t0 = 4π .

(b) Is c′(t) ever orthogonal to c(t)?

(c) Find a parametrization for the tangent line to c(t) at
t0 = 4π .

(d) Where will this line intersect the xy plane?

24. Consider the spiral given by c(t) = (et cos(t), et sin(t)).
Show that the angle between c and c′ is constant.

25. Let c(t) = (t3, t2, 2t) and
f (x , y, z) = (x2 − y2, 2xy, z2).

(a) Find ( f ◦ c)(t).

(b) Find a parametrization for the tangent line to the
curve f ◦ c at t = 1.

2.5 Properties of the Derivative

In elementary calculus, we learn how to differentiate sums, products, quotients, and
composite functions. We now generalize these ideas to functions of several variables,
paying particular attention to the differentiation of composite functions. The rule for
differentiating composites, called the chain rule, takes on a more profound form for
functions of several variables than for those of one variable.

If f is a real-valued function of one variable, written as z = f ( y), and y is a function
of x , written y = g(x), then z becomes a function of x through substitution, namely,
z = f (g(x)), and we have the familiar chain rule:

dz

dx
= dz

dy

dy

dx
= f ′(g(x))g′(x).

If f is a real-valued function of three variables u, v, and w , written in the form z =
f (u, v, w), and the variables u, v, w are each functions of x , u = g(x), v = h(x), and
w = k(x), then by substituting g(x), h(x), and k(x) for u, v, and w , we obtain z as a
function of x : z = f (g(x), h(x), k(x)). The chain rule in this case reads:

dz

dx
= ∂z

∂u

du

dx
+ ∂z

∂v

dv

dx
+ ∂z

∂w

dw

dx
.

One of the goals of this section is to explain such formulas in detail.

Sums, Products, Quotients
These rules work just as they do in one-variable calculus.

wujiayao
高亮
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Theorem 10 Sums, Products, Quotients

(i) Constant Multiple Rule. Let f : U ⊂ Rn → Rm be differentiable at x0 and
let c be a real number. Then h(x) = c f (x) is differentiable at x0 and

Dh(x0) = cDf (x0) (equality of matrices).

(ii) Sum Rule. Let f : U ⊂ Rn → Rm and g: U ⊂ Rn → Rm be differentiable
at x0. Then h(x) = f (x) + g(x) is differentiable at x0 and

Dh(x0) = Df (x0) + Dg(x0) (sum of matrices).

(iii) Product Rule. Let f : U ⊂ Rn → R and g: U ⊂ Rn → R be differentiable
at x0 and let h(x) = g(x) f (x). Then h: U ⊂ Rn → R is differentiable at x0

and

Dh(x0) = g(x0)Df (x0) + f (x0)Dg(x0).

(Note that each side of this equation is a 1×n matrix; a more general product
rule is presented in Exercise 31 at the end of this section.)

(iv) Quotient Rule. With the same hypotheses as in rule (iii), let h(x) = f (x)/g(x)
and suppose g is never zero on U . Then h is differentiable at x0 and

Dh(x0) = g(x0)Df (x0) − f (x0)Dg(x0)

[g(x0)]2
.

proof The proofs of rules (i) through (iv) proceed almost exactly as in the one-
variable case, with a slight difference in notation. We shall prove rules (i) and (ii),
leaving the proofs of rules (iii) and (iv) as Exercise 27.

(i) To show that Dh(x0) = cDf (x0), we must show that

limit
x→x0

‖h(x) − h(x0) − cDf (x0)(x − x0)‖
‖x − x0‖ = 0,

that is, that

limit
x→x0

‖c f (x) − c f (x0) − cDf (x0)(x − x0)‖
‖x − x0‖ = 0,

[see equation (4) of Section 2.3]. This is certainly true, since f is differentiable and
the constant c can be factored out [see Theorem 3(i), Section 2.2].
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(ii) By the triangle inequality, we may write

‖h(x) − h(x0) − [Df (x0) + Dg(x0)](x − x0)‖
‖x − x0‖

= ‖ f (x) − f (x0) − [Df (x0)](x − x0) + g(x) − g(x0) − [Dg(x0)](x − x0)‖
‖x − x0‖

≤ ‖ f (x) − f (x0) − [Df (x0)](x − x0)‖
‖x − x0‖ + ‖g(x) − g(x0) − [Dg(x0)](x − x0)‖

‖x − x0‖ ,

and each term approaches 0 as x → x0. Hence, rule (ii) holds. ■

example 1 Verify the formula for Dh in rule (iv) of Theorem 10 with

f (x , y, z) = x2 + y2 + z2 and g(x , y, z) = x2 + 1.

solut ion Here

h(x , y, z) = x2 + y2 + z2

x2 + 1
,

so that by direct differentiation

Dh(x , y, z) =
[
∂h

∂x
,
∂h

∂y
,
∂h

∂z

]
=

[
(x2 + 1)2x − (x2 + y2 + z2)2x

(x2 + 1)2
,

2y

x2 + 1
,

2z

x2 + 1

]

=
[

2x(1 − y2 − z2)

(x2 + 1)2
,

2y

x2 + 1
,

2z

x2 + 1

]
.

By rule (iv), we get

Dh = gDf − f Dg

g2
= (x2 + 1)[2x , 2y, 2z] − (x2 + y2 + z2)[2x , 0, 0]

(x2 + 1)2
,

which is the same as what we obtained directly. ▲

Chain Rule
As we mentioned earlier, it is in the differentiation of composite functions that we meet
apparently substantial alterations of the formula from one-variable calculus. However, if
we use the D notation, that is, matrix notation for derivatives, the chain rule for functions
of several variables looks similar to the one-variable rule.

Theorem 11 Chain Rule Let U ⊂ Rn and V ⊂ Rm be open sets. Let g: U ⊂
Rn → Rm and f : V ⊂ Rm → Rp be given functions such that g maps U into V ,
so that f ◦ g is defined. Suppose g is differentiable at x0 and f is differentiable at
y0 = g(x0). Then f ◦ g is differentiable at x0 and

D( f ◦ g)(x0) = Df (y0)Dg(x0). (1)

The right-hand side is the matrix product of D f (y0) with Dg(x0).

wujiayao
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We shall now give a proof of the chain rule under the additional assumption that the
partial derivatives of f are continuous, building up to the general case by developing
two special cases that are themselves important. (The complete proof of Theorem 11
without the additional assumption of continuity is given in the Internet supplement for
Chapter 2.)

First Special Case of the Chain Rule
Suppose c: R → R3 is a differentiable path and f : R3 → R. Let h(t) = f (c(t)) =
f (x(t), y(t), z(t)), where c(t) = (x(t), y(t), z(t)). Then

dh

dt
= ∂ f

∂x

dx

dt
+ ∂ f

∂y

dy

dt
+ ∂ f

∂z

dz

dt
. (2)

That is,

dh

dt
= ∇ f (c(t)) · c′(t),

where c′(t) = (x ′(t), y′(t), z′(t)).
This is the special case of Theorem 11 in which we take c = g and f to be real-valued,

and m = 3. Notice that

∇ f (c(t)) · c′(t) = Df (c(t))Dc(t),

where the product on the left-hand side is the dot product of vectors, while the product
on the right-hand side is matrix multiplication, and where we regard Df (c(t)) as a row
matrix and Dc(t) as a column matrix. The vectors ∇ f (c(t)) and c′(t) have the same
components as their matrix equivalents; the notational change indicates the switch from
matrices to vectors.

proof of equation (2) By definition,

dh

dt
(t0) = limit

t→t0

h(t) − h(t0)

t − t0
.

Adding and subtracting two terms, we write

h(t) − h(t0)

t − t0
= f (x(t), y(t), z(t)) − f (x(t0), y(t0), z(t0))

t − t0

= f (x(t), y(t), z(t)) − f (x(t0), y(t), z(t))

t − t0

+ f (x(t0), y(t), z(t)) − f (x(t0), y(t0), z(t))

t − t0

+ f (x(t0), y(t0), z(t)) − f (x(t0), y(t0), z(t0))

t − t0
.

Now we invoke the mean-value theorem from one-variable calculus, which states: If
g: [a, b] → R is continuous and is differentiable on the open interval (a, b), then there
is a point c in (a, b) such that g(b) − g(a) = g′(c)(b − a). Applying this to f as a
function of x , we can assert that for some c between x and x0,

f (x , y, z) − f (x0, y, z) =
[
∂ f

∂x
(c, y, z)

]
(x − x0).
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In this way, we find that

h(t) − h(t0)

t − t0
=

[
∂ f

∂x
(c, y(t), z(t))

]
x(t) − x(t0)

t − t0
+

[
∂ f

∂y
(x(t0), d, z(t))

]
y(t) − y(t0)

t − t0

+
[
∂ f

∂z
(x(t0), y(t0), e)

]
z(t) − z(t0)

t − t0
,

where c, d , and e lie between x(t) and x(t0), between y(t) and y(t0), and between z(t)
and z(t0), respectively. Taking the limit t → t0, using the continuity of the partials
∂ f/∂x , ∂ f/∂y, ∂ f/∂z, and the fact that c, d, and e converge to x(t0), y(t0), and z(t0),
respectively, we obtain formula (2). ■

Second Special Case of the Chain Rule
Let f : R3 → R and let g: R3 → R3. Write

g(x , y, z) = (u(x , y, z), v(x , y, z), w(x , y, z))

and define h: R3 → R by setting

h(x , y, z) = f (u(x , y, z), v(x , y, z), w(x , y, z)).

In this case, the chain rule states that

[
∂h

∂x

∂h

∂y

∂h

∂z

]
=

[
∂ f

∂u

∂ f

∂v

∂ f

∂w

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂u

∂x

∂u

∂y

∂u

∂z
∂v

∂x

∂v

∂y

∂v

∂z
∂w

∂x

∂w

∂y

∂w

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

In this special case, we have taken n = m = 3 and p = 1 for concreteness,
and U = R3 and V = R3 for simplicity, and have written out the matrix product
[Df (y0)][Dg(x0)] explicitly (with the arguments x0 and y0 suppressed in the matrices).

proof of the second special case of the chain rule By definition, ∂h/∂x
is obtained by differentiating h with respect to x , holding y and z fixed. But then
(u(x , y, z), v(x , y, z), w(x , y, z)) may be regarded as a vector function of the single
variable x . The first special case applies to this situation and, after the variables are
renamed, gives

∂h

∂x
= ∂ f

∂u

∂u

∂x
+ ∂ f

∂v

∂v

∂x
+ ∂ f

∂w

∂w

∂x
. (3′)

Similarly,

∂h

∂y
= ∂ f

∂u

∂u

∂y
+ ∂ f

∂v

∂v

∂y
+ ∂ f

∂w

∂w

∂y
(3′′)

and

∂h

∂z
= ∂ f

∂u

∂u

∂z
+ ∂ f

∂v

∂v

∂z
+ ∂ f

∂w

∂w

∂z
. (3′′′)
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In actual calculations, at the last step, we usually express ∂ f
∂u , ∂ f

∂v
, and ∂ f

∂w in terms of
x , y, z. These equations are exactly what would be obtained by multiplying out the
matrices in equation (3). ■

proof of theorem 11 The general case in equation (1) may be proved in two steps.
First, equation (2) is generalized to m variables; that is, for f (x1, . . . , xm) and c(t) =
(x1(t), . . . , xm(t)), we have

dh

dt
=

m∑
i=1

∂ f

∂xi

dxi

dt
,

where h(t) = f (x1(t), . . . , xm(t)). Second, the result obtained in the first step is used
to obtain the formula

∂h j

∂xi
=

m∑
k=1

∂ f j

∂yk

∂yk

∂xi
,

where f = ( f1, . . . , f p) is a vector function of arguments y1, . . . , ym ; g(x1, . . . , xn) =
( y1(x1, . . . , xn), . . . , ym(x1, . . . , xn)); and h j (x1, . . . , xn) = f j ( y1(x1, . . . , xn), . . . ,
ym(x1, . . . , xn)). (Using the letter y for both functions and arguments is an abuse of
notation, but it can help us remember the formula.) This formula is equivalent to formula
(1) after the matrices are multiplied out. ■

The pattern of the chain rule will become clear once you have worked some additional
examples. For instance,

∂

∂x
f (u(x , y), v(x , y), w(x , y), z(x , y)) = ∂ f

∂u

∂u

∂x
+ ∂ f

∂v

∂v

∂x
+ ∂ f

∂w

∂w

∂x
+ ∂ f

∂z

∂z

∂x
,

with a similar formula for ∂ f/∂y.
The chain rule can help us understand the relationship between the geometry of

a mapping f : R2 → R2 and the geometry of curves in R2. (Similar statements may
be made about R3 or, generally, Rn .) If c(t) is a path in the plane, then as we saw in
Section 2.4, c′(t) represents the tangent (or velocity) vector of the path c(t), and this
tangent (or velocity) vector is thought of as beginning at c(t). Now let p(t) = f (c(t)),
where f : R2 → R2. The path p represents the image of the path c(t) under the mapping
f . The tangent vector to p is given by the chain rule:

matrix column
vector

multiplication

tD c c'f�

((( t

((t

((

matrix

.(p'

In other words, the derivative matrix of f maps the tangent (or velocity) vector of
a path c to the tangent (or velocity) vector of the corresponding image path p (see
Figure 2.5.1). Thus, points are mapped by f , while tangent vectors to curves are
mapped by the derivative of f , evaluated at the base point of the tangent vector in
the domain.
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figure 2.5.1 Tangent vectors are
mapped by the derivative
matrix.

Df(c(t)) m
aps vectors

f maps points

The path c(t)

c(t)

Df(c(t))c'(t) p'(t) = 

f(c(t))p(t) =

p(t) is the image of c(t) under f

x

y

x

y

c'(t)

example 2 Verify the chain rule in the form of formula (3′) for

f (u, v, w) = u2 + v2 − w ,

where

u(x , y, z) = x2 y, v(x , y, z) = y2, w(x , y, z) = e−xz.

solut ion Here

h(x , y, z) = f (u(x , y, z), v(x , y, z), w(x , y, z))

= (x2 y)2 + y4 − e−xz = x4 y2 + y4 − e−xz.

Thus, differentiating directly,

∂h

∂x
= 4x3 y2 + ze−xz.

On the other hand, using the chain rule,

∂h

∂x
= ∂ f

∂u

∂u

∂x
+ ∂ f

∂v

∂v

∂x
+ ∂ f

∂w

∂w

∂x
= 2u(2xy) + 2v · 0 + (−1)(−ze−xz)

= (2x2 y)(2xy) + ze−xz ,

which is the same as the preceding equation. ▲

example 3 Given g(x , y) = (x2 + 1, y2) and f (u, v) = (u + v, u, v2), compute the derivative of
f ◦ g at the point (x , y) = (1, 1) using the chain rule.

solut ion The matrices of partial derivatives are

Df (u, v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1

∂u

∂ f1

∂v

∂ f2

∂u

∂ f2

∂v

∂ f3

∂u

∂ f3

∂v

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣1 1

1 0
0 2v

⎤
⎦ and Dg(x , y) =

[
2x 0
0 2y

]
.
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When (x , y) = (1, 1), note that g(x , y) = (u, v) = (2, 1). Hence,

D( f ◦ g)(1, 1) = Df (2, 1)Dg(1, 1) =
⎡
⎣1 1

1 0
0 2

⎤
⎦

[
2 0
0 2

]
=

⎡
⎣2 2

2 0
0 4

⎤
⎦

is the required derivative. ▲

example 4 Let f (x , y) be given and make the substitution x = r cos θ , y = r sin θ (polar
coordinates). Write a formula for ∂ f/∂θ .

solut ion By the chain rule,

∂ f

∂θ
= ∂ f

∂x

∂x

∂θ
+ ∂ f

∂y

∂y

∂θ
,

that is,

∂ f

∂θ
= −r sin θ

∂ f

∂x
+ r cos θ

∂ f

∂y
.

▲

example 5 Let f (x , y) = (cos y + x2, ex+y) and g(u, v) = (eu2
, u − sin v). (a) Write a formula

for f ◦ g. (b) Calculate D( f ◦ g)(0, 0) using the chain rule.

solut ion (a) We have

( f ◦ g)(u, v) = f (eu2
, u − sin v)

= (
cos (u − sin v) + e2u2

, eeu2 + u−sin v
)
.

(b) By the chain rule,

D( f ◦ g)(0, 0) = [Df (g(0, 0))][Dg(0, 0)] = [Df (1, 0)][Dg(0, 0)].

Now

Dg(0, 0) =
[

2ueu2
0

1 −cos v

]
(u,v)=(0,0)

=
[

0 0
1 −1

]

and

Df (1, 0) =
[

2x −sin y
ex+y ex+y

]
(x , y)=(1,0)

=
[

2 0
e e

]
.

[Remember that Df is evaluated at g(0, 0), not at (0, 0)!]. Thus,

D( f ◦ g)(0, 0) =
[

2 0
e e

] [
0 0
1 −1

]
=

[
0 0
e −e

]
.

▲

example 6 Let f : U ⊂ Rn → Rm be differentiable, with f = ( f1, . . . , fm), and let g(x) =
sin [ f (x) · f (x)]. Compute Dg(x).
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s o l u t i o n By the chain rule, Dg(x) = cos [ f (x) · f (x)]Dh(x), where h(x) = [ f (x) · f (x)] =
f 2
1 (x) + · · · + f 2

m(x). Then

Dh(x) =
[

∂h

∂x1
· · · ∂h

∂xn

]

=
[

2f1
∂ f1

∂x1
+ · · · + 2fm

∂ fm

∂x1
· · · 2f1

∂ f1

∂xn
+ · · · + 2fm

∂ fm

∂xn

]
,

which can be written 2 f (x)Df (x), where we regard f as a row matrix,

f = [ f1 · · · fm] and Df =

⎡
⎢⎢⎢⎢⎢⎣

∂ f1

∂x1
· · · ∂ f1

∂xn
...

...
∂ fm

∂x1
· · · ∂ fm

∂xn

⎤
⎥⎥⎥⎥⎥⎦

.

Thus, Dg(x) = 2[cos ( f (x) · f (x))] f (x)Df (x). ▲

exercises

1. If f : U ⊂ Rn → R is differentiable, prove that
x �→ f 2(x) + 2 f (x) is differentiable as well, and
compute its derivative in terms of Df (x).

2. Prove that the following functions are differentiable, and
find their derivatives at an arbitrary point:

(a) f : R2 → R, (x , y) �→ 2

(b) f : R2 → R, (x , y) �→ x + y

(c) f : R2 → R, (x , y) �→ 2 + x + y

(d) f : R2 → R, (x , y) �→ x2 + y2

(e) f : R2 → R, (x , y) �→ exy

(f ) f : U → R, (x , y) �→
√

1 − x2 − y2, where
U = {(x , y) | x2 + y2 < 1}

(g) f : R2 → R, (x , y) �→ x4 − y4

3. Verify the first special case of the chain rule for the
composition f ◦ c in each of the cases:

(a) f (x , y) = xy, c(t) = (et , cos t)

(b) f (x , y) = exy , c(t) = (3t2, t3)

(c) f (x , y) = (x2 + y2) log
√

x2 + y2, c(t) =
(et , e−t )

(d) f (x , y) = x exp(x2 + y2), c(t) = (t , −t)

4. What is the velocity vector for each path c(t) in
Exercise 3? [The solution to part (b) only is in the Study
Guide to this text.]

5. Let f : R3 → R and g: R3 → R be differentiable. Prove
that

∇( f g) = f ∇g + g∇ f.

6. Let f : R3 → R be differentiable. Making the
substitution

x = ρ cos θ sin φ , y = ρ sin θ sin φ , z = ρ cos φ

(spherical coordinates) into f (x , y, z), compute
∂ f/∂ρ , ∂ f/∂θ , and ∂ f/∂φ in terms of
∂ f/∂x , ∂ f/∂y, and ∂ f/∂z.

7. Let f (u, v) = (tan (u − 1) − ev , u2 − v2) and
g(x , y) = (ex−y , x − y). Calculate f ◦ g and
D( f ◦ g)(1, 1).

8. Let f (u, v, w) = (eu−w , cos (v + u) +
sin (u + v + w)) and g(x , y) = (ex , cos ( y − x), e−y).
Calculate f ◦ g and D( f ◦ g)(0, 0).

9. Find (∂/∂s)( f ◦ T )(1, 0), where f (u, v) = cos u sin v

and T : R2 → R2 is defined by
T (s, t) = (cos (t2s), log

√
1 + s2).

10. Suppose that the temperature at the point (x , y, z) in
space is T (x , y, z) = x2 + y2 + z2. Let a particle follow
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the right-circular helix σ (t) = (cos t , sin t , t) and let
T (t) be its temperature at time t .

(a) What is T ′(t)?
(b) Find an approximate value for the temperature at

t = (π/2) + 0.01.

11. Let f (x , y, z) = (3y + 2, x2 + y2, x + z2). Let
c(t) = (cos(t), sin(t), t).

(a) Find the path p = f ◦ c and the velocity vector
p′(π ).

(b) Find c(π ), c′(π ) and D f (−1, 0, π ).

(c) Thinking of D f (−1, 0, π ) as a linear map, find
D f (−1, 0, π ) (c′(π )).

12. Let h: R3 → R5 and g: R2 → R3 be given by
h(x , y, z) = (xyz, exz , x sin(y), −9

x , 17) and
g(u, v) = (v2 + 2u, π, 2

√
u). Find D(h ◦ g)(1, 1).

13. Suppose that a duck is swimming in the circle
x = cos t , y = sin t and that the water temperature is
given by the formula T = x2ey − xy3. Find dT/dt , the
rate of change in temperature the duck might feel: (a) by
the chain rule; (b) by expressing T in terms of t and
differentiating.

14. Let f : Rn → Rm be a linear mapping so that (by
Exercise 28, Section 2.3) Df (x) is the matrix of f .
Check the validity of the chain rule directly for linear
mappings.

15. Let f : R2 → R2; (x , y) �→ (ex+y , ex−y). Let c(t) be a
path with c(0) = (0, 0) and c′(0) = (1, 1). What is the
tangent vector to the image of c(t) under f at t = 0?

16. Let f (x , y) = 1/
√

x2 + y2. Compute ∇ f (x , y).

17. Write out the chain rule for each of the following
functions and justify your answer in each case using
Theorem 11.

(a) ∂h/∂x , where h(x , y) = f (x , u(x , y))

(b) dh/dx , where h(x) = f (x , u(x), v(x))

(c) ∂h/∂x , where h(x , y, z) = f (u(x , y, z),
v(x , y), w(x))

18. Verify the chain rule for ∂h/∂x , where
h(x , y) = f (u(x , y), v(x , y)) and

f (u, v) = u2 + v2

u2 − v2 , u(x , y) = e−x−y , v(x , y) = exy .

19. (a) Let y(x) be defined implicitly by G(x , y(x)) = 0,
where G is a given function of two variables. Prove
that if y(x) and G are differentiable, then

dy

dx
= −∂G/∂x

∂G/∂y
if

∂G

∂y
�= 0.

(b) Obtain a formula analogous to that in part (a) if
y1, y2 are defined implicitly by

G1(x , y1(x), y2(x)) = 0,
G2(x , y1(x), y2(x)) = 0.

(c) Let y be defined implicitly by

x2 + y3 + ey = 0.

Compute dy/dx in terms of x and y.

20. Thermodynamics texts4 use the relationship

(
∂y

∂x

)(
∂z

∂y

)(
∂x

∂z

)
= −1.

Explain the meaning of this equation and prove that it is
true. [HINT: Start with a relationship F(x , y, z) = 0 that
defines x = f ( y, z), y = g(x , z), and z = h(x , y) and
differentiate implicitly.]

21. Dieterici’s equation of state for a gas is

P(V − b)ea/RV T = RT ,

where a, b, and R are constants. Regard volume V as a
function of temperature T and pressure P and prove that

∂V

∂T
=

(
R + a

T V

)/( RT

V − b
− a

V 2

)
.

22. This exercise gives another example of the fact that the
chain rule is not applicable if f is not differentiable.
Consider the function

f (x , y) =

⎧⎨
⎩

xy2

x2 + y2 (x , y) �= (0, 0)

0 (x , y) = (0, 0).

4See S. M. Binder, “Mathematical Methods in Elementary Thermodynamics,” J. Chem. Educ., 43 (1966): 85–92. A proper understanding of
partial differentiation can be of significant use in applications; for example, see M. Feinberg, “Constitutive Equation for Ideal Gas Mixtures and
Ideal Solutions as Consequences of Simple Postulates,” Chem. Eng. Sci., 32 (1977): 75–78.
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Show that

(a) ∂ f/∂x and ∂ f/∂y exist at (0, 0).

(b) If g(t) = (at , bt) for constants a and b, then f ◦ g
is differentiable and ( f ◦ g)′(0) =
ab2/(a2 + b2), but ∇ f (0, 0) · g′(0) = 0.

23. Prove that if f : U ⊂ Rn → R is differentiable at
x0 ∈ U , there is a neighborhood V of 0 ∈ Rn and a
function R1: V → R such that for all h ∈ V , we have
x0 + h ∈ U ,

f (x0 + h) = f (x0) + [Df (x0)]h + R1(h)

and

R1(h)

‖h‖ → 0 as h → 0.

24. Suppose x0 ∈ Rn and 0 ≤ r1 < r2. Show that there is a
C1 function f : Rn → R such that f (x) = 0 for
‖x − x0‖ ≥ r2; 0 < f (x) < 1 for r1 < ‖x − x0‖ < r2;
and f (x) = 1 for ‖x − x0‖ ≤ r1. [HINT: Apply a cubic
polynomial with g(r2

1 ) = 1 and g(r2
2 ) = g′(r2

2 ) =
g′(r2

1 ) = 0 to ‖x − x0‖2 when r1 < ‖x − x0‖ < r2.]

25. Find a C1 mapping f : R3 → R3 that takes the vector
i + j + k emanating from the origin to i − j emanating
from (1, 1, 0) and takes k emanating from (1, 1, 0) to
k − i emanating from the origin.

26. What is wrong with the following argument? Suppose
w = f (x , y, z) and z = g(x , y). By the chain rule,

∂w

∂x
= ∂w

∂x

∂x

∂x
+ ∂w

∂y

∂y

∂x
+ ∂w

∂z

∂z

∂x
= ∂w

∂x
+ ∂w

∂z

∂z

∂x
.

Hence, 0 = (∂w/∂z)(∂z/∂x), and so ∂w/∂z = 0 or
∂z/∂x = 0, which is, in general, absurd.

27. Prove rules (iii) and (iv) of Theorem 10. (HINT: Use the
same addition and subtraction tricks as in the
one-variable case and Theorem 8.)

28. Show that h: Rn → Rm is differentiable if and only if
each of the m components hi : Rn → R is differentiable.
(HINT: Use the coordinate projection function and the
chain rule for one implication and consider

[‖h(x) − h(x0) − Dh(x0)(x − x0)‖
‖x − x0‖

]2

=
∑m

i=1[hi (x) − hi (x0)Dhi (x0)(x − x0)]2

‖x − x0‖2

to obtain the other.)

29. Use the chain rule and differentiation under the integral
sign, namely,

d

dx

∫ b

a
f (x , y) dy =

∫ b

a

∂ f

∂x
(x , y) dy,

to show that

d

dx

∫ x

0
f (x , y) dy = f (x , x) +

∫ x

0

∂ f

∂x
(x , y) dy.

30. For what integers p > 0 is

f (x) =
{x p sin (1/x) x �= 0

0 x = 0

differentiable? For what p is the derivative continuous?

31. Suppose f : Rn → R and g: Rn → Rm are
differentiable. Show that the product function
h(x) = f (x)g(x) from Rn to Rm is differentiable and
that if x0 and y are in Rn , then [Dh(x0)]y =
f (x0){[Dg(x0)]y} + {[Df (x0)]y}g(x0).

32. Let g(u, v) = (eu , u + sin v) and f (x , y, z) = (xy, yz).
Compute D(g ◦ f ) at (0, 1, 0) using the chain rule.

33. Let f : R4 → R and c(t): R → R4. Suppose
∇ f (1, 1, π, e6) = (0, 1, 3, −7), c(π ) = (1, 1, π, e6),

and c′(π ) = (19, 11, 0, 1). Find
d( f ◦ c)

dt
when t = π .

34. Suppose f : Rn → Rm and g: Rp → Rq .

(a) What must be true about the numbers n, m, p, and
q for f ◦ g to make sense?

(b) What must be true about the numbers n, m, p, and
q for g ◦ f to make sense?

(c) When does f ◦ f make sense?

35. If z = f (x − y), use the chain rule to show that
∂z

∂x
+ ∂z

∂y
= 0.

36. Let w = x2 + y2 + z2, x = uv, y = u cos v,

z = u sin v. Use the chain rule to find
∂w

∂u
when(u, v) = (1, 0).
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2.6 Gradients and Directional Derivatives

In Section 2.1 we studied the graphs of real-valued functions. Now we take up this
study again, using the methods of calculus. Specifically, gradients will be used to obtain
a formula for the plane tangent to a level surface.

Gradients in R3

Let us recall the definition.

Definition The Gradient If f : U ⊂ R3 → R is differentiable, the gradient
of f at (x , y, z) is the vector in space given by

∇ f =
(

∂ f

∂x
,
∂ f

∂y
,
∂ f

∂z

)
.

This vector is also denoted ∇ f (x , y, z). Thus, ∇ f is just the matrix of the derivative
Df , written as a vector.

example 1 Let f (x , y, z) = √
x2 + y2 + z2 = r , the distance from 0 to (x , y, z). Then

∇ f (x , y, z) =
(

∂ f

∂x
,
∂ f

∂y
,
∂ f

∂z

)

=
(

x√
x2 + y2 + z2

,
y√

x2 + y2 + z2
,

z√
x2 + y2 + z2

)
= r

r
,

where r is the point (x , y, z). Thus, ∇ f is the unit vector in the direction of (x , y, z).
▲

example 2 If f (x , y, z) = xy + z, then

∇ f (x , y, z) =
(

∂ f

∂x
,
∂ f

∂y
,
∂ f

∂z

)
= ( y, x , 1).

▲

Suppose f : R3 → R is a real-valued function. Let v and x ∈ R3 be fixed vectors
and consider the function from R to R defined by t �→ f (x + tv). The set of points
of the form x + tv, t ∈ R, is the line L through the point x parallel to the vector v
(see Figure 2.6.1).

x

y

z

x + tvx

tv

tv translated L

v

figure 2.6.1 The equation of L is l(t) = x + t v.
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Directional Derivatives
The function t �→ f (x + tv) represents the function f restricted to the line L . For
example, if a bird flies along this line with velocity v so that x + tv is its position at
time t , and if f represents the temperature as a function of position, then f (x + tv) is
the temperature at time t . We may ask: How fast are the values of f changing along the
line L at the point x? Because the rate of change of a function is given by a derivative,
we could say that the answer to this question is the value of the derivative of this function
of t at t = 0 (when t = 0, x + tv reduces to x). This would be the derivative of f at the
point x in the direction of L; that is, of v. We can formalize this concept as follows.

Definition Directional Derivatives If f : R3 → R, the directional deriva-
tive of f at x along the vector v is given by

d

dt
f (x + tv)

∣∣∣∣
t=0

if this exists.
In the definition of a directional derivative, we normally choose v to be a unit

vector. In this case, we are moving in the direction v with unit speed and we refer
to d

dt f (x + tv)
∣∣
t=0

as the directional derivative of f in the direction v.

We now elaborate on why a unit vector is chosen in the definition of the directional
derivative. Suppose that f measures the temperature in degrees and that we are interested
in how fast the temperature changes as we move in a particular direction. If we are
measuring distance in meters, then the rate of change of temperature will be measured
in degrees per meter. Suppose, for simplicity, that the temperature is changing at a
constant rate—say, two degrees per meter—as we move in a given direction v starting at
x. Thus, when we go one meter ahead, the temperature changes by two degrees. That is,

f (x + v) − f (x) = 2.

Such a relation is going to hold only when v is a unit vector, reflecting the fact that we
are going ahead by one meter. More generally, the definition of the directional derivative
is going to truly measure only the rate of change of f with respect to distance along a
line in a given direction if v is a unit vector.

From the definition, we can see that the directional derivative can also be defined by
the formula

limit
h→0

f (x + hv) − f (x)

h
.

Theorem 12 If f : R3 → R is differentiable, then all directional derivatives
exist. The directional derivative at x in the direction v is given by

Df (x)v = grad f (x) · v = ∇ f (x) · v =
[
∂ f

∂x
(x)

]
v1 +

[
∂ f

∂y
(x)

]
v2 +

[
∂ f

∂z
(x)

]
v3,

where v = (v1, v2, v3).
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proof Let c(t) = x + tv, so that f (x + tv) = f (c(t)). By the first special case of
the chain rule, (d/dt) f (c(t)) = ∇ f (c(t)) · c′(t). However, c(0) = x and c′(0) = v,
and so

d

dt
f (x + tv)

∣∣∣∣
t=0

= ∇ f (x) · v,

as we were required to prove. ■

Notice that one does not have to use straight lines when computing the rate of change
of f in a specific direction v. Indeed, for a general path c(t) with c(0) = x and c′(0) = v,
we have from the chain rule,

d

dt
f (c(t))

∣∣∣∣
t=0

= ∇ f (c(t)) · c′(t)
∣∣∣∣
t=0

= ∇ f (x) · v.

example 3 Let f (x , y, z) = x2e−yz . Compute the rate of change of f in the direction of the unit
vector

v =
(

1√
3

,
1√
3

,
1√
3

)
at the point (1, 0, 0).

solut ion The required rate of change is, using Theorem 12,

∇ f · v = (2xe−yz , −x2ze−yz , −x2 ye−yz) ·
(

1√
3

,
1√
3

,
1√
3

)
,

which, at the point (1, 0, 0), becomes

(2, 0, 0) ·
(

1√
3

,
1√
3

,
1√
3

)
= 2√

3
.

▲

example 4 In the last example, find the rate of change of f in the direction of the vector w =
(1, 1, 1).

solut ion w is not a unit vector. Replacing w by

v = w

‖w‖ =
(

1√
3

,
1√
3

,
1√
3

)

and proceeding as in Example 3, we again obtain 2/
√

3 as our answer. ▲

Directions of Fastest Increase
From Theorem 12 we can also obtain the geometric significance of the gradient:

Theorem 13 Assume ∇ f (x) �= 0. Then ∇ f (x) points in the direction along
which f is increasing the fastest.

proof If n is a unit vector, the rate of change of f in direction n is given by∇ f (x) · n =
‖∇ f (x)‖ cos θ , where θ is the angle between n and ∇ f (x). This is maximum when
θ = 0; that is, when n and ∇ f are parallel. [If ∇ f (x) = 0 this rate of change is 0 for
any n.] ■
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In other words, if we wish to move in a direction in which f will increase most
quickly, we should proceed in the direction ∇ f (x). Analogously, if we wish to move in a
direction in which f decreases the fastest, we should proceed in the direction −∇ f (x).

example 5 In what direction from (0, 1) does f (x , y) = x2 − y2 increase the fastest?

solut ion The gradient is

∇ f = 2x i − 2yj,

and so at (0, 1) this is

∇ f |(0,1) = −2j.

By Theorem 13, f increases fastest in the direction −j. (Can you see why this answer
is consistent with Figure 2.1.9?) ▲

Gradients and Tangent Planes to Level Sets
Now we find the relationship between the gradient of a function f and its level surfaces.
The gradient points in the direction in which the values of f change most rapidly,
whereas a level surface lies in the directions in which they do not change at all. If f is
reasonably well behaved, the gradient and the level surface will be perpendicular.

Theorem 14 The Gradient is Normal to Level Surfaces Let f : R3 → R

be a C1 map and let (x0, y0, z0) lie on the level surface S defined by f (x , y, z) = k,
for k a constant. Then ∇ f (x0, y0, z0) is normal to the level surface in the following
sense: If v is the tangent vector at t = 0 of a path c(t) in S with c(0) = (x0, y0, z0),
then ∇ f (x0, y0, z0) · v = 0 (see Figure 2.6.2).

proof Let c(t) lie in S; then f (c(t)) = k. Let v be as in the hypothesis; then v = c′(0).
Hence, the fact that f (c(t)) is constant in t , and the chain rule give

0 = d

dt
f (c(t))

∣∣∣∣
t=0

= ∇ f (c(0)) · v.
■

figure 2.6.2 Geometric
significance of the gradient: ∇ f is
orthogonal to the surface S on
which f is constant.

v translated

x

y

z

v

S
c(t)

00 0(x y z, , )fΔ

00 0(x y z, , )

parallel translated so
that it begins
at 

00 0(x y z, , )fΔ

00 0(x y z, , )
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If we study the conclusion of Theorem 14, we see that it is reasonable to define the
plane tangent to S as the orthogonal plane to the gradient.

Definition Tangent Planes to Level Surfaces Let S be the surface
consisting of those (x , y, z) such that f (x , y, z) = k, for k a constant. The tangent
plane of S at a point (x0, y0, z0) of S is defined by the equation

∇ f (x0, y0, z0) · (x − x0, y − y0, z − z0) = 0 (1)

if ∇ f (x0, y0, z0) �= 0. That is, the tangent plane is the set of points (x , y, z) that
satisfy equation (1).

This extends the definition we gave earlier for the tangent plane of the graph of a
function (see Exercise 15 at the end of this section).

example 6 Compute the equation of the plane tangent to the surface defined by 3xy + z2 = 4 at
(1, 1, 1).

solut ion Here f (x , y, z) = 3xy + z2 and ∇ f = (3y, 3x , 2z), which at (1, 1, 1) is the vector
(3, 3, 2). Thus, the tangent plane is

(3, 3, 2) · (x − 1, y − 1, z − 1) = 0;

that is,

3x + 3y + 2z = 8. ▲

In Theorem 14 and the definition following it, we could just as well have worked in
two dimensions as in three. Thus, if we have f : R2 → R and consider a level curve

C = {(x , y) | f (x , y) = k},
then ∇ f (x0, y0) is perpendicular to C for any point (x0, y0) on C . Likewise, the tangent
line to C at (x0, y0) has the equation

∇ f (x0, y0) · (x − x0, y − y0) = 0 (2)

if ∇ f (x0, y0) �= 0; that is, the tangent line is the set of points (x , y) that satisfy equation
(2) (see Figure 2.6.3).

C

x

y

Tangent line to C

f translated

�

figure 2.6.3 In the plane, the gradient ∇ f
is orthogonal to the curve f = constant.
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P( )
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Δ

Δf

Δf

Δf
figure 2.6.4 The gradient ∇ f of a function
f : R3 → R is a vector field on R3; at each point
Pi , ∇ f (Pi ) is a vector emanating from Pi .

The Gradient Vector Field
We often speak of ∇ f as a gradient vector field. The word “field” means that ∇ f assigns
a vector to each point in the domain of f . In Figure 2.6.4 we describe the gradient ∇ f
not by drawing its graph, which, if f : R3 → R, would be a subset of R6—that is, the set
of tuples (x, ∇ f (x)), but by representing ∇ f (P), for each point P, as a vector emanating
from the point P rather than from the origin. Like a graph, this pictorial method of
depicting ∇ f contains the point P and the value ∇ f (P) in the same picture.

The gradient vector field has important geometric significance. It shows the direction
in which f is increasing the fastest and the direction that is orthogonal to the level sur-
faces (or curves in the plane) of f . That it does both of these at once is quite plausible.
To see this, imagine a hill as shown in Figure 2.6.5(a). Let h be the height function,
a function of two variables. If we draw level curves of h, these are just level contours
of the hill. We could imagine them as level paths on the hill [see Figure 2.6.5(b)]. One
thing should be obvious to anyone who has gone for a hike: To get to the top of the
hill the fastest, we should walk perpendicular to level contours.5 This is consistent with
Theorems 13 and 14, which state that the direction of fastest increase (the gradient) is
orthogonal to the level curves.

(a)

n

n

A curve of
steepest ascent
up the hill

Countour
map of a hill
250 feet high

Earthh

(b)

h

h = 50

h = 100

h = 150

h = 200

figure 2.6.5 A physical illustration of the two facts (a) ∇ f is the direction of fastest increase of f ,
and (b) ∇ f is orthogonal to the level curves.

5This discussion assumes that one walks at the same speed in all directions. Of course, hikers know
that this is not necessarily realistic.
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example 7 The gravitational force on a unit mass m at (x , y, z) produced by a mass M at the origin
in R3 is, according to Newton’s law of gravitation, given by

F = −GmM

r 2
n,

where G is a constant; r = ‖r‖ = √
x2 + y2 + z2, which is the distance of (x , y, z)

from the origin; and n = r/r, the unit vector in the direction of r = x i+ yj+ zk, which
is the position vector from the origin to (x , y, z).

Note that F = ∇(GmM/r ) = −∇V ; that is, F is the negative of the gradient of the
gravitational potential V = −GmM/r . This can be verified as in Example 1. Notice
that F is directed inward toward the origin. Also, the level surfaces of V are spheres.
The gradient vector field F is normal to these spheres, which confirms the result of
Theorem 14. ▲

example 8 Find a unit vector normal to the surface S given by z = x2 y2 + y + 1 at the point
(0, 0, 1).

solut ion Let f (x , y, z) = x2 y2+y+1−z, and consider the level surface defined by f (x , y, z) =
0. Because this is the set of points (x , y, z) with z = x2 y2 + y + 1, we see that this level
set coincides with the surface S. The gradient is given by

∇ f (x , y, z) = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k = 2xy2i + (2x2 y + 1)j − k,

and so

∇ f (0, 0, 1) = j − k.

This vector is perpendicular to S at (0, 0, 1), and so to find a unit normal n we divide
this vector by its length to obtain

n = ∇ f (0, 0, 1)

‖∇ f (0, 0, 1)‖ = 1√
2

( j − k).
▲

example 9 Consider two conductors, one charged positively and the other negatively. Between
them, an electric potential is set up. This potential is a function φ: R3 → R (an example
of a scalar field). The electric field is given by E = −∇φ. From Theorem 14 we know that
E is perpendicular to level surfaces of φ. These level surfaces are called equipotential
surfaces, because the potential is constant on them (see Figure 2.6.6).

Lower
potential

Lines of constant f

E

Higher
potential

figure 2.6.6 Equipotential surfaces (the dotted
lines) are orthogonal to the electric force field E.

▲
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exercises

1. Show that the directional derivative of
f (x , y, z) = z2x + y3 at (1, 1, 2) in the direction

(1/
√

5)i + (2/
√

5)j is 2
√

5.

2. Compute the directional derivatives of the following
functions at the indicated points in the given
directions:

(a) f (x , y) = x + 2xy − 3y2, (x0, y0) = (1, 2),

v = 3
5 i + 4

5 j

(b) f (x , y) = log
√

x2 + y2, (x0, y0) = (1, 0),

v = (1/
√

5)(2i + j)

(c) f (x , y) = ex cos(πy), (x0, y0) = (0, −1),

v = −(1/
√

5)i + (2/
√

5)j

(d) f (x , y) = xy2 + x3 y, (x0, y0) = (4, −2),

v = (1/
√

10)i + (3/
√

10)j

3. Compute the directional derivatives of the following
functions along unit vectors at the indicated points in
directions parallel to the given vector:

(a) f (x , y) = x y , (x0, y0) = (e, e), d = 5i + 12j

(b) f (x , y, z) = ex + yz, (x0, y0, z0) = (1, 1, 1),
d = (1, −1, 1)

(c) f (x , y, z) = xyz, (x0, y0, z0) = (1, 0, 1),
d = (1, 0, −1)

4. You are walking on the graph of f (x , y) =
y cos(πx) − x cos(πy) + 10, standing at the point (2, 1,
13). Find an x , y-direction you should walk in to stay at
the same level.

5. (a) Let f : R3 → R, x0 ∈ R3. If v is a unit vector in
R3, show that the maximum value of the directional
derivative of f at x0 along v is ||∇ f (x0)||.

(b) Let f (x , y, z) = x3 − y3 + z3. Find the maximum
value for the directional derivative of f at the point
(1, 2, 3).

6. Find a vector which is normal to the curve
x3 + xy + y3 = 11 at (1, 2).

7. Find the rate of change of f (x , y, z) = xyz in the
direction normal to the surface yx2 + xy2 + yz2 = 3 at
(1, 1, 1).

8. Find the planes tangent to the following surfaces at the
indicated points:

(a) x2 + 2y2 + 3xz = 10, at the point (1, 2, 1
3 )

(b) y2 − x2 = 3, at the point (1, 2, 8)

(c) xyz = 1, at the point (1, 1, 1)

9. Find the equation for the plane tangent to each surface
z = f (x , y) at the indicated point:

(a) z = x3 + y3 − 6xy, at the point (1, 2, −3)

(b) z = (cos x)(cos y), at the point (0, π/2, 0)

(c) z = (cos x)(sin y), at the point (0, π/2, 1)

10. Compute the gradient ∇ f for each of the following
functions:

(a) f (x , y, z) = 1/
√

x2 + y2 + z2

(b) f (x , y, z) = xy + yz + xz

(c) f (x , y, z) = 1

x2 + y2 + z2

11. For the functions in Exercise 10, what is the direction of
fastest increase at (1, 1, 1)? [The solution to part (c)
only is in the Study Guide to this text.]

12. Show that a unit normal to the surface
x3 y3 + y − z + 2 = 0 at (0, 0, 2) is given by
n = (1/

√
2)( j − k).

13. Find a unit normal to the surface cos(xy) = ez − 2 at
(1, π, 0).

14. Verify Theorems 13 and 14 for
f (x , y, z) = x2 + y2 + z2.

15. Show that the definition following Theorem 14 yields,
as a special case, the formula for the plane tangent to the
graph of f (x , y) by regarding the graph as a level
surface of F(x , y, z) = f (x , y) − z (see Section 2.3).

16. Let f (x , y) = −(1 − x2 − y2)1/2 for (x , y) such that
x2 + y2 < 1. Show that the plane tangent to the graph
of f at (x0, y0, f (x0, y0)) is orthogonal to the vector
with components (x0, y0, f (x0, y0)). Interpret this
geometrically.

17. For the following functions f : R3 → R and
g: R → R3, find ∇ f and g′ and evaluate ( f ◦ g)′(1).

(a) f (x , y, z) = xz + yz + xy, g(t) = (et , cos t , sin t)

(b) f (x , y, z) = exyz , g(t) = (6t , 3t2, t3)

(c) f (x , y, z) = (x2 + y2 + z2) log
√

x2 + y2 + z2,
g(t) = (et , e−t , t)
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18. Compute the directional derivative of f in the given
directions v at the given points P.

(a) f (x , y, z) = xy2 + y2z3 + z3x , P =
(4, −2, −1), v = 1/

√
14(i + 3j + 2k)

(b) f (x , y, z) = x yz , P = (e, e, 0), v = 12
13 i+ 3

13 j+ 4
13 k

19. You are standing on the graph of
f (x , y) = 100 − 2x2 − 3y2 at the point (2, 3, 65).

(a) What are the xy coordinates of the highest point on
the graph?

(b) Show that the gradient of f is the zero vector at
the point found in (a).

20. Find the two points on the hyperboloid
x2 + 4y2 − z2 = 4, where the tangent plane is parallel
to the plane 2x + 2y + z = 5.

21. Let r = x i + yj + zk and r = ‖r‖. Prove that

∇
(1

r

)
= − r

r3 .

22. Captain Ralph is in trouble near the sunny side of
Mercury. The temperature of the ship’s hull when he
is at location (x , y, z) will be given by
T (x , y, z) = e−x2−2y2−3z2

, where x , y, and z are
measured in meters. He is currently at (1, 1, 1).

(a) In what direction should he proceed in order to
decrease the temperature most rapidly?

(b) If the ship travels at e8 meters per second, how fast
will be the temperature decrease if he proceeds in
that direction?

(c) Unfortunately, the metal of the hull will crack if
cooled at a rate greater than

√
14e2 degrees per

second. Describe the set of possible directions in
which he may proceed to bring the temperature
down at no more than that rate.

23. A function f : R2 → R is said to be independent of the
second variable if there is a function g: R → R such
that f (x , y) = g(x) for all x in R. In this case, calculate
∇ f in terms of g′.

24. Let f and g be functions from R3 to R. Suppose f is
differentiable and ∇ f (x) = g(x)x. Show that spheres
centered at the origin are contained in the level sets for
f ; that is, f is constant on such spheres.

25. A function f : Rn → R is called an even function if
f (x) = f (−x) for every x in Rn . If f is differentiable
and even, find D f at the origin.

26. Suppose that a mountain has the shape of an elliptic
paraboloid z = c − ax2 − by2, where a, b, and c are
positive constants, x and y are the east–west and
north–south map coordinates, and z is the altitude above
sea level (x , y, z are all measured in meters). At the
point (1, 1), in what direction is the altitude increasing
most rapidly? If a marble were released at (1, 1), in what
direction would it begin to roll?

27. An engineer wishes to build a railroad up the mountain
of Exercise 26. Straight up the mountain is much too
steep for the power of the engines. At the point (1, 1), in
what directions may the track be laid so that it will be
climbing with a 3% grade—that is, an
angle whose tangent is 0.03? (There are two
possibilities.) Make a sketch of the situation indicating
the two possible directions for a 3% grade at (1, 1).

28. In electrostatics, the force P of attraction between two
particles of opposite charge is given by P = k(r/‖r‖3)
(Coulomb’s law), where k is a constant and
r = x i + yj + zk. Show that P is the gradient of
f = −k/‖r‖.

29. The electrostatic potential V due to two infinite parallel
filaments with linear charge densities λ and −λ is
V = (λ/2πε0) ln (r2/r1), where r2

1 = (x − x0)2 + y2

and r2
2 = (x + x0)2 + y2. We think of the filaments as

being in the z-direction, passing through the xy plane at
(−x0, 0) and (x0, 0). Find ∇V (x , y).

30. For each of the following, find the maximum and
minimum values attained by the function f along the
path c(t):

(a) f (x , y) = xy; c(t) = (cos t , sin t); 0 ≤ t ≤ 2π

(b) f (x , y) = x2 + y2; c(t) = (cos t , 2 sin t); 0 ≤ t ≤
2π

31. Suppose that a particle is ejected from the surface
x2 + y2 − z2 = −1 at the point (1, 1,

√
3) along the

normal directed toward the xy plane to the surface at
time t = 0 with a speed of 10 units per second. When
and where does it cross the xy plane?

32. Let f : R3 → R and regard Df (x , y, z) as a linear map
of R3 to R. Show that the kernel (that is, the set of
vectors mapped to zero) of Df is the plane in R3

orthogonal to ∇ f .
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review exercises for chapter 2

1. Describe the graphs of:

(a) f (x , y) = 3x2 + y2

(b) f (x , y) = xy + 3x

2. Describe some appropriate level surfaces and sections of
the graphs of:

(a) f (x , y, z) = 2x2 + y2 + z2

(b) f (x , y, z) = x2

(c) f (x , y, z) = xyz

3. Compute the derivative Df (x) of each of the following
functions:

(a) f (x , y) = (x2 y, e−xy)

(b) f (x) = (x , x)

(c) f (x , y, z) = ex + ey + ez

(d) f (x , y, z) = (x , y, z)

4. Suppose f (x , y) = f ( y, x) for all (x , y). Prove that

(∂ f/∂x)(a, b) = (∂ f/∂y)(b, a).

5. Let f (u, v) = (cos u, v + sin u) and
g(x , y, z) = (x2 + πy2, xz). Compute D( f ◦ g) at
(0, 1, 1) using the chain rule.

6. Use the chain rule to find D( f ◦ g)(−2, 1) for
f (u, v, w) = (v2 + uw , u2 + w2, u2v − w3) and
g(x , y) = (xy3, x2 − y2, 3x + 5y).

7. Use the chain rule to find D( f ◦ g)(−1, 2) for
f (u, v, w) = (v2 + w2, u3 − vw , u2v + w) and
g(x , y) = (3x + 2y, x3 y, y2 − x2).

8. Let f (x , y) = (xy, x
y , x + y) and

g(w , s, t) = (wes , sewt ). Find D( f ◦ g)(3, 1, 0).

9. Let r(t) = (t cos(π t), t sin(π t), t) be a path. Where will
the tangent line to r at t = 5 intersect the xy plane?

10. Let f (x , y) = x2e−xy .

(a) Find a vector normal to the graph of f at (1, 2).

(b) Find the equation of the tangent plane to the graph
of f at (1, 2).

(c) What point on the surface given by z = x2 − y2 has
a tangent plane parallel to the plane found in (b)?

11. Let f (x , y) = (1 − x2 − y2)1/2. Show that the plane
tangent to the graph of f at (x0, y0, f (x0, y0)) is

orthogonal to the vector (x0, y0, f (x0, y0)). Interpret
geometrically.

12. Let F(u, v) and u = h(x , y, z), v = k(x , y, z) be given
(differentiable) real-valued functions and let f (x , y, z)
be defined by f (x , y, z) = F(h(x , y, z), k(x , y, z)).
Write a formula for the gradient of f in terms of the
partial derivatives of F, h, and k.

13. Find an equation for the tangent plane of the graph of f
at the point (x0, y0, f (x0, y0)) for:

(a) f : R2 → R, (x , y) �→ x − y + 2,
(x0, y0) = (1, 1)

(b) f : R2 → R, (x , y) �→ x2 + 4y2,
(x0, y0) = (2, −1)

(c) f : R2 → R, (x , y) �→ xy,
(x0, y0) = (−1, −1)

(d) f (x , y) = log (x + y) + x cos y + arctan(x + y),
(x0, y0) = (1, 0)

(e) f (x , y) =
√

x2 + y2, (x0, y0) = (1, 1)

(f ) f (x , y) = xy, (x0, y0) = (2, 1)

14. Compute an equation for the tangent planes of the
following surfaces at the indicated points.

(a) x2 + y2 + z2 = 3, (1, 1, 1)

(b) x3 − 2y3 + z3 = 0, (1, 1, 1)

(c) (cos x)(cos y)ez = 0, (π/2, 1, 0)

(d) exyz = 1, (1, 1, 0)

15. Draw some level curves for the following functions:

(a) f (x , y) = 1/xy

(b) f (x , y) = x2 − xy − y2

16. Consider a temperature function T (x , y) = x sin y. Plot
a few level curves. Compute ∇T and explain its meaning.

17. Find the following limits if they exist:

(a) limit(x , y)→(0,0)
cos xy−1

x

(b) limit(x , y)→(0,0)
√|(x + y)/(x − y)|, x �= y

18. Compute the first partial derivatives and gradients of the
following functions:

(a) f (x , y, z) = xez + y cos x

(b) f (x , y, z) = (x + y + z)10

(c) f (x , y, z) = (x2 + y)/z
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19. Compute
∂

∂x
[x exp (1 + x2 + y2)]

20. Let f : R2 → R4 and g: R2 → R2 be given by
f (x , z) = (x2 − y2, 0, sin(xy), 1) and
g(x , y) = (yex2

, xey2
). Compute D( f ◦ g)(1, 2).

21. Let f (x , y) = (x2 + y2)e−(x2+y2+10) . Find the rate of
change of f at (2, 1) in the direction pointing toward the
origin.

22. Let y(x) be a differentiable function defined implicitly
by F(x , y(x)) = 0. From Exercise 19(a), Section 2.5, we
know that

dy

dx
= −∂ F/∂x

∂ F/∂y
.

Consider the surface z = F(x , y), and suppose F is
increasing as a function of x and as a function of y; that
is, ∂ F/∂x > 0 and ∂ F/∂y > 0. By considering the
graph and the plane z = 0, show that for z fixed at z = 0,
y should decrease as x increases and x should decrease
as y increases. Does this agree with the minus sign in the
formula for dy/dx?

23. (a) Consider the graph of a function f (x , y) [Figure
2.R.1(a)]. Let (x0, y0) lie on a level curve C , so
∇ f (x0, y0) is perpendicular to this curve. Show that
the tangent plane of the graph is the plane that (i)
contains the line perpendicular to ∇ f (x0, y0) and
lying in the horizontal plane z = f (x0, y0), and (ii)
has slope ‖∇ f (x0, y0)‖ relative to the xy plane.

(a) (b)

(x(( 0, y0, f (ff x(( 0, y0))

Level curve
raised to graph

Level curve C

Graph f

f (ff x(( 0, y0)f

(x(( 0, y0)

z

x y

Slope of tangent plane =    || f ||  f

(1, 0, 0)

z

x y

(1,(1, 0 0,0, 2) 2)0

figure 2.R.1 (a) The relationship between the gradient of a function and the tangent plane to
the graph [Exercise 23(a)]. For a specific instance of the tangent plane in (b) see Exercise 23(b).

(By the slope of a plane P relative to the xy plane
we mean the tangent of the angle θ , 0 ≤ θ ≤ π ,
between the upward-pointing normal p to P and the
unit vector k.)

(b) Use this method to show that the tangent plane of
the graph of f (x , y) = (x + cos y)x2 at (1, 0, 2) is
as sketched in Figure 2.R.1(b).

24. Find the plane tangent to the surface z = x2 + y2 at the
point (1, −2, 5). Explain the geometric significance, for
this surface, of the gradient of f (x , y) = x2 + y2 (see
Exercise 23).

25. In which direction is the directional derivative of
f (x , y) = (x2 − y2)/(x2 + y2) at (1, 1) equal to
zero?

26. Find the directional derivative of the given function at
the given point and in the direction of the given vector.

(a) f (x , y, z) = ex cos( yz), p0 = (0, 0, 0),
v = (2, 1, −2)

(b) f (x , y, z) = xy + yz + zx , p0 = (1, 1, 2),
v = (10, −1, 2)

27. Find the tangent plane and normal to the hyperboloid
x2 + y2 − z2 = 18 at (3, 5, −4).

28. Let (x(t), y(t)) be a path in the plane, 0 ≤ t ≤ 1, and let
f (x , y) be a C1 function of two variables. Assume that
(dx/dt) fx + (dy/dt) fy ≤ 0. Show that f (x(1), y(1)) ≤
f (x(0), y(0)).
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29. A bug finds itself in a toxic environment. The toxicity
level is given by T (x , y) = 2x2 − 4y2. The bug is at
(−1, 2). In what direction should it move to lower the
toxicity the fastest?

30. Find the direction in which the function w = x2 + xy
increases most rapidly at the point (−1, 1). What is the
magnitude of ∇w at this point? Interpret this magnitude
geometrically.

31. Let f be defined on an open set S in Rn . We say that f is
homogeneous of degree p over S if f (λx) = λp f (x) for
every real λ and for every x in S for which λx ∈ S.

(a) If such a function is differentiable at x, show that
x · ∇ f (x) = p f (x). This is known as Euler’s
theorem for homogeneous functions. [HINT: For
fixed x, define g(λ) = f (λx) and compute g′(1).]

(b) Find p and check Euler’s theorem for the function
f (x , y, z) = x − 2y − √

xz, on the region where
xz > 0.

32. If z = [ f (x − y)]/y (where f is differentiable and
y �= 0), show that the identity
z + y(∂z/∂x) + y(∂z/∂y) = 0 holds.

33. Given z = f ((x + y)/(x − y)) for f a C1 function,
show that

x
∂z

∂x
+ y

∂z

∂y
= 0.

34. Let f have partial derivatives ∂ f (x)/∂xi , where
i = 1, 2, . . . , n, at each point x of an open set U in Rn . If
f has a local maximum or a local minimum at the point
x0 in U , show that ∂ f (x0)/∂xi = 0 for each i .

35. Consider the functions defined in R2 by the following
formulas:

(i) f (x , y) = xy/(x2 + y2) if (x , y) �= (0, 0),
f (0, 0) = 0

(ii) f (x , y) = x2 y2/(x2 + y4) if (x , y) �= (0, 0),
f (0, 0) = 0

(a) In each case, show that the partial derivatives
∂ f (x , y)/∂x and ∂ f (x , y)/∂y exist for every (x , y)
in R2, and evaluate these derivatives explicitly in
terms of x and y.

(b) Explain why the functions described in (i) and (ii)
are or are not differentiable at (0, 0).

36. Compute the gradient vector ∇ f (x , y) at all points (x , y)
in R2 for each of the following functions:

(a) f (x , y) = x2 y2 log (x2 + y2) if
(x , y) �= (0, 0), f (0, 0) = 0

(b) f (x , y) = xy sin [1/(x2 + y2)] if
(x , y) �= (0, 0), f (0, 0) = 0

37. Find the directional derivatives of the following
functions at the point (1, 1) in the direction (i + j)/

√
2:

(a) f (x , y) = x tan−1 (x/y)

(b) f (x , y) = cos (
√

x2 + y2)

(c) f (x , y) = exp (−x2 − y2)

38. (a) Let u = i − 2j + 2k and v = 2i + j − 3k. Find:
‖u‖, u · v, u × v, and a vector in the same direction
as u, but of unit length.

(b) Find the rate of change of exy sin(xyz) in the
direction u at (0, 1, 1).

39. Let h(x , y) = 2e−x2 + e−3y2
denote the height on a

mountain at position (x , y). In what direction from (1, 0)
should one begin walking in order to climb the fastest?

40. Compute an equation for the plane tangent to the graph
of

f (x , y) = ex

x2 + y2

at x = 1, y = 2.

41. (a) Give a careful statement of the general form of the
chain rule.

(b) Let f (x , y) = x2 + y and h(u) = (sin 3u, cos 8u).
Let g(u) = f (h(u)). Compute dg/du at u = 0 both
directly and by using the chain rule.

42. (a) Sketch the level curves of f (x , y) = −x2 − 9y2 for
c = 0, −1, −10.

(b) On your sketch, draw in ∇ f at (1, 1). Discuss.

43. At time t = 0, a particle is ejected from the surface
x2 + 2y2 + 3z2 = 6 at the point (1, 1, 1) in a direction
normal to the surface at a speed of 10 units per second.
At what time does it cross the sphere
x2 + y2 + z2 = 103?

44. At what point(s) on the surface in Exercise 43 is the
normal vector parallel to the line x = y = z?

45. Compute ∂z/∂x and ∂z/∂y if

z = u2 + v2

u2 − v2 , u = e−x−y , v = exy

(a) by substitution and direct calculation, and (b) by the
chain rule.
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46. Compute the partial derivatives as in Exercise 45 if
z = uv, u = x + y, and v = x − y.

47. What is wrong with the following argument? Suppose
that w = f (x , y) and y = x2. By the chain rule,

∂w

∂x
= ∂w

∂x

∂x

∂x
+ ∂w ∂y

∂y ∂x
= ∂w

∂x
+ 2x

∂w

∂y
.

Hence, 0 = 2x(∂w/∂y), and so ∂w/∂y = 0. Choose an
explicit example to really see that this is incorrect.

48. A boat is sailing northeast at 20 km/h. Assuming that the
temperature drops at a rate of 0.2◦C/km in the northerly
direction and 0.3◦C/km in the easterly direction, what is
the time rate of change of temperature as observed on the
boat?

49. Use the chain rule to find a formula for
(d/dt) exp [ f (t)g(t)].

50. Use the chain rule to find a formula for (d/dt)( f (t)g(t)).

51. Verify the chain rule for the function
f (x , y, z) = [ln (1 + x2 + 2z2)]/(1 + y2) and the path
c(t) = (t , 1 − t2, cos t).

52. Verify the chain rule for the function
f (x , y) = x2/(2 + cos y) and the path x = et , y = e−t .

53. Suppose that u(x , t) satisfies the differential equation
ut + uux = 0 and that x , as a function x = f (t) of t ,
satisfies dx/dt = u(x , t). Prove that u( f (t), t) is
constant in t .

54. The displacement at time t and horizontal position on a
line x of a certain violin string is given by
u = sin (x − 6t) + sin (x + 6t). Calculate the velocity of
the string at x = 1 when t = 1

3 .

55. The ideal gas law PV = n RT involves a constant R, the
number n of moles of the gas, the volume V , the Kelvin
temperature T , and the pressure P .

(a) Show that each of n, P, T , V is a function of the
remaining variables, and determine explicitly the
defining equations.

(b) Calculate ∂V/∂T , ∂T/∂ P, ∂ P/∂V and show that
their product equals −1.

56. The potential temperature θ is defined in terms of
temperature T and pressure p by

θ = T

(
1000

p

)0.286

.

The temperature and pressure may be thought of as
functions of position (x , y, z) in the atmosphere and also
of time t .

(a) Find formulas for ∂θ/∂x , ∂θ/∂y, ∂θ/∂z, ∂θ/∂t in
terms of partial derivatives of T and p.

(b) The condition ∂θ/∂z < 0 is regarded as an
unstable atmosphere, for it leads to large vertical
excursions of air parcels from a single upward or
downward impetus. Meteorologists use the
formula

∂θ

∂z
= θ

T

(
∂T

∂z
+ g

C p

)
,

where g = 32.2 and C p is a positive constant. How
does the temperature change in the upward direction
for an unstable atmosphere?

57. The specific volume V , pressure P , and temperature T
of a van der Waals gas are related by
P = RT/(V − β) − α/V 2, where α, β, and R are
constants.

(a) Explain why any two of V , P , and T can be
considered independent variables that determine the
third variable.

(b) Find ∂T/∂ P, ∂ P/∂V , ∂V/∂T . Identify which
variables are constant, and interpret each partial
derivative physically.

(c) Verify that
(∂T/∂ P)(∂ P/∂V )(∂V/∂T ) = −1( not +1!).

58. The height h of the Hawaiian volcano Mauna Loa is
(roughly) described by the function
h(x , y) = 2.59 − 0.00024y2 − 0.00065x2, where
h is the height above sea level in miles and x and y
measure east–west and north–south distances in
miles from the top of the mountain. At (x , y) =
(−2, −4):

(a) How fast is the height increasing in the direction
(1, 1) (that is, northeastward)? Express your answer
in miles of height per mile of horizontal distance
traveled.

(b) In what direction is the steepest upward path?

59. (a) In what direction is the directional derivative of
f (x , y) = (x2 − y2)/(x2 + y2) at (1, 1)
equal to zero?

(b) How about at an arbitrary point (x0, y0) in the first
quadrant?

(c) Describe the level curves of f . In particular, discuss
them in terms of the result of part (b).
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60. (a) Show that the curve x2 − y2 = c, for any value
of c, satisfies the differential equation
dy/dx = x/y.

(b) Draw in a few of the curves x2 − y2 = c, say for
c = ±1. At several points (x , y) along each of these
curves, draw a short segment of slope x/y; check
that these segments appear to be tangent to the
curve. What happens when y = 0? What happens
when c = 0?

61. Suppose that f is a differentiable function of one
variable and that a function u = g(x , y) is defined by

u = g(x , y) = xy f

(
x + y

xy

)
.

Show that u satisfies a (partial) differential equation of
the form

x2 ∂u

∂x
− y2 ∂u

∂y
= G(x , y)u

and find the function G(x , y).

62. (a) Let F be a function of one variable and f a function
of two variables. Show that the gradient vector of
g(x , y) = F( f (x , y)) is parallel to the gradient
vector of f (x , y).

(b) Let f (x , y) and g(x , y) be functions such that
∇ f = λ∇g for some function λ(x , y). What is the
relation between the level curves of f and g?
Explain why there might be a function F such that
g(x , y) = F( f (x , y)).
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Higher-Order Derivatives:
Maxima and Minima

All that is superfluous displeases God and Nature.

All that displeases God and Nature is evil. ---Dante Alighieri, circa 1300

. . . namely, because the shape of the whole universe is most perfect, and, in fact, designed

by the wisest creator, nothing in all of the world will occur in which no maximum or minimum

rule is somehow shining forth. ---Leonhard Euler

Leonhard Euler
(by Emanuel
Handman)
(1707–1783).

In one-variable calculus, to test a function f (x) for a local maximum

or minimum, we often use the second derivative. We look for critical

points x0—that is, points x0 for which f ′(x0) = 0, and at each such point we

check the sign of the second derivative f ′′(x0). If f ′′(x0) < 0, f (x0) is a lo-

cal maximum of f ; if f ′′(x0) > 0, f (x0) is a local minimum of f ; if f ′′(x0) = 0,

the test fails.

This chapter extends these methods to real-valued functions of sev-

eral variables. We begin in Section 3.1 with a discussion of iterated and

higher-order partial derivatives, and in Section 3.2 we discuss the multi-

variable form of Taylor's theorem; this is then used in Section 3.3 to derive

tests for maxima, minima, and saddle points. As with functions of one

variable, such methods help us to visualize the shape of a graph.

In Section 3.4, we study the problem of maximizing a real-valued func-

tion subject to supplementary conditions, also referred to as constraints.

For example, we might wish to maximize f (x, y, z) among those (x, y, z)

constrained to lie on the unit sphere, x 2+y2+z 2 = 1. Section 3.5 discusses

a technical theorem (the implicit function theorem) useful for studying

constraints. It will also be useful later in our study of surfaces.

149
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3.1 Iterated Partial Derivatives

The preceding chapter developed considerable information concerning the derivative
of a map and investigated the geometry associated with the derivative of real-valued
functions by making use of the gradient. In this section, we proceed to study higher-
order derivatives, with the goal of proving the equality of the “mixed second partial
derivatives” of a function. We begin by defining the necessary terms.

Let f : R3 → R be of class C1. Recall that this means that ∂ f/∂x , ∂ f/∂y, and ∂ f/∂z
exist and are continuous. If these derivatives, in turn, have continuous partial derivatives,
we say that f is of class C2, or is twice continuously differentiable. Likewise, if we say
f is of class C3, we mean f has continuous iterated partial derivatives of third order,
and so on. Here are a few examples of how second-order derivatives are written:

∂2 f

∂x2
= ∂

∂x

(
∂ f

∂x

)
,

∂2 f

∂x ∂y
= ∂

∂x

(
∂ f

∂y

)
,

∂2 f

∂z ∂y
= ∂

∂z

(
∂ f

∂y

)
, etc.

The process can, of course, be repeated for third-order derivatives, and so on. If f is
a function of only x and y and ∂ f/∂x , ∂ f/∂y are continuously differentiable, then by
taking second partial derivatives, we get the four functions

∂2 f

∂x2
,

∂2 f

∂y2
,

∂2 f

∂x ∂y
, and

∂2 f

∂y ∂x
.

All of these are called iterated partial derivatives, while ∂2 f/∂x ∂y and ∂2 f/∂y ∂x are
called mixed partial derivatives.

example 1 Find all second partial derivatives of f (x , y) = xy + (x + 2y)2.

solut ion The first partials are

∂ f

∂x
= y + 2(x + 2y),

∂ f

∂y
= x + 4(x + 2y).

Now differentiate each of these expressions with respect to x and y:

∂2 f

∂x2
= 2,

∂2 f

∂y2
= 8

∂2 f

∂x ∂y
= 5,

∂2 f

∂y ∂x
= 5. ▲

example 2 Find all second partial derivatives of f (x , y) = sin x sin2 y.

solut ion We proceed just as in Example 1:

∂ f

∂x
= cos x sin2 y,

∂ f

∂y
= 2 sin x sin y cos y = sin x sin 2y;

∂2 f

∂x2
− = − sin x sin2 y,

∂2 f

∂y2
= 2 sin x cos 2y;

∂2 f

∂x ∂y
= cos x sin 2y,

∂2 f

∂y ∂x
= 2 cos x sin y cos y = cos x sin 2y. ▲

wujiayao
高亮

wujiayao
高亮

wujiayao
高亮



Marsden-3620111 VC September 27, 2011 9:38 151

3.1 Iterated Partial Derivatives 151

example 3 Let f (x , y, z) = exy + z cos x . Then

∂ f

∂x
= yexy − z sin x ,

∂ f

∂y
= xexy ,

∂ f

∂z
= cos x ,

∂2 f

∂z ∂x
= − sin x ,

∂2 f

∂x ∂z
= − sin x , etc.

▲

The Mixed Partials Are Equal
In all these examples note that the pairs of mixed partial derivatives, such as ∂2 f/∂x ∂y
and ∂2 f/∂y ∂x , or ∂2 f/∂z ∂x and ∂2 f/∂x ∂z, are equal. It is a basic and perhaps sur-
prising fact that this is always the case for C2 functions. We shall prove this in the next
theorem for functions f (x , y) of two variables, but the proof can be readily extended
to functions of n variables.

Theorem 1 Equality of Mixed Partials If f (x , y) is of class C2 (is twice
continuously differentiable), then the mixed partial derivatives are equal; that is,

∂2 f

∂x ∂y
= ∂2 f

∂y ∂x
.

proof Consider the following expression (see Figure 3.1.1):

S(�x , �y) = f (x0 + �x , y0 + �y) − f (x0 + �x , y0)
− f (x0, y0 + �y) + f (x0, y0).

Holding y0 and �y fixed, define

g(x) = f (x , y0 + �y) − f (x , y0),

so that S(�x , �y) = g(x0 + �x) − g(x0), which expresses S as a difference of differ-
ences. By the mean-value theorem for functions of one variable, g(x0 + �x) − g(x0)
equals g′( x̄)�x for some x̄ between x0 and x0 + �x . Hence,

S(�x , �y) =
[
∂ f

∂x
( x̄ , y0 + �y) − ∂ f

∂x
( x̄ , y0)

]
�x .

+

− +

−

(x , y  + Δy)0 0 (x  + Δx, y  + Δy)0 0

(x , y )0 0 (x  + Δx, y )0 0

x

y

A B

C D figure 3.1.1 The algebra behind the
equality of mixed partials: writing the
difference of differences in two
ways.

wujiayao
高亮
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Applying the mean-value theorem again, there is a ȳ between y0 and y0 + �y such that

S(�x , �y) = ∂2 f

∂y ∂x
( x̄ , ȳ) �x �y.

Because ∂2 f/∂y ∂x is continuous, it follows that

∂2 f

∂y ∂x
(x0, y0) = limit

(�x ,�y)→(0,0)

1

�x�y
[S(�x , �y)].

Noting that S is symmetric in �x and �y, we show in a similar way that ∂2 f/∂x ∂y is
given by the same limit formula, which proves the result. ■

Historical Note

The equality of mixed partial derivatives is one of the most important results of
multivariable calculus. It will reappear on several occasions later in the book,
when we study vector identities.

In the next historical note, we will discuss the role of partial derivatives in the
formulation of many of the basic equations governing physical phenomena.
One of the giants in this era was Leonhard Euler (1707--1783), who developed the
equations of fluid mechanics that bear his name---the Euler equations. It was in
connection with the needs of this development that he discovered, around 1734,
the equality of mixed partial derivatives. Euler was about 27 years old at the time.

In Exercise 17 we ask you to deduce from Theorem 1 that for a C3 function of x , y,
and z,

∂3 f

∂x ∂y ∂z
= ∂3 f

∂z ∂y ∂x
= ∂3 f

∂y ∂z ∂x
, etc.

In other words, we can compute iterated partial derivatives in any order we please.

example 4 Verify the equality of the mixed second partial derivatives for the function

f (x , y) = xey + yx2.

solut ion Here

∂ f

∂x
= ey + 2xy,

∂ f

∂y
= xey + x2,

∂2 f

∂y ∂x
= ey + 2x ,

∂2 f

∂x ∂y
= ey + 2x ,

and so we have

∂2 f

∂y ∂x
= ∂2 f

∂x ∂y
.

▲

Sometimes the notation fx , fy , fz is used for the partial derivatives: fx = ∂ f/∂x , and
so on. With this notation, we write fxy = ( fx )y , and so equality of the mixed partials is
denoted by fxy = fyx . Notice that fxy = ∂2 f/∂y ∂x , so the order of x and y is reversed
in the two notations; fortunately, the equality of mixed partials makes this potential
ambiguity irrelevant. The following example illustrates this subscript notation.
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example 5 Let

z = f (x , y) = ex sin xy

and write x = g(s, t), y = h(s, t) for certain functions g and h. Let

k (s, t) = f (g(s, t), h(s, t)).

Calculate kst .

solut ion By the chain rule,

ks = fx gs + fyhs = (ex sin xy + yex cos xy)gs + (xex cos xy)hs .

Differentiating in t using the product rules gives

kst = ( fx )t gs + fx (gs)t + ( fy)t hs + fy(hs)t .

Applying the chain rule again to ( fx )t and ( fy)t gives

( fx )t = fxx gt + fxyht and ( fy)t = fyx gt + fyyht ,

and so kst becomes

kst = ( fxx gt + fxyht )gs + fx gst + ( fyx gt + fyyht )hs + fyhst

= fxx gt gs + fxy(ht gs + hs gt ) + fyyht hs + fx gst + fyhst .

Notice that this last formula is symmetric in (s, t), verifying the equality kst = kts .
Computing fxx , fxy , and fyy , we get

kst = (ex sin xy + 2yex cos xy − y2ex sin xy)gt gs

+ (xex cos xy + ex cos xy − xyex sin xy)(ht gs + hs gt )
− (x2ex sin xy)ht hs + (ex sin xy + yex cos xy)gst + (xex cos xy)hst ,

in which it is understood that x = g(s, t) and y = h(s, t). ▲

Some Partial Differential Equations

Philosophy [nature] is written in that great book which ever is before our eyes---I mean the
universe---but we cannot understand it if we do not first learn the language and grasp the
symbols in which it is written. The book is written in mathematical language, and the
symbols are triangles, circles and other geometrical figures, without whose help it is
impossible to comprehend a single word of it; without which one wanders in vain through
a dark labyrinth. ---Galileo

Historical Note

This quotation illustrates the Greek belief, again popular in the time of Galileo,
that much of nature could be described using mathematics. In the latter part of
the seventeenth century this thinking was dramatically reinforced when Newton
used his law of gravitation to derive Kepler's three laws of celestial motion (see
Section 4.1) to explain the tides, and to show that the earth was flattened at the
poles. The impact of this philosophy on mathematics was substantial, and many
mathematicians sought to “mathematize” nature. The extent to which
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mathematics pervades the physical sciences today (and, to an increasing
amount, economics and the social and life sciences) is testament to the success
of these endeavors. Correspondingly, the attempts to mathematize nature have
often led to new mathematical discoveries.

Many of the laws of nature were described in terms of either ordinary
differential equations (ODEs, equations involving the derivatives of functions of
one variable alone, such as the laws of planetary motion) or partial differential
equations (PDEs), that is, equations involving partial derivatives of functions. To
give you some historical perspective and offer motivation for studying partial
derivatives, we present a brief description of three of the most famous partial
differential equations: the heat equation, the potential equation (or Laplace’s
equation), and the wave equation. (Further information on some PDEs is given in
Section 8.5.)

THE HEAT EQUATION. In the early part of the nineteenth century the French
mathematician Joseph Fourier (1768--1830) took up the study of heat. Heat flow
had obvious applications to both industrial and scientific problems: A better
understanding of it would, for example, make possible more efficient smelting
of metals and would enable scientists to determine the temperature of a body
given the temperature at its boundary, and to approximate the temperature of
the earth’s interior.

Let a homogeneous body B ⊂ R3 (Figure 3.1.2) be represented by some
region in 3-space. Let T (x, y, z, t) denote the temperature of the body at the point
(x, y, z) at time t . Fourier proved, on the basis of physical principles (described in
Section 8.5), that T must satisfy the partial differential equation called the heat
equation,

k

(
∂2T
∂x2

+ ∂2T
∂y2

+ ∂2T
∂z 2

)
= ∂T

∂t
, (1)

where k is a constant whose value depends on the conductivity of the material
comprising the body.

Fourier used this equation to solve problems in heat conduction. In fact, his
investigations into the solutions of equation (1) led him to the discovery of Fourier
series.

z

y

x

(x, y, z)

B

figure 3.1.2 A homogeneous body in space.



Marsden-3620111 VC September 27, 2011 9:38 155

3.1 Iterated Partial Derivatives 155

THE POTENTIAL EQUATION. Consider the gravitational potential V (often called
Newton’s potential) of a mass mat a point (x, y, z) caused by a point mass M
situated at the origin. This potential is given by V = −GmM/r , where
r =

√
x2 + y2 + z 2. The potential V satisfies the equation

∂2V
∂x2

+ ∂2V
∂y2

+ ∂2V
∂z 2

= 0 (2)

everywhere except at the origin, as we will check in the next chapter (see also
Exercise 25). This equation is known as Laplace’s equation. Pierre-Simon de
Laplace (1749--1827) had worked on the gravitational attraction of nonpoint
masses and was the first to consider equation (2) with regard to gravitational
attraction. He gave arguments (later shown to be incorrect) that equation (2)
held for any body and any point whether inside or outside that body. However,
Laplace was not the first person to write down equation (2). The potential
equation appeared for the first time in one of Euler’s major papers in 1752,
“Principles of the Motions of Fluids,” in which he derived the potential equation
with regard to the motion of (incompressible) fluids. Euler remarked that he had
no idea how to solve equation (2). Poisson later showed that if (x, y, z) lies inside
an attracting body, then V satisfies the equation

∂2V
∂x2

+ ∂2V
∂y2

+ ∂2V
∂z 2

= −4πρ, (3)

where ρ is the mass density of the attracting body. Equation (3) is now called
Poisson’s equation. Poisson was also the first to point out the importance
of this equation for problems involving electric fields. Notice that if the
temperature T is constant in time, then the heat equation (1) reduces to
Laplace’s equation (2).

Laplace’s and Poisson’s equations are fundamental to many fields besides
fluid mechanics, gravitational fields, and electrostatic fields. For example, they
are useful for studying soap films and liquid crystals (see The Parsimonious
Universe: Shape and Form in the Natural World by S. Hildebrandt and A. Tromba,
Springer-Verlag, New York/Berlin, 1995).

THE WAVE EQUATION. The linear wave equation in space has the form

∂2 f
∂x2

+ ∂2 f
∂y2

+ ∂2 f
∂z 2

= c2 ∂2 f
∂t2

. (4)

The one-dimensional wave equation

∂2 f
∂x2

= c2 ∂2 f
∂t2

(4′)

was derived in about 1727 by Johann II Bernoulli and several years later by Jean
Le Rond d’Alembert in the study of how to determine the motion of a vibrating
string (such as a violin string). Equation (4) became useful in the study of both
vibrating bodies and elasticity. As we shall see when we consider Maxwell’s
equations for electromagnetism in Section 8.5, this equation also arises in the
study of the propagation of electromagnetic radiation and sound waves.
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example 6 As we have pointed out, the heat equation, originating around 1800, is one of the
important and classic partial differential equations. It describes the conduction of heat
in a solid body. For example, understanding the dissipation of heat is important for
industry, as well as for scientists understanding heat stresses on a capsule reentering the
earth’s atmosphere.

Consider a thin rod of length l (Figure 3.1.3).
We now show that

u(x , t) = 1

t1/2
e−x2/4t

is a solution of the heat equation

∂u

∂t
= ∂2u

∂x2
.

solut ion By the chain rule

∂u

∂t
= − 1

2t3/2
e−x2/4t + 1

t1/2
e−x2/4t d

dt

(−x2

4t

)

= − 1

2t3/2
e−x2/4t + 1

t1/2
· x2

4t2
e−x2/4t

= 1

2t3/2

(
− 1 + x2

2t

)
e−x2/4t ,

whereas

∂u

∂x
= − x

2t3/2
e−x2/4t

∂2u

∂x2
= − 1

2t3/2
e−x2/4t + x2

4t
e−x2/4t

= ∂u

∂t
.

This solution is called a fundamental solution to the heat equation. ▲

1

figure 3.1.3 A thin rod.

exercises

In Exercises 1 to 6, compute the second partial derivatives ∂2 f/∂x2, ∂2 f/∂x ∂y, ∂2 f/∂y ∂x , ∂2 f/∂y2 for each of the
following functions. Verify Theorem 1 in each case.

1. f (x , y) = 2xy/(x2 + y2)2, on the region where
(x , y) �= (0, 0)

2. f (x , y, z) = ez + (1/x) + xe−y , on the region where
x �= 0

3. f (x , y) = cos (xy2)

4. f (x , y) = e−xy2 + y3x4

5. f (x , y) = 1/(cos2 x + e−y)

6. f (x , y) = log (x − y)

7. Find all second partial derivatives of the following
functions at the point x0.

(a) f (x , y) = sin(xy); x0 = (π, 1)

(b) f (x , y) = xy8 + x2 + y4; x0 = (2, −1)

(c) f (x , y, z) = exyz ; x0 = (0, 0, 0)

8. Find all second partial derivatives of
f (x , y) = sec3(4y − 3x).
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9. Can there exist a C2 function f (x , y) with
fx = 2x − 5y and fy = 4x + y?

10. The heat conduction equation is ut = kuxx . Determine
whether u(x , t) = e−kt sin(x) is a solution.

11. Show that the following functions satisfy the
one-dimensional wave equation

∂2 f

∂x2 = 1

c2

∂2 f

∂t2 .

(a) f (x , t) = sin(x − ct)

(b) f (x , t) = sin(x) sin(ct)

(c) f (x , t) = (x − ct)6 + (x + ct)6

12. (a) Show that T (x , t) = e−kt cos x satisfies the
one-dimensional heat equation

k
∂2T

∂x2 = ∂T

∂t
.

(b) Show that T (x , y, t) = e−kt (cos x + cos y) satisfies
the two-dimensional heat equation

k
(

∂2T

∂x2 + ∂2T

∂y2

)
= ∂T

∂t
.

(c) Show that T (x , y, z, t) = e−kt (cos x +
cos y + cos z) satisfies the three-dimensional heat
equation

k
(

∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂z2

)
= ∂T

∂t
.

13. Find ∂2z/∂x2, ∂2z/∂x ∂y, ∂2z/∂y ∂x , and ∂2z/∂y2 for

(a) z = 3x2 + 2y2

(b) z = (2x2 + 7x2 y)/3xy, on the region where x �= 0
and y �= 0

14. Find all the second partial derivatives of

(a) z = sin (x2 − 3xy)

(b) z = x2 y2e2xy

15. Find fxy , fyz , fzx , and fxyz for

f (x , y, z) = x2 y + xy2 + yz2.

16. Let z = x4 y3 − x8 + y4.

(a) Compute ∂3z/∂y ∂x ∂x , ∂3z/∂x ∂y ∂x , and
∂3z/∂x ∂x ∂y (also denoted ∂3z/∂x2∂y).

(b) Compute ∂3z/∂x ∂y ∂y, ∂3z/∂y ∂x ∂y, and
∂3z/∂y ∂y ∂x (also denoted ∂3z/∂y2∂x).

17. Use Theorem 1 to show that if f (x , y, z) is of class C3,
then

∂3 f

∂x ∂y ∂z
= ∂3 f

∂y ∂z ∂x
.

18. Verify that

∂3 f

∂x ∂y ∂z
= ∂3 f

∂z ∂y ∂x

for f (x , y, z) = zexy + yz3x2.

19. Verify that fxzw = fzwx for
f (x , y, z, w) = e xyz sin (xw).

20. If f (x , y, z, w) is of class C3, show that fxzw = fzwx .

21. Evaluate all first and second partial derivatives of the
following functions:

(a) f (x , y) = x arctan (x/y)

(b) f (x , y) = cos
√

x2 + y2

(c) f (x , y) = exp (−x2 − y2)

22. Let w = f (x , y) be a function of two variables and let
x = u + v, y = u − v. Show that

∂2w

∂u ∂v
= ∂2w

∂x2 − ∂2w

∂y2 .

23. Let f : R2 → R be a C2 function and let c(t) be a C2

curve in R2. Write a formula for the second derivative
(d2/dt2)(( f ◦ c)(t)) using the chain rule twice.

24. Let f (x , y, z) = e xz tan ( yz) and let x = g(s, t),
y = h(s, t), z = k(s, t), and define the function
m(s, t) = f (g(s, t), h(s, t), k(s, t)). Find a formula for
mst using the chain rule and verify that your answer is
symmetric in s and t .

25. A function u = f (x , y) with continuous second partial
derivatives satisfying Laplace’s equation

∂2u

∂x2 + ∂2u

∂y2 = 0

is called a harmonic function. Show that the function
u(x , y) = x3 − 3xy2 is harmonic.

26. Which of the following functions are harmonic? (See
Exercise 25.)

(a) f (x , y) = x2 − y2

(b) f (x , y) = x2 + y2

(c) f (x , y) = xy

(d) f (x , y) = y3 + 3x2 y

(e) f (x , y) = sin x cosh y

(f) f (x , y) = ex sin y
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27. (a) Is the function f (x , y, z) = x2 − 2y2 + z2

harmonic? What about f (x , y, z) = x2 + y2 − z2?

(b) Laplace’s equation for functions of n variables is

∂2 f

∂x2
1

+ ∂2 f

∂x2
2

+ · · · + ∂2 f

∂x2
n

= 0.

Find an example of a function of n variables that is
harmonic, and show that your example is harmonic.

28. Show that the following functions are harmonic:

(a) f (x , y) = arctan y
x

(b) f (x , y) = log(x2 + y2)

29. Let f and g be C2 functions of one variable. Set
φ = f (x − t) + g(x + t).

(a) Prove that φ satisfies the wave equation:
∂2φ/∂t2 = ∂2φ/∂x2.

(b) Sketch the graph of φ against t and x if f (x) = x2

and g(x) = 0.

30. (a) Show that function g(x , t) = 2 + e−t sin x satisfies
the heat equation: gt = gxx . [Here g(x , t)
represents the temperature in a metal rod at position
x and time t .]

(b) Sketch the graph of g for t ≥ 0. (HINT: Look at
sections by the planes t = 0, t = 1, and t = 2.)

(c) What happens to g(x , t) as t → ∞? Interpret this
limit in terms of the behavior of heat in the rod.

31. Show that Newton’s potential V = −GmM/r satisfies
Laplace’s equation

∂2V

∂x2 + ∂2V

∂y2 + ∂2V

∂z2 = 0 for (x , y, z) �= (0, 0, 0).

32. Let

f (x , y) =
{xy(x2 − y2)/(x2 + y2), (x , y) �= (0, 0)

0, (x , y) = (0, 0)

(see Figure 3.1.4).

(a) If (x , y) �= (0, 0), calculate ∂ f/∂x and ∂ f/∂y.

(b) Show that (∂ f/∂x)(0, 0) = 0 = (∂ f/∂y)(0, 0).

(c) Show that (∂2 f/∂x ∂y)(0, 0) = 1,
(∂2 f/∂y ∂x)(0, 0) = −1.

(d) What went wrong? Why are the mixed partials not
equal?

0

−2
−1

1
2

−2
−1

0
1

2

−2

−1

0

1

2

y axis x axis

figure 3.1.4 The graph of the function in Exercise 32.

3.2 Taylor’s Theorem

When we introduced the derivative in Chapter 2, we saw that the linear approximation
of a function played an essential role for a geometric reason—finding the equation of a
tangent plane—as well as an analytic reason—finding approximate values of functions.
Taylor’s theorem deals with the important issue of finding quadratic and higher-order
approximations.

Taylor’s theorem is a central tool for finding accurate numerical approximations of
functions, and as such plays an important role in many areas of applied and computational
mathematics. We shall use it in the next section to develop the second derivative test for
maxima and minima of functions of several variables.

The strategy used to prove Taylor’s theorem is to reduce it to the one-variable case by
probing a function of many variables along lines of the form l(t) = x0 + th emanating
from a point x0 and heading in the direction h. Thus, it will be useful for us to begin by
reviewing Taylor’s theorem from one-variable calculus.

Single-Variable Taylor Theorem
When recalling a theorem from an earlier course, it is helpful to ask these basic questions:
What is the main point of the theorem? What are the key ideas in the proof? Can I
understand the result better the second time around?
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The main point of the single-variable Taylor theorem is to find approximations of a
function near a given point that are accurate to a higher order than the linear approxima-
tion. The key idea in the proof is to use the fundamental theorem of calculus, followed by
integration by parts. In fact, just by recalling these basic ideas, we can reconstruct the en-
tire proof. Thinking in this way will help organize all the pieces that need to come together
to develop a mastery of Taylor approximations of functions of one and several variables.

For a smooth function f : R → R of one variable, Taylor’s theorem asserts that:

f (x0 + h) = f (x0) + f ′(x0) · h + f ′′(x0)

2
h2 + · · · + f (k)(x0)

k!
hk + Rk(x0, h), (1)

where

Rk(x0, h) =
∫ x0+ h

x0

(x0 + h − τ )k

k!
f k+1(τ ) dτ

is the remainder. For small h, this remainder is small to order k in the sense that

lim
h→0

Rk(x0, h)

hk
= 0. (2)

In other words, Rk(x0, h) is small compared to the already small quantity hk .
The preceding is the formal statement of Taylor’s theorem. What about the proof?

As promised, we begin with the fundamental theorem of calculus, written in the form:

f (x0 + h) = f (x0) +
∫ x0+h

x0

f ′(τ ) dτ.

Next, we write dτ = −d(x0 + h − τ ) and integrate parts1 to give:

f (x0 + h) = f (x0) + f ′(x0)h +
∫ x0+h

x0

f ′′(τ )(x0 + h − τ ) dτ,

which is the first-order Taylor formula. Integrating by parts again:
∫ x0+h

x0

f ′′(τ )(x0 + h − τ ) dτ

= −1

2

∫ x0+h

x0

f ′′(τ ) d(x0 + h − τ )2

= 1

2
f ′′(x0)h2 + 1

2

∫ x0+h

x0

f ′′′(τ )(x0 + h − τ )2 dτ,

which, when substituted into the preceding formula, gives the second-order Taylor
formula:

f (x0 + h) = f (x0) + f ′(x0)h + 1

2
f ′′(x0)h2 + 1

2

∫ x0+h

x0

f ′′′(τ )(x0 + h − τ )2 dτ.

This is Taylor’s theorem for k = 2.

1Recall that integration by parts (the product rule for the derivative read backward) reads as:∫ b

a

u dv = uv b
a −

∫ b

a

v du.

Here we choose u = f ′(τ ) and v = x0 + h − τ .

wujiayao
高亮
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Taylor’s theorem for general k proceeds by repeated integration by parts. The state-
ment (2) that Rk(x0, h)/hk → 0 as h → 0 is seen as follows. For τ in the interval
[x0, x0 + h], we have |x0 + h − τ | ≤ |h|, and f k+1(τ ), being continuous, is bounded;
say, | f k+1(τ )| ≤ M . Then:

|Rk(x0, h)| =
∣∣∣∣
∫ x0+h

x0

(x0 + h − τ )k

k!
f k+1(τ ) dτ

∣∣∣∣ ≤ |h|k+1

k!
M

and, in particular, |Rk(x0, h)/hk | ≤ |h| M/k! → 0 as h → 0.

Taylor’s Theorem for Many Variables
Our next goal in this section is to prove an analogous theorem that is valid for functions
of several variables. We already know a first-order version; that is, when k = 1. Indeed,
if f : Rn → R is differentiable at x0 and we define

R1(x0, h) = f (x0 + h) − f (x0) − [Df (x0)](h),

so that

f (x0 + h) = f (x0) + [Df (x0)](h) + R1(x0, h),

then by the definition of differentiability,

|R1(x0, h)|
‖h‖ → 0 as h → 0;

that is, R1(x0, h) vanishes to first order at x0. In summary, we have:

Theorem 2 First-Order Taylor Formula Let f : U ⊂ Rn → R be differ-
entiable at x0 ∈ U . Then

f (x0 + h) = f (x0) +
n∑

i=1

hi
∂ f

∂xi
(x0) + R1(x0, h),

where R1(x0, h)/‖h‖ → 0 as h → 0 in Rn .

The second-order version is as follows:

Theorem 3 Second-Order Taylor Formula Let f : U ⊂ Rn → R have
continuous partial derivatives of third order.2 Then we may write

f (x0 + h) = f (x0) +
n∑

i=1

hi
∂ f

∂xi
(x0) + 1

2

n∑
i, j=1

hi h j
∂2 f

∂xi ∂x j
(x0) + R2(x0, h),

where R2(x0, h)/‖h‖2 → 0 as h → 0 and the second sum is over all i’s and j’s
between 1 and n (so there are n2 terms).

2For the statement of the theorem as given here, f actually needs only to be of class C2, but for a
convenient form of the remainder we assume f is of class C3.

wujiayao
高亮

wujiayao
高亮



Marsden-3620111 VC September 27, 2011 9:38 161

3.2 Taylor’s Theorem 161

Notice that this result can be written in matrix form as

f (x0 + h) = f (x0) +
[

∂ f

∂x1
, . . . ,

∂ f

∂xn

]⎡
⎢⎣

h1
...

hn

⎤
⎥⎦

+ 1

2
[h1, . . . , hn]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2 f

∂x1 ∂x1

∂2 f

∂x1 ∂x2
· · · ∂2 f

∂x1 ∂xn

∂2 f

∂x2 ∂x1

∂2 f

∂x2 ∂x2
· · · ∂2 f

∂x2 ∂xn

...

∂2 f

∂xn ∂x1

∂2 f

∂xn ∂x2
· · · ∂2 f

∂xn ∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

h1

h2

...

hn

⎤
⎥⎥⎥⎥⎥⎦

,

+ R2(x0, h),

where the derivatives of f are evaluated at x0.
In the course of the proof of the Theorem 3, we shall obtain a useful explicit formula

for the remainder, as in the single-variable theorem.

proof of theorem 3 Let g(t) = f (x0 + th) with x0 and h fixed, which is a C3

function of t . Now apply the single-variable Taylor theorem (1) to g, with k = 2, to
obtain

g(1) = g(0) + g′(0) + g′′(0)

2!
+ R2,

where

R2 =
∫ 1

0

(t − 1)2

2!
g′′′(t) dt.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

By the chain rule,

g′(t) =
n∑

i=1

∂ f

∂xi
(x0 + th)hi ; g′′(t) =

n∑
i, j=1

∂2 f

∂xi ∂x j
(x0 + th)hi h j ,

and

g′′′(t) =
n∑

i, j,k=1

∂3 f

∂xi ∂x j ∂xk
(x0 + th)hi h j hk .

Writing R2 = R2(x0, h), we have thus proved:

f (x0 + h) = f (x0) +
n∑

i=1

hi
∂ f

∂xi
(x0) + 1

2

n∑
i, j=1

hi h j
∂2 f

∂xi ∂x j
(x0) + R2(x0, h),

where

R2(x0, h) =
n∑

i, j,k=1

∫ 1

0

(t − 1)2

2

∂3 f

∂xi ∂x j ∂xk
(x0 + th)hi h j hk dt.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)
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The integrand is a continuous function of t and is therefore bounded by a positive
constant C on a small neighborhood of x0 (because it has to be close to its value at x0).
Also note that |hi | ≤ ‖h‖, for ‖h‖ small, and so

|R2(x0, h)| ≤ ‖h‖3C. (4)

In particular,

|R2(x0, h)|
‖h‖2

≤ ‖h‖C → 0 as h → 0,

as required by the theorem.
The proof of Theorem 2 follows analogously from the Taylor formula (1) with k = 1.

A similar argument for R1 shows that |R1(x0, h)|/‖h‖ → 0 as h → 0, although this
also follows directly from the definition of differentiability. ■

Forms of the Remainder In Theorem 2,

R1(x0, h) =
n∑

i, j=1

∫ 1

0
(1 − t)

∂2 f

∂xi∂x j
(x0 + th)hi h j dt =

n∑
i, j=1

1

2

∂2 f

∂xi∂x j
(ci j )hi h j ,

(5)
where ci j lies somewhere on the line joining x0 to x0 + h.

In Theorem 3,

R2(x0, h) =
n∑

i, j,k=1

∫ 1

0

(t − 1)2

2

∂3f

∂xi ∂x j ∂xk
(x0 + th)hi h j hk dt

=
n∑

i, j,k=1

1

3!

∂3f

∂xi ∂x j ∂xk
(cijk)hi h j hk , (5′)

where cijk lies somewhere on the line joining x0 to x0 + h.

The formulas involving cij and cijk (called Lagrange’s form of the remainder) are
obtained by making use of the second mean-value theorem for integrals. This states that

∫ b

a
h(t)g(t) dt = h(c)

∫ b

a
g(t) dt,

provided h and g are continuous and g ≥ 0 on [a, b]; here c is some number between
a and b.3 This is applied in formula (4) for the explicit form of the remainder with
h(t) = (∂2 f/∂xi∂x j )(x0 + th) and g(t) = 1 − t .

3Proof If g = 0, the result is clear, so we can suppose g �= 0; thus, we can assume
∫ b

a
g(t) dt > 0.

Let M and m be the maximum and minimum values of h, achieved at tM and tm , respectively. Because
g(t) ≥ 0,

m

∫ b

a

g(t) dt ≤
∫ b

a

h(t)g(t) dt ≤ M

∫ b

a

g(t) dt.

Thus,
( ∫ b

a
h(t)g(t) dt

)/(∫ b

a
g(t) dt

)
lies between m = h(tm) and M = h(tM ) and therefore, by the

intermediate-value theorem, equals h(c) for some intermediate c. ■
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The third-order Taylor formula is

f (x0 + h) = f (x0) +
n∑

i=1

hi
∂ f

∂xi
(x0) + 1

2

n∑
i, j=1

hi h j
∂2 f

∂xi ∂x j
(x0)

+ 1

3!

n∑
i, j,k=1

hi h j hk
∂3 f

∂xi ∂x j ∂xk
(x0) + R3(x0, h),

where R3(x0, h)/‖h‖3 → 0 as h → 0, and so on. The general formula can be proved
by induction, using the method of proof already given.

example 1 Compute the second-order Taylor formula for the function f (x , y) = sin (x+2y), about
the point x0 = (0, 0).

solut ion Notice that

f (0, 0) = 0,
∂ f

∂x
(0, 0) = cos (0 + 2 · 0) = 1,

∂ f

∂y
(0, 0) = 2 cos (0 + 2 · 0) = 2,

∂2 f

∂x2
(0, 0) = 0,

∂2 f

∂y2
(0, 0) = 0,

∂2 f

∂x ∂y
(0, 0) = 0.

Thus,

f (h) = f (h1, h2) = h1 + 2h2 + R2(0, h),

where

R2(0, h)

‖h‖2
→ 0 as h → 0. ▲

example 2 Compute the second-order Taylor formula for f (x , y) = ex cos y about the point x0 = 0,
y0 = 0.

solut ion Here

f (0, 0) = 1,
∂ f

∂x
(0, 0) = 1,

∂ f

∂y
(0, 0) = 0,

∂2 f

∂x2
(0, 0) = 1,

∂2 f

∂y2
(0, 0) = −1,

∂2 f

∂x ∂y
(0, 0) = 0,

and so

f (h) = f (h1, h2) = 1 + h1 + 1
2 h2

1 − 1
2 h2

2 + R2(0, h),

where

R2(0, h)

‖h‖2
→ 0 as h → 0.

▲
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In the case of functions of one variable, we can expand f (x) in an infinite power
series, called the Taylor series:

f (x0 + h) = f (x0) + f ′(x0)h + f ′′(x0)h2

2
+ · · · + f (k)(x0)hk

k!
+ · · · ,

provided we can show that Rk(x0, h) → 0 as k → ∞. Similarly, for functions of several
variables, the preceding terms are replaced by the corresponding ones involving partial
derivatives, as we have seen in Theorem 3. Again, we can represent such a function by
its Taylor series provided we can show that Rk → 0 as k → ∞. This point is examined
further in Exercise 13.

The first-, second-, and third-order Taylor polynomials are also called the first-,
second-, and third-order Taylor approximations to f , since it is presumed that the
remainder is small and gets smaller as the order of the Taylor polynomial increases.

example 3 Find the first- and second-order Taylor approximations to f (x , y) = sin(xy) at the point
(x0, y0) = (1, π/2).

solut ion Here

f (x0, y0) = sin (x0 y0) = sin (π/2) = 1

fx (x0, y0) = y0 cos (x0 y0) = π

2
cos (π/2) = 0

fy(x0, y0) = x0 cos (x0 y0) = cos (π/2) = 0

fxx (x0, y0) = −y2
0 sin (x0 y0) = −π2

4
sin (π/2) = −π2

4

fxy(x0, y0) = cos (x0 y0) − x0 y0 sin (x0 y0) = −π

2
sin (π/2) = −π

2
fyy(x0, y0) = −x2

0 sin (x0 y0) = −sin (π/2) = −1.

Thus, the linear (first-order) approximation is

l(x , y) = f (x0, y0) + fx (x0, y0)(x − x0) + fy(x0, y0)( y − y0)
= 1 + 0 + 0 = 1,

and the second-order (or quadratic) approximation is

g(x , y) = 1 + 0 + 0 + 1

2

(
−π2

4

)
(x − 1)2 +

(
−π

2

)
(x − 1)

(
y − π

2

)

+ 1

2
(−1)

(
y − π

2

)2

= 1 − π 2

8
(x − 1)2 − π

2
(x − 1)

(
y − π

2

)
− 1

2

(
y − π

2

)2

.

See Figure 3.2.1. ▲

example 4 Find linear and quadratic approximations to the expression (3.98 − 1)2/(5.97 − 3)2.
Compare with the exact value.
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figure 3.2.1 The linear and
quadratic approximations to
z = sin (xy) near (1, π/2). 3

1

0

1

2

3 0

1

2

−1
−0.5

0
0.5

l:

x

y g: z = quadratic

z = 1

s o l u t i o n Let f (x , y) = (x − 1)2/(y − 3)2. The desired expression is close to f (4, 6) = 1. To
find the approximations, we differentiate:

fx = 2(x − 1)

( y − 3)2
, fy = −2(x − 1)2

( y − 3)3

fxy = fyx = −4(x − 1)

( y − 3)3
, fxx = 2

( y − 3)2
, fyy = 6(x − 1)2

( y − 3)4
.

At the point of approximation, we have

fx (4, 6) = 2

3
, fy = −2

3
, fxy = fyx = −4

9
, fxx = 2

9
, fyy = 2

3
.

The linear approximation is then

1 + 2

3
(−0.02) − 2

3
(−0.03) = 1.00666.

The quadratic approximation is

1 + 2

3
(−0.02) − 2

3
(−0.03) + 2

9

(−0.02)2

2
− 4

9
(−0.02)(−0.03) + 2

3

(−0.03)2

2
= 1.00674.

The “exact” value using a calculator is 1.00675. ▲

exercises

1. Let f (x , z) = ex+y .

(a) Find the first-order Taylor formula for f at (0, 0).

(b) Find the second-order Taylor formula for f at (0, 0).

2. Suppose L: R2 → R is linear, so that L has the form
L(x , y) = ax + by.

(a) Find the first-order Taylor approximation for L .

(b) Find the second-order Taylor approximation
for L .

(c) What will higher-order approximations look
like?
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In each of Exercises 3 to 8, determine the second-order Taylor formula for the given function about the given point (x0, y0).

3. f (x , y) = (x + y)2, where x0 = 0, y0 = 0

4. f (x , y) = 1/(x2 + y2 + 1), where x0 = 0, y0 = 0

5. f (x , y) = ex+y , where x0 = 0, y0 = 0

6. f (x , y) = e−x2−y2
cos (xy), where x0 = 0, y0 = 0

7. f (x , y) = sin (xy) + cos (xy), where x0 = 0, y0 = 0

8. f (x , y) = e(x−1)2
cos y, where x0 = 1, y0 = 0

9. Calculate the second-order Taylor approximation to
f (x , y) = cos x sin y at the point (π, π/2).

10. Let f (x , y) = x cos(πy) − y sin(πx). Find the
second-order Taylor approximation for f at the point
(1, 2).

11. Let g(x , y) = sin(xy) − 3x2 log y + 1. Find the
degree 2 polynomial which best approximates g near the
point (π/2, 1).

12. For each of the functions in Exercises 3 to 7, use the
second-order Taylor formula to approximate

f (−1, −1). Compare your approximation to the exact
value using a calculator.

13. (Challenging) A function f : R → R is called an
analytic function provided

f (x + h) = f (x) + f ′(x)h + · · · + f (k)(x)

k!
hk + · · ·

[i.e., the series on the right-hand side converges and
equals f (x + h)].

(a) Suppose f satisfies the following condition: On any
closed interval [a, b], there is a constant M such
that for all k = 1, 2, 3, . . . , | f (k)(x)| ≤ Mk for all
x ∈ [a, b]. Prove that f is analytic.

(b) Let f (x) =
{ e−1/x x > 0

0 x ≤ 0.

Show that f is a C∞ function, but f is not analytic.

(c) Give a definition of analytic functions from Rn to
R. Generalize the proof of part (a) to this class of
functions.

(d) Develop f (x , y) = ex+y in a power series about
x0 = 0, y0 = 0.

3.3 Extrema of Real-Valued Functions

Historical Note

As we saw in the book’s Historical Introduction, the early Greeks sought to
mathematize nature and to find, as in the geometric Ptolemaic model of
planetary motion, mathematical laws governing the universe. With the revival of
Greek learning during the Renaissance, this point of view again took hold and
the search for these laws recommenced. In particular, the question was raised as
to whether there was one law, one mathematical principle that governed and
superseded all others, a principle that the Creator used in His Grand Design of
the Universe.

MAUPERTUIS’ PRINCIPLE. In 1744, the French scientist Pierre-Louis de Maupertuis
(see Figure 3.3.1) put forth his grand scheme of the world. The “metaphysical
principle” of Maupertuis is the assumption that nature always operates with the
greatest possible economy. In short, physical laws are a consequence of a
principle of “economy of means”; nature always acts in such a way as to
minimize some quantity that Maupertuis called the action. Action was nothing
more than the expenditure of energy over time, or energy × time. In
applications, the type of energy changes with each case. For example, physical
systems often try to “rearrange themselves” to have a minimum energy---such as
a ball rolling from a mountain peak to a valley, or the primordial irregular earth
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figure 3.3.1 Pierre-Louis de Maupertuis (1698--1759).

assuming a more nearly spherical shape. As another example, the spherical
shape of soap bubbles is connected with the fact that spheres are the surfaces of
least area containing a fixed volume.

We state Maupertuis’ principle formally as: Nature always minimizes action.
Maupertuis saw in this principle an expression of the wisdom of the Supreme
Being, of God, according to which everything in nature is performed in the most
economical way. He wrote:

What satisfaction for the human spirit that, in contemplating these laws
which contain the principle of motion and of rest for all bodies in the
universe, he finds the proof of existence of Him who governs the world.

Maupertuis indeed believed that he had discovered God’s fundamental law, the
very secret of Creation itself, but he was actually not the first person to pose this
principle.

In 1707, Leibniz wrote down the principle of least action in a letter to Johann
Bernoulli, which became lost until 1913, when it was discovered in Germany’s
Gotha library. For Leibniz, this principle was a natural outgrowth of his great
philosophical treatise The Theodicy, in which he argues that God may indeed
think of all possible worlds, but would want to create only the best among them;
and hence our world is necessarily the best of all possible worlds.

Action, as defined by Leibniz, was motivated by the following reasoning, used
in his letter. Think of a hiker walking along a road, and consider how to describe
his action. If he travels 2 kilometers in 1 hour, you would say that he has carried
out twice as much action as he would if he traveled 2 kilometers in 2 hours.
However, you would also say that he carries out twice as much action in traveling
2 kilometers in 2 hours as he would in traveling 1 kilometer in 1 hour. Altogether
then, our hiker, by walking 2 kilometers in 1 hour, carries out 4 times as much
action as he would in traveling 1 kilometer in 1 hour.
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Using this intuitive idea, Maupertuis defined action as the product of distance,
velocity, and mass:

Action = Mass × Distance × Velocity.

Mass is included in this definition to account for the hiker’s backpack. Moreover,
according to Leibniz, the kinetic energy E is given by the formula:

E = 1
2

× Mass × (Velocity)2
.

So action has the same physical dimension as

Energy × Time,

because velocity is distance divided by time.
In the 250 years after Maupertuis formulated his principle, this principle of least

action has been found to be a “theoretical basis” for Newton’s law of gravity,
Maxwell’s equations for electromagnetism, Schrodinger’s equation of quantum
mechanics, and Einstein’s field equation in general relativity.

There is much more to the story of the least-action principle, which we will
revisit in Section 4.1 and in the Internet supplement.

Maxima and Minima for Functions of n-Variables
As the previous remarks show, for Leibniz, Euler, and Maupertuis, and for much of
modern science as well, all in nature is a consequence of some maximum or minimum
principle. To make such grand schemes—as well as some that are more down to earth—
effective, we must first learn the techniques of how to find maxima and minima of
functions of n variables.

Extreme Points
Among the most basic geometric features of the graph of a function are its extreme
points, at which the function attains its greatest and least values. In this section, we
derive a method for determining these points. In fact, the method locates local extrema
as well. These are points at which the function attains a maximum or minimum value
relative only to nearby points. Let us begin by defining our terms.

Definition If f : U ⊂ Rn → R is a given scalar function, a point x0 ∈ U is
called a local minimum of f if there is a neighborhood V of x0 such that for all
points x in V , f (x) ≥ f (x0). (See Figure 3.3.2.) Similarly, x0 ∈ U is a local
maximum if there is a neighborhood V of x0 such that f (x) ≤ f (x0) for all x ∈ V .
The point x0 ∈ U is said to be a local, or relative, extremum if it is either a local
minimum or a local maximum. A point x0 is a critical point of f if either f is
not differentiable at x0, or if it is, Df (x0) = 0. A critical point that is not a local
extremum is called a saddle point.4

4The term “saddle point” is sometimes not used this generally; we shall discuss saddle points further
in the subsequent development.
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figure 3.3.2 (a) Local minimum
and (b) local maximum points
for a function of two variables.

y
x

z

x0

Graph of f

Local minimum

(a)

y
x

z

x0

Graph of f

Local maximum

(b)

First-Derivative Test for Local Extrema
The location of extrema is based on the following fact, which should be familiar from
one-variable calculus (the case n = 1): Every extremum is a critical point.

Theorem 4 First-Derivative Test for Local Extrema If U ⊂ Rn is open,
the function f : U ⊂ Rn → R is differentiable, and x0 ∈ U is a local extremum,
then Df (x0) = 0; that is, x0 is a critical point of f .

proof Suppose that f achieves a local maximum at x0. Then for any h ∈ Rn ,
the function g(t) = f (x0 + th) has a local maximum at t = 0. Thus, from one-
variable calculus g′(0) = 0.5 On the other hand, by the chain rule,

g′(0) = [Df (x0)]h.

Thus, [Df (x0)]h = 0 for every h, and so Df (x0) = 0. The case in which f achieves a
local minimum at x0 is entirely analogous. ■

If we remember that Df (x0) = 0 means that all the components of Df (x0) are zero,
we can rephrase the result of Theorem 4: If x0 is a local extremum, then

∂ f

∂xi
(x0) = 0, i = 1, . . . , n;

that is, each partial derivative is zero at x0. In other words, ∇ f (x0) = 0, where ∇ f is
the gradient of f .

If we seek to find the extrema or local extrema of a function, then Theorem 4 states that
we should look among the critical points. Sometimes these can be tested by inspection,
but usually we use tests (to be developed below) analogous to the second-derivative test
in one-variable calculus.

5Recall the proof from one-variable calculus: Because g(0) is a local maximum, g(t) ≤ g(0) for small
t > 0, so g(t) − g(0) ≤ 0, and hence g′(0) = limitt→0+ (g(t) − g(0))/t ≤ 0, where limitt→0+ means
the limit as t → 0, t > 0. For small t < 0, we similarly have g′(0) = limitt→0− (g(t) − g(0))/t ≥ 0.
Therefore, g′(0) = 0.
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example 1 Find the maxima and minima of the function f : R2 → R, defined by f (x , y) = x2 + y2.
(Ignore the fact that this example can be done by inspection.)

solut ion We first identify the critical points of f by solving the two equations ∂ f/∂x = 0 and
∂ f/∂y = 0, for x and y. But

∂ f

∂x
= 2x and

∂ f

∂y
= 2y,

so the only critical point is the origin (0, 0), where the value of the function is zero.
Because f (x , y) ≥ 0, this point is a relative minimum—in fact, an absolute, or global,
minimum—of f . Because (0, 0) is the only critical point, there are no maxima. ▲

example 2 Consider the function f : R2 → R, (x , y) → x2 − y2. Ignoring for the moment that this
function has a saddle and no extrema, apply the method of Theorem 4 for the location
of extrema.

solut ion As in Example 1, we find that f has only one critical point, at the origin, and the value
of f there is zero. Examining values of f directly for points near the origin, we see
that f (x , 0) ≥ f (0, 0) and f (0, y) ≤ f (0, 0), with strict inequalities when x �= 0 and
y �= 0. Because x or y can be taken arbitrarily small, the origin cannot be either a relative
minimum or a relative maximum (so it is a saddle point). Therefore, this function can
have no relative extrema (see Figure 3.3.3).

G aph ora f f

x

z

y

figure 3.3.3 A function of two variables with
a saddle point. ▲

example 3 Find all the critical points of z = x2 y + y2x .

solut ion Differentiating, we obtain

∂z

∂x
= 2xy + y2,

∂z

∂y
= 2xy + x2.

Equating the partial derivatives to zero yields

2xy + y2 = 0, 2xy + x2 = 0.
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Subtracting, we obtain x2 = y2. Thus, x = ±y. Substituting x = +y in the first of the
two preceding equations, we find that

2y2 + y2 = 3y2 = 0,

so that y = 0 and thus x = 0. If x = −y, then

−2y2 + y2 = −y2 = 0,

so y = 0 and therefore x = 0. Hence, the only critical point is (0, 0). For x = y,
z = 2x3, which is both positive and negative for x near zero. Thus, (0, 0) is not a
relative extremum. ▲

example 4 Refer to Figure 3.3.4, a computer-drawn graph of the function z = 2(x2 + y2) e−x2−y2
.

Where are the critical points?

−2
−1

0

1

22
1

0

−1
−2

y axis x axis

figure 3.3.4 The volcano: z = 2(x2 + y2) exp ( − x2 − y2).

solut ion Because z = 2(x2 + y2)e−x2−y2
, we have

∂z

∂x
= 4x(e−x2−y2

) + 2(x2 + y2)e−x2−y2
(−2x)

= e−x2−y2
[4x − 4x(x2 + y2)]

= 4x(e−x2−y2
)(1 − x2 − y2)

and

∂z

∂y
= 4y(e−x2−y2

)(1 − x2 − y2).

These both vanish when x = y = 0 or when x2 + y2 = 1. This is consistent with the
figure: Points on the crater’s rim are maxima and the origin is a minimum. ▲

Second-Derivative Test for Local Extrema
The remainder of this section is devoted to deriving a criterion, depending on the second
derivative, for a critical point to be a relative extremum. In the special case n = 1, our
criterion will reduce to the familiar condition from one-variable calculus: f ′′(x0) > 0
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for a minimum and f ′′(x0) < 0 for a maximum. But in the general context, the second
derivative is a fairly complicated mathematical object. To state our criterion, we will
introduce a version of the second derivative called the Hessian, which in turn is related
to quadratic functions. Quadratic functions are functions g: Rn → R that have the
form

g(h1, . . . , hn) =
n∑

i, j=1

aijhi h j

for an n × n matrix [aij]. In terms of matrix multiplication, we can write

g(h1, . . . , hn) = [h1 · · · hn]

⎡
⎢⎣

a11 a12 · · · a1n

...
...

...

an1 an2 · · · ann

⎤
⎥⎦

⎡
⎢⎢⎣

h1

...

hn

⎤
⎥⎥⎦.

For example, if n = 3,

g(h1, h2, h3) = h2
1 − 2h1h2 + h2

3 = [h1 h2 h3]

⎡
⎣ 1 −1 0

−1 0 0
0 0 1

⎤
⎦

⎡
⎣ h1

h2

h3

⎤
⎦

is a quadratic function.
We can, if we wish, assume that [aij] is symmetric; in fact, g is unchanged if we replace

[aij] by the symmetric matrix [bij], where bij = 1
2 (aij + a ji ), because hi h j = h j hi and

the sum is over all i and j . The quadratic nature of g is reflected in the identity

g(λh1, . . . , λhn) = λ2g(h1, . . . , hn),

which follows from the definition.
Now we are ready to define Hessian functions (named after Ludwig Otto Hesse, who

introduced them in 1844).

Definition Suppose that f : U ⊂ Rn → R has second-order continuous deriva-
tives (∂2 f/ ∂xi ∂x j )(x0), for i, j = 1, . . . , n, at a point x0 ∈ U . The Hessian of
f at x0 is the quadratic function defined by

Hf (x0)(h) = 1

2

n∑
i, j=1

∂2 f

∂xi ∂x j
(x0)hi h j

= 1

2
[h1, . . . , hn]

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2f

∂x1 ∂x1
· · · ∂2f

∂x1 ∂xn
...

∂2f

∂xn ∂x1
· · · ∂2f

∂xn ∂xn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

h1
...

hn

⎤
⎥⎦ .

Notice that, by equality of mixed partials, the second-derivative matrix is
symmetric.
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This function is usually used at critical points x0 ∈ U . In this case, Df (x0) = 0, so
the Taylor formula (see Theorem 2, Section 3.2) may be written in the form

f (x0 + h) = f (x0) + Hf (x0)(h) + R2(x0, h).

Thus, at a critical point the Hessian equals the first nonconstant term in the Taylor
series of f .

A quadratic function g: Rn → R is called positive-definite if g(h) ≥ 0 for all h ∈ Rn

and g(h) = 0 only for h = 0. Similarly, g is negative-definite if g(h) ≤ 0 and g(h) = 0
for h = 0 only. Note that if n = 1, Hf (x0)(h) = 1

2 f ′′(x0)h2, which is positive-definite
if and only if f ′′(x0) > 0.

Theorem 5 Second-Derivative Test for Local Extrema If f : U ⊂ Rn →
R is of class C3, x0 ∈ U is a critical point of f, and the Hessian Hf (x0) is positive-
definite, then x0 is a relative minimum of f . Similarly, if Hf (x0) is negative-
definite, then x0 is a relative maximum.

Actually, we shall prove that the extrema given by this criterion are strict. A relative
maximum x0 is said to be strict if f (x) < f (x0) for nearby x �= x0. A strict relative
minimum is defined similarly. Also, the theorem is valid even if f is only C2, but we
have assumed C3 for simplicity.

The proof of Theorem 5 requires Taylor’s theorem and the following result from
linear algebra.

Lemma 1 If B = [bij] is an n × n real matrix, and if the associated quadratic
function

H : Rn → R, (h1, . . . , hn) → 1

2

n∑
i, j=1

bijhi h j

is positive-definite, then there is a constant M > 0 such that for all h ∈ Rn;

H (h) ≥ M‖h‖2.

proof For ‖h‖ = 1, set g(h) = H (h). Then g is a continuous function of h for
‖h‖ = 1 and so achieves a minimum value, say M .6 Because H is quadratic, we have

H (h) = H

(
h

‖h‖‖h‖
)

= H

(
h

‖h‖
)

‖h‖2 = g

(
h

‖h‖
)

‖h‖2 ≥ M‖h‖2

for any h �= 0. (The result is obviously valid if h = 0.) ■

Note that the quadratic function associated with the symmetric matrix 1
2 (∂2 f/∂xi ∂x j )

is exactly the Hessian.

6Here we are using, without proof, a theorem analogous to a theorem in calculus that states that every
continuous function on an interval [a, b] achieves a maximum and a minimum; see Theorem 7.
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proof of theorem 5 Recall that if f : U ⊂ Rn → R is of class C3 and x0 ∈ U is a
critical point, Taylor’s theorem may be expressed in the form

f (x0 + h) − f (x0) = Hf (x0)(h) + R2(x0, h),

where (R2(x0, h))/‖h‖2 → 0 as h → 0.

Because Hf (x0) is positive-definite, Lemma 1 assures us of a constant M > 0 such
that for all h ∈ Rn

Hf (x0)(h) ≥ M‖h‖2.

Because R2(x0, h)/‖h‖2 → 0 as h → 0, there is a δ > 0 such that for 0 < ‖h‖ < δ

|R2(x0, h)| < M‖h‖2.

Thus, 0 < Hf (x0)(h) + R2(x0, h) = f (x0 + h) − f (x0) for 0 < ‖h‖ < δ, so that x0 is
a relative minimum; in fact, a strict relative minimum.

The proof in the negative-definite case is similar, or else follows by applying the
preceding to − f , and is left as an exercise. ■

example 5 Consider again the function f : R2 → R, (x , y) → x2 + y2. Then (0, 0) is a critical
point, and f is already in the form of Taylor’s theorem:

f ((0, 0) + (h1, h2)) = f (0, 0) + (h2
1 + h2

2) + 0.

We can see directly that the Hessian at (0, 0) is

Hf (0)(h) = h2
1 + h2

2,

which is clearly positive-definite. Thus, (0, 0) is a relative minimum. This simple case
can, of course, be done without calculus. Indeed, it is clear that f (x , y) > 0 for all
(x , y) �= (0, 0). ▲

For functions of two variables f (x , y), the Hessian may be written as follows:

Hf (x , y)(h) = 1
2 [h1, h2]

⎡
⎢⎢⎢⎣

∂2 f

∂x2

∂2 f

∂y ∂x

∂2 f

∂x ∂y

∂2 f

∂y2

⎤
⎥⎥⎥⎦

[
h1

h2

]
.

Now we shall give a useful criterion for when a quadratic function defined by such a
2 × 2 matrix is positive-definite. This will be useful in conjunction with Theorem 5.

Lemma 2 Let

B =
[

a b
b c

]
and H (h) = 1

2 [h1, h2]B

[
h1

h2

]
.

Then H (h) is positive-definite if and only if a > 0 and det B = ac − b2 > 0.
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proof We have

H (h) = 1
2 [h1, h2]

[
ah1 + bh2

bh1 + ch2

]
= 1

2 (ah2
1 + 2bh1h2 + ch2

2).

Let us complete the square, writing

H (h) = 1

2
a

(
h1 + b

a
h2

)2

+ 1

2

(
c − b2

a

)
h2

2.

Suppose H is positive-definite. Setting h2 = 0, we see that a > 0. Setting h1 =−(b/a)h2,
we get c − b2/a > 0 or ac − b2 > 0. Conversely, if a > 0 and c − b2/a > 0, H (h) is a
sum of squares, so that H (h) ≥ 0. If H (h) = 0, then each square must be zero. This
implies that both h1 and h2 must be zero, so that H (h) is positive-definite. ■

Similarly, we can see that H (h) is negative-definite if and only if a < 0 and
ac − b2 > 0. We note that an alternative formulation is that H (h) is positive- (respec-
tively, negative-) definite if a + c = trace B > 0 (respectively, < 0) and det B > 0.

Determinant Test for Positive Definiteness
There are similar criteria to test the positive (or negative) definiteness of an n × n
symmetric matrix B, thus providing a maxima and minima test for functions of n-
variables. Consider the n square submatrices along the diagonal (see Figure 3.3.5). B is
positive-definite (that is, the quadratic function associated with B is positive-definite) if
and only if the determinants of these diagonal submatrices are all greater than zero. For
negative-definite B, the signs should be alternately <0 and >0. We shall not prove this
general case here.7 In case the determinants of the diagonal submatrices are all nonzero,
but the Hessian matrix is not positive- or negative-definite, the critical point is of saddle
type; in this case, we can show that the point is neither a maximum nor a minimum in
the manner of Example 2.

figure 3.3.5 “Diagonal” submatrices are used in the criterion
for positive definiteness; they must all have determinant > 0.

7This is proved in, for example, K. Hoffman and R. Kunze, Linear Algebra, Prentice Hall, Englewood
Cliffs, N.J., 1961, pp. 249–251. For students with sufficient background in linear algebra, it should be
noted that B is positive-definite when all of its eigenvalues (which are necessarily real, because B is
symmetric) are positive.
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General Second-Derivative Tests (n-variables)
Suppose x0 ∈ Rn is a critical point for a C2 function f : U → R, U an open set
containing x0; that is, ∂ f

∂xi
(x0) = 0, i = 1, · · · , n. Suppose that the Hessian matrix

{ ∂2 f
∂xi ∂x j

(x0)} is positive-definite; then x0 is a strict local minimum for f . If the Hessian
matrix is negative-definite, x0 is a strict local maximum. If the Hessian matrix is neither
positive- nor negative-definite, but its determinant is nonzero, it is of saddle type (it is
neither a maximum nor a minimum). If the determinant of the Hessian is zero, it is said
to be of degenerate type and nothing can be said about the nature of the critical point
without further analysis. Figure 3.3.5 illustrates a simple test for the positive definiteness
of a symmetric matrix. In the case of two variables, the maximum and minimum test
can be considerably simplified.

Second-Derivative Test (two variables)
Lemma 2 and Theorem 5 imply the following result:

Theorem 6 Second-Derivative Maximum-Minimum Test for Functions
of Two Variables Let f (x , y) be of class C2 on an open set U in R2. A point
(x0, y0) is a (strict) local minimum of f provided the following three conditions
hold:

(i)
∂ f

∂x
(x0, y0) = ∂ f

∂y
(x0, y0) = 0

(ii)
∂2 f

∂x2
(x0, y0) > 0

(iii) D =
(

∂2 f

∂x2

)(
∂2 f

∂y2

)
−

(
∂2 f

∂x ∂y

)2

> 0 at (x0, y0)

(D is called the discriminant of the Hessian.) If in (ii) we have <0 instead of
>0 and condition (iii) is unchanged, then we have a (strict) local maximum.

If D < 0 (e.g., if
∂2 f

∂x2
(x0, y0) = 0 or

∂2 f

∂y2
(x0, y0) = 0, but

∂2 f

∂x∂y
(x0, y0) �=

0), then (x0, y0) is of saddle type (neither a maximum nor a minimum).

example 6 Classify the critical points of the function f : R2 → R, defined by (x , y) → x2 −
2xy + 2y2.

solut ion As in Example 5, we find that f (0, 0) = 0, the origin is the only critical point, and the
Hessian is

Hf (0)(h) = h2
1 − 2h1h2 + 2h2

2 = (h1 − h2)2 + h2
2,

which is clearly positive-definite. Thus, f has a relative minimum at (0, 0). Alternatively,
we can apply Theorem 6. At (0, 0), ∂2 f/∂x2 = 2, ∂2 f/∂y2 = 4, and ∂2 f/∂x ∂y = −2.
Conditions (i), (ii), and (iii) hold, so f has a relative minimum at (0, 0). ▲

wujiayao
高亮

wujiayao
高亮
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If D < 0 in Theorem 6, then we have a saddle point. In fact, we can prove that
f (x , y) is larger than f (x0, y0) as we move away from (x0, y0) in some direction and
smaller in the orthogonal direction (see Exercise 32). The general appearance is thus
similar to that shown in Figure 3.3.3. The appearance of the graph near (x0, y0) in the
case D = 0 must be determined by further analysis.

We summarize the procedure for dealing with functions of two variables: After all
critical points have been found and their associated Hessians computed, some of these
Hessians may be positive-definite, indicating relative minima; some may be negative-
definite, indicating relative maxima; and some may be neither positive- nor negative-
definite, indicating saddle points. The shape of the graph at a saddle point where D < 0
is like that in Figure 3.3.3. Critical points for which D �= 0 are called nondegenerate
critical points. Such points are maxima, minima, or saddle points. The remaining critical
points, where D = 0, may be tested directly, with level sets and sections or by some
other method. Such critical points are said to be degenerate; the methods developed in
this chapter fail to provide a picture of the behavior of a function near such points, so
we examine them case by case.

example 7 Locate the relative maxima, minima, and saddle points of the function

f (x , y) = log (x2 + y2 + 1).

solut ion We must first locate the critical points of this function; therefore, according to Theorem 3,
we calculate

∇ f (x , y) = 2x

x2 + y2 + 1
i + 2y

x2 + y2 + 1
j.

Thus, ∇ f (x , y) = 0 if and only if (x , y) = (0, 0), and so the only critical point of f
is (0, 0). Now we must determine whether this is a maximum, a minimum, or a saddle
point. The second partial derivatives are

∂2f

∂x2
= 2(x2 + y2 + 1) − (2x)(2x)

(x2 + y2 + 1)2
,

∂2f

∂y2
= 2(x2 + y2 + 1) − (2y)(2y)

(x2 + y2 + 1)2
,

and

∂2 f

∂x ∂y
= −2x(2y)

(x2 + y2 + 1)2
.

Therefore,

∂2 f

∂x2
(0, 0) = 2 = ∂2 f

∂y2
(0, 0) and

∂2 f

∂x ∂y
(0, 0) = 0,

which yields

D = 2 · 2 = 4 > 0.

Because (∂2 f/∂x2)(0, 0) > 0, we conclude by Theorem 6 that (0, 0) is a local minimum.
(Can you show this just from the fact that log t is an increasing function of t > 0?) ▲



Marsden-3620111 VC September 27, 2011 9:38 178

178 Higher-Order Derivatives: Maxima and Minima

example 8 The graph of the function g(x , y) = 1/xy is a surface S in R3. Find the points on S that
are closest to the origin (0, 0, 0). (See Figure 3.3.6.)

0.5

1

1.5

2

0.5

1

1.5

2
0

0

0

5

10

15

figure 3.3.6 The surface z = 1/xy defined over the first
quadrant in the xy plane. (There are similar figures in the
other quadrants, but notice that z < 0 in the second and
fourth quadrants.)

solut ion Each point on S is of the form (x , y, 1/xy). The distance from this point to the origin is

d(x , y) =
√

x2 + y2 + 1

x2 y2
.

It is easier to work with the square of d, so let f (x , y) = x2 + y2 + (1/x2 y2), which will
have the same minimum point. This follows from the fact that d(x , y)2 ≥ d(x0, y0)2 if
and only if d(x , y) ≥ d(x0, y0). Notice that f (x , y) becomes very large as x and y get
larger and larger; f (x , y) also becomes very large as (x , y) approaches the x or y axis
where f is not defined, so f must attain a minimum at some critical point. The critical
points are determined by:

∂ f

∂x
= 2x − 2

x3 y2
= 0,

∂ f

∂y
= 2y − 2

y3x2
= 0,

that is, x4 y2 − 1 = 0, and x2 y4 − 1 = 0. From the first equation we get y2 = 1/x4, and,
substituting this into the second equation, we obtain

x2

x8
= 1 = 1

x6
.

Thus, x = ±1 and y = ±1, and it therefore follows that f has four critical points,
namely, (1, 1), (1, −1), (−1, 1), and (−1, −1). Note that f has the value 3 for all these
points, so they are all minima. Therefore, the points on the surface closest to the point (0,
0, 0) are (1, 1, 1), (1, −1, −1), (−1, 1, −1), and (−1, −1, 1) and the minimum distance
is

√
3. Is this consistent with the graph in Figure 3.3.6? ▲
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example 9 Analyze the behavior of z = x5 y + xy5 + xy at its critical points.

solut ion The first partial derivatives are

∂z

∂x
= 5x4 y + y5 + y = y(5x4 + y4 + 1)

and

∂z

∂y
= x(5y4 + x4 + 1).

The terms 5x4 + y4 + 1 and 5y4 + x4 + 1 are always greater than or equal to 1, and so
it follows that the only critical point is (0, 0).

The second partial derivatives are

∂2z

∂x2
= 20x3 y,

∂2z

∂y2
= 20xy3

and

∂2z

∂x ∂y
= 5x4 + 5y4 + 1.

Thus, at (0, 0), D = −1, and so (0, 0) is a nondegenerate saddle point and the graph of
z near (0, 0) looks like the graph in Figure 3.3.3. ▲

We now look at an example for a function of three variables.

example 10 Consider f (x , y) = x2 + y2 + z2 + 2xyz. Show that (0, 0, 0) and (−1, 1, 1) are both
critical points. Determine whether they are local minima, local maxima, saddle points,
or none of them.

solut ion ∂ f
∂x = 2x + 2yz, ∂ f

∂y = 2y + 2xz, and ∂ f
∂z = 2z + 2xy, all of which vanish at (0, 0, 0)

and (−1, 1, 1). Thus, these are critical points. The Hessian of f at (0, 0, 0) is

⎡
⎣ 2 0 0

0 2 0
0 0 2

⎤
⎦ .

The diagonal submatrices are [2] and

[
2 0
0 2

]
and the Hessian itself, all of which have

positive determinants. Therefore (c.f. Figure 3.3.5) (0, 0, 0) is a strict local minimum.
On the other hand, the Hessian matrix of f at (−1, 1, 1) is

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂2 f

∂x2

∂2 f

∂x∂y

∂2 f

∂x∂z

∂2 f

∂y∂x

∂2 f

∂y2

∂2 f

∂y∂z

∂2 f

∂z∂x

∂2 f

∂z∂y

∂2 f

∂z2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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or
⎡
⎣ 2 2 2

2 2 −2
2 −2 2

⎤
⎦ .

The determinant of the first diagonal matrix is 2, the second diagonal matrix

[
2 2
2 2

]

is zero, and the determinant of the Hessian is −16. Thus, the critical point (−1, 1, 1) is
of saddle type (i.e., neither a maximum nor a minimum). ▲

Global Maxima and Minima
We end this section with a discussion of the theory of absolute, or global, maxima
and minima of functions of several variables. Unfortunately, the location of absolute
maxima and minima for functions on Rn is, in general, a more difficult problem than
for functions of one variable.

Definition Suppose f : A → R is a function defined on a set A in R2 or R3. A
point x0 ∈ A is said to be an absolute maximum (or absolute minimum) point of
f if f (x) ≤ f (x0) [or f (x) ≥ f (x0)] for all x ∈ A.

In one-variable calculus, we learn—but often do not prove—that every continu-
ous function on a closed interval I assumes its absolute maximum (or minimum)
value at some point x0 in I . A generalization of this theoretical fact also holds in Rn .
Such theorems guarantee that the maxima or minima one is seeking actually exist;
therefore, the search for them is not in vain.

Definition A set D ∈ Rn is said to be bounded if there is a number M > 0 such
that ‖x‖ < M for all x ∈ D. A set is closed if it contains all its boundary points.

As an important example, we note that the level sets {(x1, x2, · · · , xn) | f (x1,
x2, . . . , xn) = c} of a continuous function f are always closed.

Thus, a set is bounded if it can be strictly contained in some (large) ball. The appropri-
ate generalization of the one-variable theorem on maxima and minima is the following
result, stated without proof.

Theorem 7 Global Existence Theorem for Maxima and Minima Let
D be closed and bounded in Rn and let f : D → R be continuous. Then f assumes
its absolute maximum and minimum values at some points x0 and x1 of D.
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figure 3.3.7 D = U ∪ ∂U : Two
examples of regions whose
boundary is a piecewise smooth
curve.

x

∂U

D = U ∪ ∂U

y

x

∂U

y

U
U

Simply stated, x0 and x1 are points where f assumes its largest and smallest values.
As in one-variable calculus, these points need not be uniquely determined.

Suppose now that D = U ∪ ∂U , where U is open and ∂U is its boundary. If
D ⊂ R2, we suppose that ∂U is a piecewise smooth curve; that is, D is a region
bounded by a collection of smooth curves—for example, a square or the sets depicted in
Figure 3.3.7.

If x0 and x1 are in U , we know from Theorem 4 that they are critical points of f .
If they are in ∂U , and ∂U is a smooth curve (i.e., the image of a smooth path c with
c′ �= 0), then they are maximum or minimum points of f viewed as a function on ∂U .
These observations provide a method of finding the absolute maximum and minimum
values of f on a region D.

Strategy for Finding the Absolute Maxima and Minima on a
Region with Boundary Let f be a continuous function of two variables
defined on a closed and bounded region D in R2, which is bounded by a smooth
closed curve. To find the absolute maximum and minimum of f on D:

(i) Locate all critical points for f in U .

(ii) Find all the critical points of f viewed as a function only on ∂U .

(iii) Compute the value of f at all of these critical points.

(iv) Compare all these values and select the largest and the smallest.

If D is a region bounded by a collection of smooth curves (such as a square), then we
follow a similar procedure, but including in step (iii) the points where the curves meet
(such as the corners of the square).

All the steps except step (ii) should now be familiar to you. To carry out step (ii)
in the plane, one way is to find a smooth parametrization of ∂U ; that is, we find a
path c: I → ∂U , where I is some interval, which is onto ∂U . Second, we consider
the function of one variable t → f (c(t)), where t ∈ I , and locate the maximum and
minimum points t0, t1 ∈ I (remember to check the endpoints!). Then c(t0), c(t1) will
be maximum and minimum points for f as a function on ∂U . Another method for
dealing with step (ii) is the Lagrange multiplier method, to be presented in the next
section.
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example 11 Find the maximum and minimum values of the function f (x , y) = x2 + y2 − x − y + 1
in the disc D defined by x2 + y2 ≤ 1.

solut ion (i) To find the critical points we set ∂ f/∂x = ∂ f/∂y = 0. Thus, 2x − 1 = 0,
2y − 1 = 0, and hence (x , y) = ( 1

2 , 1
2 ) is the only critical point in the open disc

U = {(x , y) | x2 + y2 < 1}.
(ii) The boundary ∂U can be parametrized by c(t) = (sin t , cos t), 0 ≤ t ≤ 2π . Thus,

f (c(t)) = sin2 t + cos2 t − sin t − cos t + 1 = 2 − sin t − cos t = g(t).

To find the maximum and minimum of f on ∂U , it suffices to locate the maxi-
mum and minimum of g. Now g′(t) = 0 only when

sin t = cos t , that is, when t = π

4
,

5π

4
.

Thus, the candidates for the maximum and minimum for f on ∂U are the points
c(π/4), c(5π/4), and the endpoints c(0) = c(2π ).

(iii) The values of f at the critical points are: f ( 1
2 , 1

2 ) = 1
2 from step (i) and, from

step (ii),

f

(
c

(
π

4

))
= f

(√
2

2
,

√
2

2

)
= 2 −

√
2,

f

(
c

(
5π

4

))
= f

(
−

√
2

2
, −

√
2

2

)
= 2 +

√
2,

and

f (c(0)) = f (c(2π )) = f (0, 1) = 1.

(iv) Comparing all the values 1
2 , 2−√

2, 2+√
2, 1, it is clear that the absolute minimum

is 1
2 and the absolute maximum is 2 + √

2. ▲

In Section 3.4, we shall consider a generalization of the strategy for finding the
absolute maximum and minimum to regions D in Rn .

exercises

In Exercises 1 to 16, find the critical points of the given function and then determine whether they are local maxima, local
minima, or saddle points.

1. f (x , y) = x2 − y2 + xy

2. f (x , y) = x2 + y2 − xy

3. f (x , y) = x2 + y2 + 2xy

4. f (x , y) = x2 + y2 + 3xy

5. f (x , y) = e1+x2−y2

6. f (x , y) = x2 − 3xy + 5x − 2y + 6y2 + 8

7. f (x , y) = 3x2 + 2xy + 2x + y2 + y + 4

8. f (x , y) = sin (x2 + y2) [consider only the critical point
(0, 0)]

9. f (x , y) = cos (x2 + y2) [consider only the three critical
points (0, 0), (

√
π/2,

√
π/2), and (0,

√
π )]
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10. f (x , y) = y + x sin y

11. f (x , y) = ex cos y

12. f (x , y) = (x − y)(xy − 1)

13. f (x , y) = xy + 1

x
+ 1

y

14. f (x , y) = log (2 + sin xy)

15. f (x , y) = x sin y

16. f (x , y) = (x + y)(xy + 1)

17. Find all local extrema for f (x , y) = 8y3 + 12x2 − 24xy.

18. Let f (x , y, z) = x2 + y2 + z2 + kyz.

(a) Verify that (0, 0, 0) is a critical point for f .

(b) Find all values of k such that f has a local
minimum at (0, 0, 0).

19. Find and classify all critical points of
f (x , y) = 1

3 x3 + 1
3 y3 − 1

2 x2 − 5
2 y2 + 6y + 10.

20. Suppose (4, 2) is a critical point for the C2 function
f (x , y). In each case, determine whether (4, 2) is a local
maximum, a local minimum, or a saddle point.

(a) fxx (4, 2) = 1, fxy(4, 2) = 3, fyy = 5

(b) fxx (4, 2) = 2, fyx (4, 2) = −1, fyy = 4

(c) fxx (4, 2) = −2, fxy(4, 2) = 1, fyy = 3

21. Find the local maxima and minima for
z = (x2 + 3y2) e1−x2−y2

. (See Figure 2.1.15.)

22. Let f (x , y) = x2 + y2 + kxy. If you imagine the graph
changing as k increases, at what values of k does the
shape of the graph change qualitatively?

23. An examination of the function
f : R2 → R, (x , y) → ( y − 3x2)( y − x2) will give an
idea of the difficulty of finding conditions that guarantee
that a critical point is a relative extremum when
Theorem 6 fails.8 Show that

(a) the origin is a critical point of f ;

(b) f has a relative minimum at (0, 0) on every straight
line through (0, 0); that is, if g(t) = (at , bt), then

f ◦ g: R → R has a relative minimum at 0, for
every choice of a and b;

(c) the origin is not a relative minimum of f .

24. Let f (x , y) = Ax2 + E , where A and E are constants.
What are the critical points of f ? Are they local maxima
or local minima?

25. Let f (x , y) = x2 − 2xy + y2. Here D = 0. Can you say
whether the critical points are local minima, local
maxima, or saddle points?

26. Let f (x , y) = ax2 + bx2, where a, b �= 0.

(a) Show that (0, 0) is the only critical point for f .

(b) Determine the nature of this critical point in terms
of a and b.

27. Suppose f : R3 → R is C2, and that x0 is a critical point
for f . Suppose Hf (x0)(h) = h2

1 + h2
2 + h2

3 + 4h2h3.
Does f have a local maximum, minimum, or saddle at
x0?

28. Find the point on the plane 2x − y + 2z = 20 nearest the
origin.

29. Show that a rectangular box of given volume has
minimum surface area when the box is a cube.

30. Show that the rectangular parallelepiped with fixed
surface area and maximum volume is a cube.

31. Write the number 120 as a sum of three numbers so that
the sum of the products taken two at a time is a
maximum.

32. Show that if (x0, y0) is a critical point of a quadratic
function f (x , y) and D < 0, then there are points (x , y)
near (x0, y0) at which f (x , y) > f (x0, y0) and,
similarly, points for which f (x , y) < f (x0, y0).

33. Let f (x , y) = x6 + x2 + y6, g(x , y) =
−x6 − x2 − y6, h(x , y) = x6 − x4 + y6.

(a) Show that (0, 0) is a degenerate critical point for
f, g, and h.

(b) Show that (0, 0) is a local minimum for f , a local
maximum for g, and a saddle for h.

34. Let f (x , y) = 5yex − e5x − y5.

8This interesting phenomenon was first pointed out by the famous mathematician Giuseppe Peano (1858–1932). Another curious “pathology”
is given in Exercise 41.
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(a) Show that f has a unique critical point and that this
point is a local maximum for f .

(b) Show that f is unbounded on the y axis, and thus
has no global maximum. [Note that for a function
g(x) of a single variable, a unique critical point
which is a local extremum is necessarily a global
extremum. This example shows that this is not the
case for functions of several variables.]

35. Determine the nature of the critical points of the function

f (x , y, z) = x2 + y2 + z2 + xy.

36. Let n be an integer greater than 2 and set f (x , y) =
axn + cyn , where ac �= 0. Determine the nature of the
critical points of f .

37. Determine the nature of the critical points of
f (x , y) = x3 + y2 − 6xy + 6x + 3y.

38. Find the absolute maximum and minimum values of the
function f (x , y) = (x2 + y2)4 on the disc x2 + y2 ≤ 1.
(You do not have to use calculus.)

39. Repeat Exercise 38 for the function
f (x , y) = x2 + xy + y2.

40. A curve C in space is defined implicitly on the cylinder
x2 + y2 = 1 by the additional equation
x2 − xy + y2 − z2 = 1. Find the point or points on C
closest to the origin.

41. Find the absolute maximum and minimum values for
f (x , y) = sin x + cos y on the rectangle R defined by
0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π .

42. Find the absolute maximum and minimum values for the
function f (x , y) = xy on the rectangle R defined by
−1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

43. Let f (x , y) = 1 + xy − 2x + y and let D be the
triangular region in R2 with vertices (−2, 1), (−2, 5),
and (2, 1). Find the absolute maximum and minimum
values of f on D. Give all points where these extreme
values occur.

44. Let f (x , y) = 1 + xy + x − 2y and let D be the
triangular region in R2 with vertices (1, −2), (5, −2),
and (1, 2). Find the absolute maximum and minimum
values of f on D. Give all points where these extreme
values occur.

45. Determine the nature of the critical points of
f (x , y) = xy + 1/x + 8/y.

In Exercises 46 through 50, D denotes the unit disc.

46. Let u be a C2 function on D which is “strictly
subharmonic”; that is, the following inequality holds:
∇2u = (∂2u/∂x2) + (∂2u/∂y2) > 0. Show that u
cannot have a maximum point in D\∂ D (the set of
points in D, but not in ∂ D).

47. Let u be a harmonic function on D—that is, ∇2u = 0 on
D\∂ D—and be continuous on D. Show that if u
achieves its maximum value in D\∂ D, it also achieves it
on ∂ D. This is sometimes called the “weak maximum
principle” for harmonic functions. [HINT: Consider
∇2(u + εex ), ε > 0. You can use the following fact,
which is proved in more advanced texts: Given a
sequence {pn}, n = 1, 2, . . . , of points in a closed
bounded set A in R2 or R3, there exists a point q such
that every neighborhood of q contains at least one
member of {pn}.]

48. Define the notion of a strict superharmonic function u
on D by mimicking Exercise 46. Show that u cannot
have a minimum in D\∂ D.

49. Let u be harmonic in D as in Exercise 47. Show that if u
achieves its minimum value in D\∂ D, it also achieves it

on ∂ D. This is sometimes called the “weak minimum
principle” for harmonic functions.

50. Let φ: ∂ D → R be continuous and let T be a solution
on D to ∇2T = 0, continuous on D and T = φ on ∂ D.

(a) Use Exercises 46 to 49 to show that such a solution,
if it exists, must be unique.

(b) Suppose that T (x , y) represents a temperature
function that is independent of time, with φ

representing the temperature of a circular plate at its
boundary. Can you give a physical interpretation of
the principle stated in part (a)?

51. (a) Let f be a C1 function on the real line R. Suppose
that f has exactly one critical point x0 that is a strict
local minimum for f . Show that x0 is also an
absolute minimum for f ; that is, that f (x) ≥ f (x0)
for all x .

(b) The next example shows that the conclusion of part
(a) does not hold for functions of more than one
variable. Let f : R2 → R be defined by

f (x , y) = −y4 − e−x2 + 2y2
√

ex + e−x2
.
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(i) Show that (0, 0) is the only critical point for f
and that it is a local minimum.
(ii) Argue informally that f has no absolute
minimum.

52. Suppose that a pentagon is composed of a rectangle
topped by an isosceles triangle (see Figure 3.3.8). If the
length of the perimeter is fixed, find the maximum
possible area.

x

y

θ

figure 3.3.8 Maximize the area for fixed
perimeter.

3.4 Constrained Extrema and Lagrange Multipliers

Often we are required to maximize or minimize a function subject to certain constraints
or side conditions. For example, we might need to maximize f (x , y) subject to the
condition that x2 + y2 = 1; that is, that (x , y) lie on the unit circle. More generally, we
might need to maximize or minimize f (x , y) subject to the side condition that (x , y)
also satisfies an equation g(x , y) = c, where g is some function and c equals a constant
[in the preceding example, g(x , y) = x2 + y2, and c = 1]. The set of such (x , y) is a
level curve for g.

The purpose of this section is to develop some methods for handling this sort of
problem. In Figure 3.4.1 we picture a graph of a function f (x , y). In this picture, the
maximum of f might be at (0, 0). However, suppose we are not interested in this
maximum but only the maximum of f (x , y) when (x , y) belongs to the unit circle; that
is, when x2 + y2 = 1. The cylinder over x2 + y2 = 1 intersects the graph of z = f (x , y)
in a curve that lies on this graph. The problem of maximizing or minimizing f (x , y)
subject to the constraint x2 + y2 = 1 amounts to finding the point on this curve where
z is the greatest or the least.

The Lagrange Multiplier Method
In general, let f : U ⊂ Rn → R and g: U ⊂ Rn → R be given C1 functions, and let S be
the level set for g with value c [recall that this is the set of points x ∈ Rn with g(x) = c].

z = z f (ff x(( , y)

x

y

z =z f (ff x(( , y) subject)
nstraintto the con

x2 + y2 = 1

z

Point on oint on xx22 + y2 = 1
where f is maximized

figure 3.4.1 The geometric meaning
of maximizing f subject to the
constraint x2 + y2 = 1.
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When f is restricted to S we again have the notion of local maxima or local minima
of f (local extrema), and an absolute maximum (largest value) or absolute minimum
(smallest value) must be a local extremum. The following method provides a necessary
condition for a constrained extremum:

Theorem 8 The Method of Lagrange Multipliers Suppose that f : U ⊂
Rn → R and g: U ⊂ Rn → R are given C1 real-valued functions. Let x0 ∈ U
and g(x0) = c, and let S be the level set for g with value c [recall that this is the
set of points x ∈ Rn satisfying g(x) = c]. Assume ∇g(x0) �= 0.

If f |S, which denotes “ f restricted to S,” has a local maximum or minimum
on S at x0, then there is a real number λ (which might be zero) such that

∇ f (x0) = λ∇g(x0). (1)

In general, a point x0 where equation (1) holds is said to be a critical point
of f |S.

proof We have not developed enough techniques to give a complete proof, but we
can provide the essential points. (The additional technicalities needed are discussed in
Section 3.5 and in the Internet supplement.)

In Section 2.6 we learned that for n = 3 the tangent space or tangent plane of S at
x0 is the space orthogonal to ∇g(x0). For arbitrary n we can give the same definition for
the tangent space of S at x0. This definition can be motivated by considering tangents
to paths c(t) that lie in S, as follows: If c(t) is a path in S and c(0) = x0, then c′(0) is a
tangent vector to S at x0, but

d

dt
g(c(t)) = d

dt
c = 0,

and, on the other hand, by the chain rule,

d

dt
g(c(t))

∣∣∣
t=0

= ∇g(x0) · c′(0),

so that ∇g(x0) · c′(0) = 0; that is, c′(0) is orthogonal to ∇g(x0).
If f |S has a maximum at x0, then f (c(t)) has a maximum at t = 0. By one-variable

calculus, d f (c(t))/dt|t=0 = 0. Hence, by the chain rule,

0 = d

dt
f (c(t))

∣∣∣
t=0

= ∇ f (x0) · c′(0).

Thus, ∇ f (x0) is perpendicular to the tangent of every curve in S and so is perpendicular
to the whole tangent space to S at x0. Because the space perpendicular to this tangent
space is a line, ∇ f (x0) and ∇g(x0) are parallel. Because ∇g(x0) �= 0, it follows that
∇ f (x0) is a multiple of ∇g(x0), which is the conclusion of the theorem. ■

Let us extract some geometry from this proof.

Theorem 9 If f , when constrained to a surface S, has a maximum or minimum
at x0, then ∇ f (x0) is perpendicular to S at x0 (see Figure 3.4.2).
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figure 3.4.2 The geometry of
constrained extrema.
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These results tell us that in order to find the constrained extrema of f , we must
look among those points x0 satisfying the conclusions of these two theorems. We
shall give several illustrations of how to use each.

When the method of Theorem 8 is used, we look for a point x0 and a constant
λ, called a Lagrange multiplier, such that ∇ f (x0) = λ∇g(x0). This method is more
analytic in nature than the geometric method of Theorem 9. Surprisingly, Euler intro-
duced these multipliers in 1744, some 40 years before Lagrange!

Equation (1) says that the partial derivatives of f are proportional to those of g.
Finding such points x0 at which this occurs means solving the simultaneous equations

∂ f

∂x1
(x1, . . . , xn) = λ

∂g

∂x1
(x1, . . . , xn)

∂ f

∂x2
(x1, . . . , xn) = λ

∂g

∂x2
(x1, . . . , xn)

...

∂ f

∂xn
(x1, . . . , xn) = λ

∂g

∂xn
(x1, . . . , xn)

g(x1, . . . , xn) = c

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

for x1, . . . , xn and λ.
Another way of looking at these equations is as follows: Think of λ as an additional

variable and form the auxiliary function

h(x1, . . . , xn , λ) = f (x1, . . . , xn) − λ[g(x1, . . . , xn) − c].

The Lagrange multiplier theorem says that to find the extreme points of f |S, we should
examine the critical points of h. These are found by solving the equations

0 = ∂h

∂x1
= ∂ f

∂x1
− λ

∂g

∂x1
...

0 = ∂h

∂xn
= ∂ f

∂xn
− λ

∂g

∂xn

0 = ∂h

∂λ
= g(x1, . . . , xn) − c

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3)

which are the same as equations (2) above.
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Second-derivative tests for maxima and minima analogous to those in Section 3.3 will
be given in Theorem 10 later in this section. However, in many problems it is possible to
distinguish between maxima and minima by direct observation or by geometric means.
Because this is often simpler, we consider examples of the latter type first.

example 1 Let S ⊂ R2 be the line through (−1, 0) inclined at 45◦, and let f : R2 → R, (x , y) →
x2 + y2. Find the extrema of f |S.

solut ion Here S = {(x , y) | y − x − 1 = 0}, and therefore we set g(x , y) = y − x − 1
and c = 0. We have ∇g(x , y) = −i + j �= 0. The relative extrema of f |S must be
found among the points at which ∇ f is orthogonal to S; that is, inclined at −45◦. But
∇ f (x , y) = (2x , 2y), which has the desired slope only when x = −y, or when (x , y)
lies on the line L through the origin inclined at −45◦. This can occur in the set S only
for the single point at which L and S intersect (see Figure 3.4.3). Reference to the level
curves of f indicates that this point, (−1/2, 1/2), is a relative minimum of f |S (but
not of f ).

Notice that in this problem, f on S has a minimum but no maximum.

x

y S
L

Level set f  = 1

Level set f  = 

1
2
__−

1
2

__

( ), 1
2
__

figure 3.4.3 The geometry associated with finding the
extrema of f (x, y) = x2 + y2 restricted to
S = {(x, y) | y − x − 1 = 0}. ▲

example 2 Let f : R2 → R, (x , y) → x2 − y2, and let S be the circle of radius 1 around the origin.
Find the extrema of f |S.

solut ion The set S is the level curve for g with value 1, where g: R2 → R, (x , y) → x2 + y2.
Because both of these functions have been studied in previous examples, we know their
level curves; these are shown in Figure 3.4.4. In two dimensions, the condition that
∇ f = λ∇g at x0—that is, that ∇ f and ∇g are parallel at x0—is the same as the level
curves being tangent at x0 (why?). Thus, the extreme points of f |S are (0, ±1) and
(±1, 0). Evaluating f , we find (0, ±1) are minima and (±1, 0) are maxima.

Let us also do this problem analytically by the method of Lagrange multipliers.
Clearly,

∇ f (x , y) =
(

∂ f

∂x
,
∂ f

∂y

)
= (2x , −2y) and ∇g(x , y) = (2x , 2y).
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x

g � 1

y

f = −1
f = 0

(−1, 0)

(0, −1)

(0, 1)

(1, 0)

f = 1

S

figure 3.4.4 The geometry associated with the
problem of finding the extrema of x2 − y2 on
S = {(x, y) | x2 + y2 = 1}.

Note that ∇g(x , y) �= 0 if x2 + y2 = 1. Thus, according to the Lagrange multiplier
theorem, we must find a λ such that

(2x , −2y) = λ(2x , 2y) and (x , y) ∈ S, i.e., x2 + y2 = 1.

These conditions yield three equations, which can be solved for the three unknowns
x , y, and λ. From 2x = λ2x , we conclude that either x = 0 or λ = 1. If x = 0, then
y = ±1 and −2y = λ2y implies λ = −1. If λ = 1, then y = 0 and x = ±1. Thus,
we get the points (0, ±1) and (±1, 0), as before. As we have mentioned, this method
only locates potential extrema; whether they are maxima, minima, or neither must be
determined by other means, such as geometric arguments or the second-derivative test
given below.9 ▲

example 3 Maximize the function f (x , y, z) = x + z subject to the constraint x2 + y2 + z2 = 1.

solut ion By Theorem 7 we know that the function f restricted to the unit sphere x2 + y2 + z2 = 1
has a maximum (and also a minimum). To find the maximum, we again use the Lagrange
multiplier theorem. We seek λ and (x , y, z) such that

1 = 2xλ, 0 = 2yλ, and 1 = 2zλ,

and

x2 + y2 + z2 = 1.

From the first or the third equation, we see that λ �= 0. Thus, from the second equation,
we get y = 0. From the first and third equations, x = z, and so from the fourth,
x = ±1/

√
2 = z. Hence, our points are (1/

√
2, 0, 1/

√
2) and (−1/

√
2, 0, −1/

√
2).

Comparing the values of f at these points, we can see that the first point yields the
maximum of f (restricted to the constraint) and the second the minimum. ▲

9In these examples, ∇g(x0) �= 0 on the surface S, as required by the Lagrange multiplier theorem. If
∇g(x0) were zero for some x0 on S, then it would have to be included among the possible extrema.
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example 4 Assume that among all rectangular boxes with fixed surface area of 10 square meters
there is a box of largest possible volume. Find its dimensions.

solut ion If x , y, and z are the lengths of the sides, x ≥ 0, y ≥ 0, z ≥ 0, respectively, and the volume
is f (x , y, z) = xyz. The constraint is 2(xy + xz + yz) = 10; that is, xy + xz + yz = 5.
Thus, the Lagrange multiplier conditions are

yz = λ( y + z)
xz = λ(x + z)
xy = λ( y + x)

xy + xz + yz = 5.

First of all, x �= 0, because x = 0 implies yz = 5 and 0 = λz, so that λ = 0 and we
get the contradictory equation yz = 0. Similarly, y �= 0, z �= 0, x + y �= 0. Elimination
of λ from the first two equations gives yz/( y + z) = xz/(x + z), which gives x = y;
similarly, y = z. Substituting these values into the last equation, we obtain 3x2 = 5,
or x = √

5/3. Thus, we get the solution x = y = z = √
5/3, and xyz = (5/3)3/2.

This (cubical) shape must therefore maximize the volume, assuming there is a box of
maximum volume. ▲

Existence of Solutions
We should note that the solution to Example 4 does not demonstrate that the cube is
the rectangular box of largest volume with a given fixed surface area; it proves that the
cube is the only possible candidate for a maximum. We shall sketch a proof that it really
is the maximum later. The distinction between showing that there is only one possible
solution to a problem and that, in fact, a solution exists is a subtle one that many (even
great) mathematicians have overlooked.

Queen Dido (ca. 900 B.C.) realized that among all planar regions with fixed circum-
ference, the disc is the region of maximum area. It is not difficult to prove this fact under
the assumption that there is a region of maximum area; however, proving that such a
region of maximum area exists is quite another (difficult) matter. A complete proof was
not given until the second half of the nineteenth century by the German mathematician
Weierstrass.

Let us consider a nonmathematical parallel to this situation. Put yourself in the place
of Lord Peter Wimsey, Dorothy Sayers’ famous detective:

“Undoubtedly,” said Wimsey, “but if you think that this identification is going to make life
one grand, sweet song for you, you are mistaken. . . . Since we have devoted a great deal of
time and thought to the case on the assumption that it was murder, it’s a convenience to
know that the assumption is correct.”10

Wimsey has found the body of a dead man, and after some time has located ten
suspects. He is sure that no one else other than one of the suspects could be the murderer.
By collecting all the evidence and checking alibis, he then reduces the number of suspects
one by one, until, finally, only the butler remains; hence, he is the murderer! But wait,
Peter is a very cautious man. By checking everything once again, he discovers that the
man died by suicide; so there is no murder. You see the point: It does not suffice to find
a clear and uniquely determined suspect in a criminal case where murder is suspected;
you must prove that a murder actually took place.

The same goes for our cube; the fact that it is the only possible candidate for a max-
imum does not prove that it is maximum. (For more information see The Parsimonious

10Dorothy L. Sayers, Have His Carcase, Chapter 31: The Evidence of the Haberdasher’s Assistant,
New York, Avon Books, 1968, p. 312.
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Universe: Shape and Form in the Natural World, by S. Hildebrandt and A. Tromba,
Springer-Verlag, New York/Berlin, 1995.)

The key to showing that f (x , y, z) = xyz really has a maximum lies in the fact that
f is a continuous function that is defined on the unbounded surface S: xy+xz+ yz = 5,
and not on a bounded set, which includes its boundary, where Theorem 7 of Section 3.3
would apply. We have already seen problems of this sort for functions of one and two
variables.

The way to show that f (x , y, z) = xyz ≥ 0 does indeed have a maximum on
xy + yz + xz = 5 is to show that if x , y, or z tend to ∞, then f (x , y, z) → 0. We
may then conclude that the maximum of f on S must exist by appealing to Theo-
rem 7 (you should supply the details). So, suppose (x , y, z) lies in S and x → ∞;
then y → 0 and z → 0 (why?). Multiplying the equation defining S by z, we
obtain the equation xyz + xz2 + yz2 = 5z → 0 as x → ∞. Because x , y, z ≥ 0,
xyz = f (x , y, z) → 0. Similarly, f (x , y, z) → 0 if either y or z tend to ∞. Thus, a
box of maximum volume must exist.

Some general guidelines may be useful for maximum and minimum problems with
constraints. First of all, if the surface S is bounded (as an ellipsoid is, for example), then
f must have a maximum and a minimum on S. (See Theorem 7 in the preceding section.)
In particular, if f has only two points satisfying the conditions of the Lagrange multiplier
theorems or Theorem 9, then one must be a maximum and one must be a minimum.
Evaluating f at each point will tell the maximum from the minimum. However, if there
are more than two such points, some can be saddle points. Also, if S is not bounded (for
example, if it is a hyperboloid), then f need not have any maxima or minima.

Several Constraints
If a surface S is defined by a number of constraints, namely,

g1(x1, . . . , xn) = c1

g2(x1, . . . , xn) = c2
...

gk(x1, . . . , xn) = ck

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (4)

then the Lagrange multiplier theorem may be generalized as follows: If f has a maximum
or a minimum at x0 on S, there must exist constants λ1, . . . , λk such that11

∇ f (x0) = λ1∇g1(x0) + · · · + λk∇gk(x0). (5)

This case may be proved by generalizing the method used to prove the Lagrange mul-
tiplier theorem. Let us give an example of how this more general formulation is used.

example 5 Find the extreme points of f (x , y, z) = x + y + z subject to the two conditions
x2 + y2 = 2 and x + z = 1.

solut ion Here there are two constraints:

g1(x , y, z) = x2 + y2 − 2 = 0 and g2(x , y, z) = x + z − 1 = 0.

11As with the hypothesis ∇g(x0) �= 0 in the Lagrange multiplier theorem, here we must assume that the
vectors ∇g1(x0), . . . , ∇gk(x0) are linearly independent; that is, each ∇gi (x0) is not a linear combination
of the other ∇g j (x0), j �= i .
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Thus, we must find x , y, z, λ1, and λ2 such that

∇ f (x , y, z) = λ1∇g1(x , y, z) + λ2∇g2(x , y, z),
g1(x , y, z) = 0, and g2(x , y, z) = 0.

Computing the gradients and equating components, we get

1 = λ1 · 2x + λ2 · 1,
1 = λ1 · 2y + λ2 · 0,
1 = λ1 · 0 + λ2 · 1,

x2 + y2 = 2, and x + z = 1.

These are five equations for x , y, z, λ1, and λ2. From the third equation, λ2 = 1, and
so 2xλ1 = 0, 2yλ1 = 1. Because the second implies λ1 �= 0, we have x = 0. Thus,
y = ±√

2 and z = 1. Hence, the possible extrema are (0, ±√
2, 1). By inspection,

(0,
√

2, 1) gives a relative maximum, and (0, −√
2, 1) a relative minimum.

The condition x2 + y2 = 2 implies that x and y must be bounded. The condition
x + z = 1 implies that z is also bounded. If follows that the constraint set S is closed
and bounded. By Theorem 7 it follows that f has a maximum and minimum on S that
must therefore occur at (0,

√
2, 1) and (0, −√

2, 1), respectively. ▲

The method of Lagrange multipliers provides us with another tool to locate the
absolute maxima and minima of differentiable functions on bounded regions in R2 (see
the strategy for finding absolute maximum and minimum in Section 3.3).

example 6 Find the absolute maximum of f (x , y) = xy on the unit disc D, where D is the set of
points (x , y) with x2 + y2 ≤ 1.

solut ion By Theorem 7 in Section 3.3, we know the absolute maximum exists. First, we find all
the critical points of f in U , the set of points (x , y) with x2 + y2 < 1. Because

∂ f

∂x
= y and

∂ f

∂y
= x ,

(0, 0) is the only critical point of f in U . Now consider f on the unit circle, the level
curve g(x , y) = 1, where g(x , y) = x2 + y2. To locate the maximum and minimum
of f on C , we write down the Lagrange multiplier equations: ∇ f (x , y) = (y, x) =
λ∇g(x , y) = λ(2x , 2y) and x2 + y2 = 1. Rewriting these in component form, we get

y = 2λx ,
x = 2λy,

x2 + y2 = 1.

Thus,

y = 4λ2 y,

or λ = ±1/2 and y = ±x , which means that x2 + x2 = 2x2 = 1 or x = ±1/
√

2,
y = ±1/

√
2. On C we compute four candidates for the absolute maximum and mini-

mum, namely,

(
− 1√

2
, − 1√

2

)
,

(
− 1√

2
,

1√
2

)
,

(
1√
2

,
1√
2

)
,

(
1√
2

, − 1√
2

)
.
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The value of f at both (−1/
√

2, −1/
√

2) and (1/
√

2, 1/
√

2) is 1/2. The value of f at
(−1/

√
2, 1/

√
2) and (1/

√
2, −1/

√
2) is −1/2, and the value of f at (0, 0) is 0. Therefore,

the absolute maximum of f is 1/2 and the absolute minimum is −1/2, both occurring
on C . At (0, 0), ∂2 f/∂x2 = 0, ∂2 f/∂y2 = 0 and ∂2 f/∂x ∂y = 1, so the discriminant is
−1 and thus (0, 0) is a saddle point. ▲

example 7 Find the absolute maximum and minimum of f (x , y) = 1
2 x2 + 1

2 y2 in the elliptical
region D defined by 1

2 x2 + y2 ≤ 1.

solut ion Again by Theorem 7, Section 3.3, the absolute maximum exists. We first locate the
critical points of f in U , the set of points (x , y) with 1

2 x2 + y2 < 1. Because

∂ f

∂x
= x ,

∂ f

∂y
= y,

the only critical point is the origin (0, 0).
We now find the maximum and minimum of f on C , the boundary of U , which is the

level curve g(x , y) = 1, where g(x , y) = 1
2 x2 + y2. The Lagrange multiplier equations

are

∇ f (x , y) = (x , y) = λ∇g(x , y) = λ(x , 2y)

and (x2/2) + y2 = 1. In other words,

x = λx

y = 2λy

x2

2
+ y2 = 1.

If x = 0, then y = ±1 and λ = 1
2 . If y = 0, then x = ±√

2 and λ = 1. If x �= 0
and y �= 0, we get both λ = 1 and 1/2, which is impossible. Thus, the candidates
for the maxima and minima of f on C are (0, ±1), (±√

2, 0) and for f inside D, the
candidate is (0, 0). The value of f at (0, ±1) is 1/2, at (±√

2, 0) it is 1, and at (0, 0)
it is 0. Thus, the absolute minimum of f occurs at (0, 0) and is 0. The absolute maximum
of f on D is thus 1 and occurs at the points (±√

2, 0). ▲

Global Maxima and Minima
The method of Lagrange multipliers enhances our techniques for finding global maxima
and minima. In this respect, the following is useful.

Definition Let U be an open region in Rn with boundary ∂U . We say that ∂U
is smooth if ∂U is the level set of a smooth function g whose gradient ∇g never
vanishes (i.e., ∇g �= 0). Then we have the following strategy.
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Lagrange Multiplier Strategy for Finding Absolute Maxima and
Minima on Regions with Boundary Let f be a differentiable function on
a closed and bounded region D = U ∪ ∂U, U open in Rn , with smooth
boundary ∂U .

To find the absolute maximum and minimum of f on D:

(i) Locate all critical points of f in U .

(ii) Use the method of Lagrange multiplier to locate all the critical points of
f |∂U .

(iii) Compute the values of f at all these critical points.

(iv) Select the largest and the smallest.

example 8 Find the absolute maximum and minimum of the function f (x , y, z) =
x2 + y2 + z2 − x + y on the set D = {(x , y, z) | x2 + y2 + z2 ≤ 1}.

solut ion As in the previous examples, we know the absolute maximum and minimum exists.
Now D = U ∪ ∂U , where

U = {(x , y, z) | x2 + y2 + z2 < 1}

and

∂U = {(x , y, z) | x2 + y2 + z2 = 1}.

∇ f (x , y, z) = (2x − 1, 2y + 1, 2z).
Thus, ∇ f = 0 at (1/2, −1/2, 0) which is in U , the interior of D.
Let g(x , y, z) = x2 + y2 + z2. Then ∂U is the level set g(x , y, z) = 1. By the method

of Lagrange multipliers, the maximum and minimum must occur at a critical point of
f |∂U ; that is, at a point x0 where ∇f (x0) = λ∇g(x0) for some scalar λ.

Thus,

(2x − 1, 2y + 1, 2z) = λ(2x , 2y, 2z)

or

(i) 2x − 1 = 2λx

(ii) 2y + 1 = 2λy

(iii) 2z = 2λz

If λ = 1, then we would have 2x − 1 = 2x or −1 = 0, which is impossible.
We may assume that λ �= 0 since if λ = 0, we only get an interior point as above.
Thus (iii) implies that z = 0 and

(iv) x2 + y2 = 1.

Solving (i) and (ii) for x and y we find,

(v) x = 1/2(1 − λ)

(vi) y = −1/2(1 − λ)
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Applying (iv) we can solve for λ, namely λ = 1 ± (1/
√

2). Thus, from (v) and (vi) we
have that x = ±(1/

√
2) and y = ±(1/

√
2); that is, we have four critical points on ∂U .

Evaluating f at each of these points, we see that the maximum value for f on ∂U is
1 + 2/

√
2 = 1 + √

2 and the minimum value is 1 − √
2. The value of f at (1/2, −1/2)

is −1/2. Comparing these values, noting that −1/2 < 1 − √
2, we see that the absolute

minimum is −1/2, occurring at (1/2, −1/2), and that absolute maximum is 1 + √
2,

occurring at (−1/
√

2, 1/
√

2). ▲

Two Additional Applications
We now present two further applications of the mathematical techniques developed in
this section to geometry and to economics. We shall begin wth a geometric example.

example 9 Suppose we have a curve defined by the equation

φ(x , y) = Ax2 + 2Bxy + Cy2 − 1 = 0.

Find the maximum and minimum distance of the curve to the origin. (These are the
lengths of the semimajor and the semiminor axis of this quadric.)

solut ion The problem is equivalent to finding the extreme values of f (x , y) = x2 + y2 subject
to the constraining condition φ(x , y) = 0. Using the Lagrange multiplier method, we
have the following equations:

2x + λ(2Ax + 2By) = 0 (6)

2y + λ(2Bx + 2Cy) = 0 (7)

Ax2 + 2Bxy + Cy2 = 1. (8)

Adding x times equation (6) to y times equation (7), we obtain

2(x2 + y2) + 2λ( Ax2 + 2Bxy + Cy2) = 0.

By equation (8), it follows that x2 + y2 +λ = 0. Let t = −1/λ = 1/(x2 + y2) [the case
λ = 0 is impossible, because (0, 0) is not on the curve φ(x , y) = 0]. Then equations
(6) and (7) can be written as follows:

2( A − t)x + 2By = 0

2Bx + 2(C − t)y = 0.
(9)

If these two equations are to have a nontrivial solution [remember that (x , y) = (0, 0)
is not on our curve and so is not a solution], it follows from a theorem of linear algebra
that their determinant vanishes:12

∣∣∣∣A − t B
B C − t

∣∣∣∣ = 0.

Because this equation is quadratic in t , there are two solutions, which we shall call t1

and t2. Because −λ = x2 + y2, we have
√

x2 + y2 = √−λ. Now
√

x2 + y2 is the

12The matrix of coefficients of the equations cannot have an inverse, because this would imply that the
solution is zero. Recall that a matrix that does not have an inverse has determinant zero.
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distance from the point (x , y) to the origin. Therefore, if (x1, y1) and (x2, y2) denote
the nontrivial solutions to equation (9) corresponding to t1 and t2, and if t1 and t2 are
positive, we get

√
x2

2 + y2
2 = 1/

√
t2 and

√
x2

1 + y2
1 = 1/

√
t1. Consequently, if t1 > t2,

the lengths of the semiminor and semimajor axes are 1/
√

t1 and 1/
√

t2, respectively. If
the curve is an ellipse, both t1 and t2 are, in fact, real and positive. What happens with

a hyperbola or a parabola? ▲

Finally, we discuss an application to economics.

example 10 Suppose that the output of a manufacturing firm is a quantity Q of a certain product,
where Q is a function f (K , L), where K is the amount of capital equipment (or invest-
ment) and L is the amount of labor used. If the price of labor is p, the price of capital
is q , and the firm can spend no more than B dollars, how can we find the amount of
capital and labor to maximize the output Q?

solut ion We would expect that if the amount of capital or labor is increased, then the output Q
should also increase; that is,

∂ Q

∂K
≥ 0 and

∂ Q

∂L
≥ 0.

We also expect that as more labor is added to a given amount of capital equipment, we
get less additional output for our effort; that is,

∂2Q

∂L2
< 0.

Similarly,

∂2Q

∂K 2
< 0.

With these assumptions on Q, it is reasonable to expect the level curves of out-
put (called isoquants) Q(K , L) = c to look something like the curves sketched in
Figure 3.4.5, with c1 < c2 < c3.

L

K

q

p

Q = c1

2

3Q = c

Q = c

B

B

figure 3.4.5 What is the largest value of Q in the shaded triangle?
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We can interpret the convexity of the isoquants as follows: As we move to the right
along a given isoquant, it takes more and more capital to replace a unit of labor and
still produce the same output. The budget constraint means that we must stay inside the
triangle bounded by the axes and the line pL + q K = B. Geometrically, it is clear that
we produce the most by spending all our money in such a way as to pick the isoquant
that just touches, but does not cross, the budget line.

Because the maximum point lies on the boundary of our domain, we apply the
method of Lagrange multipliers to find the maximum. To maximize Q = f (K , L)
subject to the constraint pL + q K = B, we look for critical points of the auxiliary
function,

h(K , L , λ) = f (K , L) − λ( pL + q K − B).

Thus, we want

∂ Q

∂K
= λq,

∂ Q

∂L
= λp, and pL + q K = B.

These are the conditions we must meet in order to maximize output. (You are asked to
work out a specific case in Exercise 36.) ▲

In the preceding example, λ represents something interesting. Let k = q K and
l = pL , so that k is the dollar value of the capital used and l is the dollar value of the
labor used. Then the first two equations become

∂ Q

∂k
= 1

q

∂ Q

∂K
= λ = 1

p

∂ Q

∂L
= ∂ Q

∂l
.

Thus, at the optimum production point the marginal change in output per dollar’s worth of
additional capital investment is equal to the marginal change of output per dollar’s worth
of additional labor, and λ is this common value. At the optimum point, the exchange
of a dollar’s worth of capital for a dollar’s worth of labor does not change the output.
Away from the optimum point the marginal outputs are different, and one exchange or
the other will increase the output.

A Second-Derivative Test for Constrained Extrema
In Section 3.3 we developed a second-derivative test for extrema of functions of
several variables by looking at the second-degree term in the Taylor series of f . If
the Hessian matrix of second partial derivatives is either positive-definite or negative-
definite at a critical point of f , this point is a relative minimum or maximum,
respectively.

The question naturally arises as to whether there is a second-derivative test for max-
imum and minimum problems in the presence of constraints. The answer is yes and the
test involves a matrix called a bordered Hessian. We will first discuss the test and how
to apply it for the case of a function f (x , y) of two variables subject to the constraint
g(x , y) = c.



Marsden-3620111 VC September 27, 2011 9:38 198

198 Higher-Order Derivatives: Maxima and Minima

Theorem 10 Let f : U ⊂ R2 → R and g: U ⊂ R2 → R be smooth (at
least C2) functions. Let v0 ∈ U, g(v0) = c, and S be the level curve for g with
value c. Assume that ∇g(v0) �= 0 and that there is a real number λ such that
∇ f (v0) = λ∇g(v0). Form the auxiliary function h = f − λg and the bordered
Hessian determinant

|H | =

∣∣∣∣∣∣∣∣∣∣∣∣

0 −∂g

∂x
−∂g

∂y

−∂g

∂x

∂2h

∂x2

∂2h

∂x ∂y

−∂g

∂y

∂2h

∂x ∂y

∂2h

∂y2

∣∣∣∣∣∣∣∣∣∣∣∣
evaluated at v0.

(i) If |H | > 0, then v0 is a local maximum point for f |S.

(ii) If |H | < 0, then v0 is a local minimum point for f |S.

(iii) If |H | = 0, the test is inconclusive and v0 may be a minimum, a maximum,
or neither.

This theorem is proved in the Internet supplement for this section.

example 11 Find extreme points of f (x , y) = (x − y)n subject to the constraint x2 + y2 = 1, where
n ≥ 1.

solut ion We set the first derivatives of the auxiliary function h defined by h(x , y, λ) =
(x − y)n − λ(x2 + y2 − 1) equal to 0:

n(x − y)n−1 − 2λx = 0
−n(x − y)n−1 − 2λy = 0

−(x2 + y2 − 1) = 0.

From the first two equations we see that λ(x + y) = 0. If λ = 0, then x = y = ±√
2/2.

If λ �= 0, then x = −y. The four critical points are represented in Figure 3.4.6, and the
corresponding values of f (x , y) are listed below:

(A) x = √
2/2 y = √

2/2 λ = 0 f (x , y) = 0

x

y

A

BC

D

figure 3.4.6 The four critical points in Example 11.
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(B) x = √
2/2 y = −√

2/2 λ = n(
√

2)n−2 f (x , y) = (
√

2)n

(C) x = −√
2/2 y = −√

2/2 λ = 0 f (x , y) = 0

(D) x = −√
2/2 y = √

2/2 λ = (−1)n−2n(
√

2)n−2 f (x , y) = (−√
2)n.

By inspection, we see that if n is even, then A and C are minimum points and B and
D are maxima. If n is odd, then B is a maximum point, D is a minimum, and A and C
are neither. Let us see whether Theorem 10 is consistent with these observations.

The bordered Hessian determinant is

|H | =

∣∣∣∣∣∣∣
0 −2x −2y

−2x n(n − 1)(x − y)n−2 − 2λ −n(n − 1)(x − y)n−2

−2y −n(n − 1)(x − y)n−2 n(n − 1)(x − y)n−2 − 2λ

∣∣∣∣∣∣∣
= −4n(n − 1)(x − y)n−2(x + y)2 + 8λ(x2 − y2).

If n = 1 or if n ≥ 3, |H | = 0 at A, B, C, and D. If n = 2, then |H | = 0 at B and D and
−16 at A and C. Thus, the second-derivative test picks up the minima at A and C, but
is inconclusive in testing the maxima at B and D for n = 2. It is also inconclusive for
all other values of n. ▲

Just as in the unconstrained case, there is also a second-derivative test for functions
of more than two variables. If we are to find extreme points for f (x1, . . . , xn) subject
to a single constraint g(x1, . . . , xn) = c, we first form the bordered Hessian for the
auxiliary function h(x1, . . . , xn) = f (x1, . . . , xn) − λ(g(x1, . . . , xn) − c) as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
−∂g

∂x1

−∂g

∂x2
· · · −∂g

∂xn

−∂g

∂x1

∂2h

∂x2
1

∂2h

∂x1 ∂x2
· · · ∂2h

∂x1 ∂xn

−∂g

∂x2

∂2h

∂x1 ∂x2

∂2h

∂x2
2

· · · ∂2h

∂x2 ∂xn

...
...

...
...

−∂g

∂xn

∂2h

∂x1 ∂xn

∂2h

∂x2 ∂xn
· · · ∂2h

∂x2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Second, we examine the determinants of the diagonal submatrices of order ≥3 at the
critical points of h. If they are all negative, that is, if

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 − ∂g

∂x1
− ∂g

∂x2

− ∂g

∂x1

∂2h

∂x2
1

∂2h

∂x1 ∂x2

− ∂g

∂x2

∂2h

∂x1 ∂x2

∂2h

∂x2
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

< 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 − ∂g

∂x1
− ∂g

∂x2
− ∂g

∂x3

− ∂g

∂x1

∂2h

∂x2
1

∂2h

∂x1 ∂x2

∂2h

∂x1 ∂x3

− ∂g

∂x2

∂2h

∂x1 ∂x2

∂2h

∂x2
2

∂2h

∂x2 ∂x3

− ∂g

∂x3

∂2h

∂x1 ∂x3

∂2h

∂x2 ∂x3

∂2h

∂x2
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

< 0, . . . ,
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then we are at a local minimum of f |S. If they start out with a positive 3 × 3 subde-
terminant and alternate in sign (that is, >0, <0, >0, <0, . . .), then we are at a local
maximum. If they are all nonzero and do not fit one of these patterns, then the point is
neither a maximum nor a minimum (it is said to be of the saddle type).13

example 12 Study the local extreme points of f (x , y, z) = xyz on the surface of the unit sphere
x2 + y2 + z2 = 1 using the second-derivative test.

solut ion Setting the partial derivatives of the auxiliary function h(x , y, z, λ) = xyz − λ(x2 +
y2 + z2 − 1) equal to zero gives

yz = 2λx
xz = 2λy
xy = 2λz

x2 + y2 + z2 = 1.

Thus, 3xyz = 2λ(x2 + y2 + z2) = 2λ. If λ = 0, the solutions are (x , y, z, λ) =
(±1, 0, 0, 0), (0, ±1, 0, 0), and (0, 0, ±1, 0). Ifλ �= 0, then we have 2λ = 3xyz = 6λz2,
and so z2 = 1

3 . Similarly, x2 = y2 = 1
3 . Thus, the solutions are given by λ = 3

2 xyz =
±√

3/6. The critical points of h and the corresponding values of f are given in Table 3.1.
From it, we see that points E, F, G, and K are minima. Points D, H, I, and J are maxima.
To see whether this is in accord with the second-derivative test, we need to consider two
determinants. First, we look at the following:

|H 2| =

∣∣∣∣∣∣∣
0 −∂g/∂x −∂g/∂y

−∂g/∂x ∂2h/∂x2 ∂2/∂x ∂y

−∂g/∂y ∂2h/∂x ∂y ∂2h/∂y2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
0 −2x −2y

−2x −2λ z

−2y z −2λ

∣∣∣∣∣∣∣
= 8λx2 + 8λy2 + 8xyz = 8λ(x2 + y2 + 2z2).

Observe that sign (|H 2|) = sign λ = sign (xyz), where the sign of a number is 1 if that
number is positive, or is −1 if that number is negative. Second, we consider

|H 3| =

∣∣∣∣∣∣∣∣∣

0 −∂g/∂x −∂g/∂y −∂g/∂z

−∂g/∂x ∂2h/∂x2 ∂2h/∂x ∂y ∂2h/∂x ∂z

−∂g/∂y ∂2h/∂x ∂y ∂2h/∂y2 ∂2h/∂y ∂z

−∂g/∂z ∂2h/∂x ∂z ∂2h/∂y ∂z ∂2h/∂z2

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

0 −2x −2y −2z
−2x −2λ z y
−2y z −2λ x
−2z y x −2λ

∣∣∣∣∣∣∣∣
,

13For a detailed discussion, see C. Caratheodory, Calculus of Variations and Partial Differential
Equations, Holden-Day, San Francisco, 1965; Y. Murata, Mathematics for Stability and Optimiza-
tion of Economic Systems, Academic Press, New York, 1977, pp. 263–271; or D. Spring, Am. Math.
Mon. 92 (1985): 631–643.
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table 3.1 The critical points A, B, . . . , J, K of h and corresponding values of f

x y z λ f (x , y, z)

±A ±1 0 0 0 0
±B 0 ±1 0 0 0
±C 0 0 ±1 0 0

D
√

3/3
√

3/3
√

3/3
√

3/6
√

3/9
E −√

3/3
√

3/3
√

3/3 −√
3/6 −√

3/9
F

√
3/3 −√

3/3
√

3/3 −√
3/6 −√

3/9
G

√
3/3

√
3/3 −√

3/3 −√
3/6 −√

3/9
H

√
3/3 −√

3/3 −√
3/3

√
3/6

√
3/9

I −√
3/3

√
3/3 −√

3/3
√

3/6
√

3/9
J −√

3/3 −√
3/3

√
3/3

√
3/6

√
3/9

K −√
3/3 −√

3/3 −√
3/3 −√

3/6 −√
3/9

which works out to be +4 at points ±A, ±B, and ±C and − 16
3 at the other eight points.

At E, F, G, and K, we have |H 2| < 0 and |H 3| < 0, and so the test indicates these are
local minima. At D, H, I, and J we have |H 2| > 0 and |H 3| < 0, and so the test says
these are local maxima. Finally, the second-derivative test shows that ±A, ±B, and ±C
are saddle points. ▲

exercises

1. Let f (x , y) = x2 + 3y2. Find the maximum and
minimum values of f subject to the given constraint.

(a) x2 + y2 = 1

(b) x2 + y2 ≤ 1

2. Consider all rectangles with fixed perimeter p. Use
Lagrange multipliers to show that the rectangle with
maximal area is a square.

In Exercises 3 to 7, find the extrema of f subject to the stated constraints.

3. f (x , y, z) = x − y + z, subject to x2 + y2 + z2 = 2

4. f (x , y) = x − y, subject to x2 − y2 = 2

5. f (x , y) = x , subject to x2 + 2y2 = 3

6. f (x , y, z) = x + y + z, subject to
x2 − y2 = 1, 2x + z = 1

7. f (x , y) = 3x + 2y, subject to 2x2 + 3y2 = 3

Find the relative extrema of f |S in Exercises 8 to 11.

8. f : R2 → R, (x , y) → x2 + y2, S = {(x , 2) | x ∈ R}

9. f : R2 → R, (x , y) → x2 + y2, S = {(x , y) | y ≥ 2}

10. f : R2 → R, (x , y) → x2−y2, S = {(x , cos x) | x ∈ R}

11. f : R3 → R, (x , y, z) → x2 + y2 + z2, S = {(x , y, z) |
z ≥ 2 + x2 + y2}

12. Use the method of Lagrange multipliers to find the
absolute maximum and minimum values of

f (x , y) = x2 + y2 − x − y + 1 on the unit disc (see
Example 10 of Section 3.3).

13. Consider the function f (x , y) = x2 + xy + y2 defined
on the unit disc, namely, D = {(x , y) | x2 + y2 ≤ 1}.
Use the method of Lagrange multipliers to locate the
maximum and minimum points for f on the unit circle.
Use this to determine the absolute maximum and
minimum values for f on D.
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14. Find the absolute maximum and minimum values of
f (x , y, z) = 2x + y, subject to the constraint
x + y + z = 1.

15. Find the extrema of f (x , y) = 4x + 2y, subject to the
constraint 2x2 + 3y2 = 21.

16. Use Lagrange multipliers to find the distance from the
point (2, 0, −1) to the plane 3x − 2y + 8z + 1 = 0.
Compare your answer to Example 12 in Section 1.3.

17. Find the maximum and minimum values attained by
f (x , y, z) = xyz on the unit ball x2 + y2 + z2 ≤ 1.

18. Let S be the sphere of radius 1 centered at (1, 2, 3). Find
the distance from S to the plane x + y + z = 0. (HINT:
Use Lagrange multipliers to find the distance from the
plane to the center of the sphere.)

19. (a) Find three numbers whose product is 27 and whose
sum is minimal.

(b) Find three numbers whose sum is 27 and whose
product is maximal.

20. A rectangular box with no top is to have a surface area
of 16 m2. Find the dimensions that maximize its volume.

21. Design a cylindrical can (with a lid) to contain 1 liter
(= 1000 cm3) of water, using the minimum amount of
metal.

22. Show that solutions of equations (4) and (5) are in
one-to-one correspondence with the critical points of

h(x1, . . . , xn , λ1, . . . , λk )
= f (x1, . . . , xn) − λ1[g1(x1, . . . , xn) − c1]
− · · · − λk [gk (x1, . . . , xn) − ck ].

23. Find the absolute maximum and minimum for the
function f (x , y, z) = x + y − z on the ball
B = {(x , y, z) | x2 + y2 + z2 ≤ 1}.

24. Repeat Exercise 23 for f (x , y, z) = x + yz.

25. A rectangular mirror with area A square feet is to have
trim along the edges. If the trim along the horizontal
edges costs p cents per foot and that for the vertical
edges costs q cents per foot, find the dimensions that
will minimize the total cost.

26. An irrigation canal in Arizona has concrete sides and
bottom with trapezoidal cross section of area
A = y(x + y tan θ ) and wetted perimeter
P = x + 2y/ cos θ , where x = bottom width, y = water
depth, and θ = side inclination, measured from vertical.

The best design for a fixed inclination θ is found by
solving P = minimum subject to the condition
A = constant. Show that y2 = ( A cos θ )/(2 − sin θ ).

27. Apply the second-derivative test to study the nature of
the extrema in Exercises 3 and 7.

28. A light ray travels from point A to point B crossing a
boundary between two media (see Figure 3.4.7). In the
first medium its speed is v1, and in the second it is v2.
Show that the trip is made in minimum time when
Snell’s law holds:

sin θ1

sin θ2
= v1

v2
.

29. A parcel delivery service requires that the dimensions of
a rectangular box be such that the length plus twice the
width plus twice the height be no more than 108 inches
(l + 2w+ 2h ≤ 108). What is the volume of the
largest-volume box the company will deliver?

x

y

A

1

2

θ

θ

v1

v2

B

figure 3.4.7 Snell’s law of refraction.

30. Let P be a point on a surface S in R3 defined by the
equation f (x , y, z) = 1, where f is of class C1.
Suppose that P is a point where the distance from the
origin to S is maximized. Show that the vector
emanating from the origin and ending at P is
perpendicular to S.

31. Let A be a nonzero symmetric 3 × 3 matrix. Thus, its
entries satisfy aij = a ji . Consider the function
f (x) = 1

2 ( Ax) · x.

(a) What is ∇ f ?

(b) Consider the restriction of f to the unit sphere
S = {(x , y, z) | x2 + y2 + z2 = 1} in R3. By
Theorem 7 we know that f must have a maximum
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and a minimum on S. Show that there must be an
x ∈ S and a λ �= 0 such that Ax = λx. (The vector x
is called an eigenvector, while the scalar λ is called
an eigenvalue.)

(c) What are the maxima and minima for f on
B = {(x , y, z) | x2 + y2 + z2 ≤ 1}?

32. Suppose that A in the function f defined in Exercise 31
is not necessarily symmetric.

(a) What is ∇ f ?

(b) Can we conclude the existence of an eigenvector
and eigenvalues as in Exercise 31?

33. (a) Find the critical points of x + y2, subject to the
constraint 2x2 + y2 = 1.

(b) Use the bordered Hessian to classify the critical
points.

34. Answer the question posed in the last line of Example 9.

35. Try to find the extrema of xy + yz among points
satisfying xz = 1.

36. A company’s production function is Q(x , y) = xy. The
cost of production is C(x , y) = 2x + 3y. If this
company can spend C(x , y) = 10, what is the maximum
quantity that can be produced?

37. Find the point on the curve (cos t , sin t , sin(t/2)) that is
farthest from the origin.

38. A firm uses wool and cotton fiber to produce cloth. The
amount of cloth produced is given by Q(x , y) =
xy − x − y + 1, where x is the number of pounds of
wool, y the number of pounds of cotton, x > 1, and
y > 1. If wool costs p dollars per pound, cotton costs q
dollars per pound, and the firm can spend B dollars on
material, what should the ratio of cotton and wool be to
produce the most cloth?

39. Carry out the analysis of Example 10 for the production
function Q(K , L) = AK α L1−α , where A and α are
positive constants and 0 < α < 1. This is called a
Cobb–Douglas production function and is sometimes
used as a simple model for the national economy.
Q is then the aggregate output of the economy for a
given input of capital and labor.

3.5 The Implicit Function Theorem [Optional]

In this section we state two versions of the implicit function theorem, arguably the most
important theorem in all of mathematical analysis. The entire theoretical basis of the
idea of a surface as well as the method of Lagrange multipliers depends on it. Moreover,
it is a cornerstone of several fields of mathematics, such as differential topology and
geometry.

The One-Variable Implicit Function Theorem
In one-variable calculus we learn the importance of the inversion process. For example,
x = ln y is the inverse of y = ex , and x = sin−1 y is the inverse of y = sin x . The
inversion process is also important for functions of several variables; for example, the
switch between Cartesian and polar coordinates in the plane involves inverting two
functions of two variables.

Recall from one-variable calculus that if y = f (x) is a C1 function and f ′(x0) �= 0,
then locally near x0 we can solve for x to give the inverse function: x = f −1( y). We
learn that ( f −1)′( y) = 1/ f ′(x); that is, dx/dy = 1/(dy/dx). That y = f (x) can be
inverted is plausible because f ′(x0) �= 0 means that the slope of y = f (x) is nonzero,
so that the graph is rising or falling near x0. Thus, if we reflect the graph across the line
y = x , it is still a graph near (x0, y0), where y0 = f (x0). For example, in Figure 3.5.1,
we can invert y = f (x) in the shaded box, so in this range, x = f −1( y) is defined.

A Special Result
We next turn to the situation for real-valued functions of variables x1, . . . , xn and z.
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figure 3.5.1 If f ′(x0) �= 0, then
y = f (x) is locally invertible.

x

y

y = f (x) is invertible
near (x , y )0 0 0

x0

y

Theorem 11 Special Implicit Function Theorem Suppose that F : Rn+1 →
R has continuous partial derivatives. Denoting points in Rn+1 by (x, z), where
x ∈ Rn and z ∈ R, assume that (x0, z0) satisfies

F(x0, z0) = 0 and
∂ F

∂z
(x0, z0) �= 0.

Then there is a ball U containing x0 in Rn and a neighborhood V of z0 in R such
that there is a unique function z = g(x) defined for x in U and z in V that satisfies

F(x, g(x)) = 0.

Moreover, if x in U and z in V satisfy F(x, z) = 0, then z = g(x). Finally,
z = g(x) is continuously differentiable, with the derivative given by

Dg(x) = − 1
∂ F

∂z
(x, z)

Dx F(x, z)

∣∣∣∣∣
z=g(x)

,

where Dx F denotes the (partial) derivative of F with respect to the variable x—that
is, we have Dx F = [∂ F/∂x1, . . . , ∂ F/∂xn]; in other words,

∂g

∂xi
= −∂ F/∂xi

∂ F/∂z
, i = 1, . . . , n. (1)

A proof of this theorem is given in the Internet supplement.
Once it is known that z = g(x) exists and is differentiable, formula (1) may be checked

by implicit differentiation; to see this, note that the chain rule applied to F(x, g(x)) = 0
gives

Dx F(x, g(x)) +
[
∂ F

∂z
(x, g(x))

]
[Dg(x)] = 0,

which is equivalent to formula (1).



Marsden-3620111 VC September 27, 2011 9:38 205

3.5 The Implicit Function Theorem [Optional] 205

example 1 In the special implicit function theorem, it is important to recognize the necessity of
taking sufficiently small neighborhoods U and V . For example, consider the equation

x2 + z2 − 1 = 0;

that is, F(x , z) = x2 + z2 −1, with n = 1. Here (∂ F/∂z)(x , z) = 2z, and so the special
implicit function theorem applies to a point (x0, z0), satisfying x2

0 + z2
0 − 1 = 0 and

z0 �= 0. Thus, near such points, z is a unique function of x . This function is z = √
1 − x2

if z0 > 0 and z = −√
1 − x2 if z0 < 0. Note that z is defined for |x | < 1 only (U must

not be too big) and z is unique only if it is near z0 (V must not be too big). These
facts and the nonexistence of ∂z/∂x at z0 = 0 are, of course, clear from the fact that
x2 + z2 = 1 defines a circle in the xz plane (Figure 3.5.2).

x

z

z =      1 − x2

z = −      1 − x2

(x , z )00

does not exist here≤
≤

z
x

figure 3.5.2 It is necessary to take small neighborhoods in
the implicit function theorem. ▲

The Implicit Function Theorem and Surfaces
Let us apply Theorem 11 to the study of surfaces. We are concerned with the level
set of a function g: U ⊂ Rn → R; that is, with the surface S consisting of the set of
x satisfying g(x) = c0, where c0 = g(x0) and where x0 is given. Let us take n = 3
for concreteness. Thus, we are dealing with the level surface of a function g(x , y, z)
through a given point (x0, y0, z0). As in the Lagrange multiplier theorem, assume that
∇g(x0, y0, z0) �= 0. This means that at least one of the partial derivatives of g is nonzero.
For definiteness, suppose that (∂g/∂z)(x0, y0, z0) �= 0. By applying Theorem 11 to the
function (x , y, z) → g(x , y, z) − c0, we know there is a unique function z = k(x , y)
satisfying g(x , y, k(x , y)) = c0 for (x , y) near (x0, y0) and z near z0. Thus, near z0 the
surface S is the graph of the function k. Because k is continuously differentiable, this
surface has a tangent plane at (x0, y0, z0) given by

z = z0 +
[

∂k

∂x
(x0, y0)

]
(x − x0) +

[
∂k

∂y
(x0, y0)

]
( y − y0). (2)

But by formula (1),

∂k

∂x
(x0, y0) = −

∂g

∂x
(x0, y0, z0)

∂g

∂z
(x0, y0, z0)

and
∂k

∂y
(x0, y0) = −

∂g

∂y
(x0, y0, z0)

∂g

∂z
(x0, y0, z0)

.
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figure 3.5.3 The construction of
a path c(t) in the surface S
whose tangent vector is v.

x

z

y

v

The line (x0 � t (x � x0), y0 � t (y � y0))

S: z � k (x, y)

The path c (t)

(x0, y0, z0)

Substituting these two equations into the equation for the tangent plane gives this equiv-
alent description:

0 = (z − z0)
∂g

∂z
(x0, y0, z0) + (x − x0)

∂g

∂x
(x0, y0, z0) + ( y − y0)

∂g

∂y
(x0, y0, z0);

that is,

(x − x0, y − y0, z − z0) · ∇g(x0, y0, z0) = 0.

Thus, the tangent plane to the level surface of g is the orthogonal complement to
∇g(x0, y0, z0) through the point (x0, y0, z0). This agrees with our characterization of
tangent planes to level sets from Chapter 2.

We are now ready to complete the proof of the Lagrange multiplier theorem. To do
this, we must show that every vector tangent to S at (x0, y0, z0) is tangent to a curve in S.
By Theorem 11, we need only show this for a graph of the form z = k(x , y). However,
if v = (x − x0, y − y0, z − z0) is tangent to the graph [that is, if it satisfies equation
(2)], then v is tangent to the path in S given by

c(t) = (x0 + t (x − x0), y0 + t ( y − y0), k(x0 + t (x − x0), y0 + t ( y − y0)))

at t = 0. This can be checked by using the chain rule. (See Figure 3.5.3.)

example 2 Near what points may the surface

x3 + 3y2 + 8xz2 − 3z3 y = 1

be represented as a graph of a differentiable function z = k(x , y)?

solut ion Here we take F(x , y, z) = x3+3y2+8xz2−3z3 y−1 and attempt to solve F(x , y, z) = 0
for z as a function of (x , y). By Theorem 11, this may be done near a point (x0, y0, z0)
if (∂ F/∂z)(x0, y0, z0) �= 0, that is, if

z0(16x0 − 9z0 y0) �= 0,

which means, in turn,

z0 �= 0 and 16x0 �= 9z0 y0. ▲
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General Implicit Function Theorem
Next we shall state, without proof, the general implicit function theorem.14 Instead of
attempting to solve one equation for one variable, we attempt to solve m equations for
m variables z1, . . . , zm :

F1(x1, . . . , xn , z1, . . . , zm) = 0
F2(x1, . . . , xn , z1, . . . , zm) = 0
...

...
...

Fm(x1, . . . , xn , z1, . . . , zm) = 0.

(3)

In Theorem 11 we had the condition ∂ F/∂z �= 0. The condition appropriate to the
general implicit function theorem is that � �= 0,15 where � is the determinant of the
m × m matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ F1

∂z1
· · · ∂ F1

∂zm

...
...

∂ Fm

∂z1
· · · ∂ Fm

∂zm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

evaluated at the point (x0, z0); in the neighborhood of such a point, we can uniquely
solve for z in terms of x.

Theorem 12 General Implicit Function Theorem If � �= 0, then near
the point (x0, z0), equation (3) defines unique (smooth) functions

zi = ki (x1, . . . , xn) (i = 1, . . . , m).

Their derivatives may be computed by implicit differentiation.

14For three different proofs of the general case, consult:

(a) E. Goursat, A Course in Mathematical Analysis, I, Dover, New York, 1959, p. 45. (This proof
derives the general theorem by successive application of Theorem 11.)

(b) T. M. Apostol, Mathematical Analysis, 2d ed., Addison-Wesley, Reading, Mass., 1974.
(c) J. E. Marsden and M. Hoffman, Elementary Classical Analysis, 2d ed., Freeman, New York, 1993.

Of these sources, the last two use more sophisticated ideas that are usually not covered until a junior-
level course in analysis. The first, however, is easily understood by the reader who has some knowledge
of linear algebra.

15For students who have had linear algebra: The condition � �= 0 has a simple interpretation in the
case that F is linear; namely, � �= 0 is equivalent to the rank of F being equal to m, which in turn is
equivalent to the fact that the solution space of F = 0 is m-dimensional.
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example 3 To show that near the point (x , y, u, v) = (1, 1, 1, 1), we can solve

xu + yvu2 = 2
xu3 + y2v4 = 2

uniquely for u and v as functions of x and y. Compute ∂u/∂x at the point (1, 1).

solut ion To check solvability, we form the equations

F1(x , y, u, v) = xu + yvu2 − 2
F2(x , y, u, v) = xu3 + y2v4 − 2

and the determinant

� =

∣∣∣∣∣∣∣∣

∂ F1

∂u

∂ F1

∂v

∂ F2

∂u

∂ F2

∂v

∣∣∣∣∣∣∣∣
at (1, 1, 1, 1)

=
∣∣∣∣x + 2yuv yu2

3u2x 4y2v3

∣∣∣∣ at (1, 1, 1, 1)

=
∣∣∣3 1
3 4

∣∣∣ = 9.

Because � �= 0, solvability is assured by the general implicit function theorem. To find
∂u/∂x , we implicitly differentiate the given equations in x using the chain rule:

x
∂u

∂x
+ u + y

∂v

∂x
u2 + 2yvu

∂u

∂x
= 0

3xu2 ∂u

∂x
+ u3 + 4y2v3 ∂v

∂x
= 0.

Setting (x , y, u, v) = (1, 1, 1, 1) gives

3
∂u

∂x
+ ∂v

∂x
= −1

3
∂u

∂x
+ 4

∂v

∂x
= −1.

Solving for ∂u/∂x by multiplying the first equation by 4 and subtracting gives ∂u/∂x =
− 1

3 . ▲

Inverse Function Theorem
A special case of the general implicit function theorem is the inverse function theorem.
Here we attempt to solve the n equations

f1(x1, . . . , xn) = y1

· · ·
fn(x1, . . . , xn) = yn

⎫⎪⎬
⎪⎭ (4)

for x1, . . . , xn as functions of y1, . . . , yn; that is, we are trying to invert the equa-
tions of system (4). This is analogous to forming the inverses of functions like sin
x = y and ex = y, with which you should be familiar from elementary calculus.
Now, however, we are concerned with functions of several variables. The question of
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solvability is answered by the general implicit function theorem applied to the func-
tions yi − fi (x1, . . . , xn) with the unknowns x1, . . . , xn (called z1, . . . , zn earlier). The
condition for solvability in a neighborhood of a point x0 is � �= 0, where � is the
determinant of the matrix Df (x0), and f = ( f1, . . . , fn). The quantity � is denoted by
∂( f1, . . . , fn)/∂(x1, . . . , xn), or ∂( y1, . . . , yn)/∂(x1, . . . , xn) or J ( f )(x0) and is called
the Jacobian determinant of f . Explicitly,

∂( f1, . . . , fn)

∂(x1, . . . , xn)

∣∣∣∣
x=x0

= J ( f )(x0) =

∣∣∣∣∣∣∣∣∣∣∣

∂ f1

∂x1
(x0) · · · ∂ f1

∂xn
(x0)

...
...

∂ fn

∂x1
(x0) · · · ∂ fn

∂xn
(x0)

∣∣∣∣∣∣∣∣∣∣∣
. (5)

Note that in the case when f is linear—for example f (x) = Ax , where A is an n ×n
matrix—the condition � �= 0 is equivalent to the fact that the determinant of A, det
A �= 0, and from Section 1.5 we know that A, and therefore f , has an inverse.

The Jacobian determinant will play an important role in our work on integration (see
Chapter 5). The following theorem summarizes this discussion:

Theorem 13 Inverse Function Theorem Let U ⊂ Rn be open and let
f1: U → R, . . . , fn: U → R have continuous partial derivatives. Consider equa-
tions (4) near a given solution x0, y0. If J ( f )(x0) [defined by equation (5)] is
nonzero, then equation (4) can be solved uniquely as x = g(y) for x near x0 and
y near y0. Moreover, the function g has continuous partial derivatives.

example 4 Consider the equations

x4 + y4

x
= u, sin x + cos y = v.

Near which points (x , y), can we solve for x , y in terms of u, v?

solut ion Here the functions are u = f1(x , y) = (x4 + y4)/x and v = f2(x , y) = sin x +
cos y. We want to know the points near which we can solve for x , y as functions
of u and v. According to the inverse function theorem, we must first compute the
Jacobian determinant ∂( f1, f2)/∂(x , y). We take the domain of f = ( f1, f2) to be
U = {(x , y) ∈ R2 | x �= 0}. Now

∂( f1, f2)

∂(x , y)
=

∣∣∣∣∣∣∣∣

∂ f1

∂x

∂ f1

∂y
∂ f2

∂x

∂ f2

∂y

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
3x4 − y4

x2

4y3

x

cos x −sin y

∣∣∣∣∣∣∣
= sin y

x2
( y4 − 3x4) − 4y3

x
cos x .

Therefore, at points where this does not vanish we can solve for x , y in terms of u
and v. In other words, we can solve for x , y near those x , y for which x �= 0 and
(sin y)( y4 − 3x4) �= 4xy3 cos x . Such conditions generally cannot be solved explicitly.
For example, if x0 = π/2, y0 = π/2, we can solve for x , y near (x0, y0) because there,
∂( f1, f2)/∂(x , y) �= 0. ▲
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exercises

1. Show that the equation x + y − z + cos(xyz) = 0 can be

solved for z = g(x , y) near the origin. Find
∂g

∂x
and

∂g

∂y
at (0, 0).

2. Show that xy + z + 3xz5 = 4 is solvable for z as a
function of (x , y) near (1, 0, 1). Compute ∂z/∂x and
∂z/∂y at (1, 0).

3. (a) Check directly (i.e., without using Theorem 11)
where we can solve the equation
F(x , y) = y2 + y + 3x + 1 = 0 for y in terms of x .

(b) Check that your answer in part (a) agrees with the
answer you expect from the implicit function
theorem. Compute dy/dx .

4. Repeat Exercise 3 with
F(x , y) = xy2 − 2y + x2 + 2 = 0.

5. Let F(x , y) = 0 define a curve in the xy plane through
the point (x0, y0), where F is C1. Assume that (∂ F/∂y)
(x0, y0) �= 0. Show that this curve can be locally
represented by the graph of a function y = g(x). Show
that (i) the line orthogonal to ∇F(x0, y0) agrees with
(ii) the tangent line to the graph of y = g(x).

6. Consider the surface S given by 3y2z2 − 3x = 0.

(a) Using the implicit function theorem, verify that we
can solve for x as a function of y and z near any
point on S. Explicitly write x as a function of y
and z.

(b) Show that near (1, 1, −1) we can solve for either y
or z, and give explicit expressions for these
variables in terms of the other two.

7. Show that x3z2 − z3 yx = 0 is solvable for z as a
function of (x , y) near (1, 1, 1), but not near the origin.
Compute ∂z/∂x and ∂z/∂y at (1, 1).

8. Discuss the solvability in the system

3x + 2y + z2 + u + v2 = 0
4x + 3y + z + u2 + v + w + 2 = 0

x + z + w + u2 + 2 = 0

for u, v, w in terms of x , y, z near
x = y = z = 0, u = v = 0, and w = −2.

9. Discuss the solvability of

y + x + uv = 0
uxy + v = 0

for u, v in terms of x , y near x = y = u = v = 0 and
check directly.

10. Investigate whether or not the system

u(x , y, z) = x + xyz
v(x , y, z) = y + xy
w(x , y, z) = z + 2x + 3z2

can be solved for x , y, z in terms of u, v, w near
(x , y, z) = (0, 0, 0).

11. Consider f (x , y) = ((x2 − y2)/(x2 + y2),
xy/(x2 + y2)). Does this map of R2\(0, 0) to R2 have a
local inverse near (x , y) = (0, 1)?

12. (a) Define x : R2 → R by x(r, θ ) = r cos θ and define
y: R2 → R by y(r, θ ) = r sin θ . Show that

∂(x , y)

∂(r, θ )

∣∣∣
(r0,θ0)

= r0.

(b) When can we form a smooth inverse function
(r (x , y), θ (x , y))? Check directly and with the
inverse function theorem.

(c) Consider the following transformations for
spherical coordinates (see Section 1.4):

x(ρ , φ , θ ) = ρ sin φ cos θ

x(ρ , φ , θ ) = ρ sin φ sin θ

z(ρ , φ , θ ) = ρ cos φ.

Show that the Jacobian determinant is given by

∂(x , y, z)

∂(ρ , φ , θ )
= ρ2 sin φ.

(d) When can we solve for (ρ , φ , θ ) in terms of
(x , y, z)?

13. Let (x0, y0, z0) be a point of the locus defined by
z2 + xy − a = 0, z2 + x2 − y2 − b = 0, where a and b
are constants.

(a) Under what conditions may the part of the locus
near (x0, y0, z0) be represented in the form
x = f (z), y = g(z)?

(b) Compute f ′(z) and g′(z).

14. Consider the unit sphere S given by x2 + y2 + z2 = 1.
S intersects the x axis at two points. Which variables can
we solve for at these points? What about the points of
intersection of S with the y and z axes?
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15. Let F(x , y) = x3 − y2 and let C denote the level curve
given by F(x , y) = 0.

(a) Without using the implicit function theorem, show
that we can describe C as the graph of x as a
function of y near any point.

(b) Show that Fx (0, 0) = 0. Does this contradict the
implicit function theorem?

16. Consider the system of equations

x5v2 + 2y3u = 3
3yu − xuv3 = 2.

Show that near the point (x , y, u, v) = (1, 1, 1, 1), this
system defines u and v implicitly as functions of x and
y. For such local functions u and v, define the local
function f by f (x , y) = (u(x , y), v(x , y)). Find
D f (1, 1).

17. Consider the equations

x2 − y2 − u3 + v2 + 4 = 0
2xy + y2 − 2u2 + 3v4 + 8 = 0.

(a) Show that these equations determine functions
u(x , y) and v(x , y) near the point
(x , y, u, v) = (2, −1, 2, 1).

(b) Compute ∂u
∂x at (x , y) = (2, −1).

18. Is it possible to solve the system of equations

xy2 + xzu + yv2 = 3
u3 yz + 2xv − u2v2 = 2

for u(x , y, z), v(x , y, z) near
(x , y, z) = (1, 1, 1), (u, v) = (1, 1)? Compute ∂v/∂y at
(x , y, z) = (1, 1, 1).

19. The problem of factoring a polynomial
xn + an−1xn−1 + · · · + a0 into linear factors is, in a
sense, an “inverse function” problem. The coefficients ai

may be thought of as functions of the n roots r j . We
would like to find the roots as functions of the
coefficients in some region. With n = 3, apply the
inverse function theorem to this problem and state what
it tells you about the possibility of doing this.

review exercises for chapter 3

1. Let f be any differentiable function. Show that
u = f (y − kx) is a solution to the partial differential

equation
∂u

∂x
+ k

∂u

∂y
= 0.

2. Prove that if u and v have continuous mixed second
partial derivatives and satisfy the Cauchy–Riemann
equations

∂u

∂x
= ∂v

∂y

∂u

∂y
= − ∂v

∂x
,

then both u and v are harmonic.

3. Let f (x , y) = x2 − y2 − xy + 5. Find all critical points
of f and determine whether they are local minima, local
maxima, or saddle points.

4. Find the absolute minimum and maximum values of the
function f (x , y) = x2 + 3xy + y2 + 5 on the unit disc
D = {(x , y) | x2 + y2 ≤ 1}.

5. Find the second-order Taylor polynomial for
f (x , y) = y2e−x2

at (1, 1).

6. Let f (x , y) = ax2 + bxy + cy2.

(a) Find g(x , y), the second-order Taylor approximation
to f at (0, 0).

(b) What is the relationship between g and f ?

(c) Prove that R2(x0, h) = 0 for all x0, h ∈ R2. (HINT:
Show that f is equal to its second-order Taylor
approximation at every point.)

7. Analyze the behavior of the following functions at the
indicated points. [Your answer in part (b) may depend on
the constant C .]

(a) z = x2 − y2 + 3xy, (x , y) = (0, 0)

(b) z = x2 − y2 + Cxy, (x , y) = (0, 0)

8. Find and classify the extreme values (if any) of the
functions on R2 defined by the following expressions:

(a) y2 − x3

(b) (x − 1)2 + (x − y)2

(c) x2 + xy2 + y4

9. (a) Find the minimum distance from the origin in R3 to
the surface z = √

x2 − 1.

(b) Repeat part (a) for the surface z = 6xy + 7.
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10. Find the first few terms in the Taylor expansion of
f (x , y) = exy cos x about x = 0, y = 0.

11. Prove that

z = 3x4 − 4x3 − 12x2 + 18

12(1 + 4y2)

has one local maximum, one local minimum, and one
saddle point. (The graph is shown in Figure 3.R.1.)

y axis

x axis

−2

0
1

2

−1
0

1
2

−1

0

1

2

−1

figure 3.R.1 Graph of
z = (3x4 − 4x3 − 12x2 + 18)/12(1 + 4y2).

12. Find the maxima, minima, and saddles of the function
z = (2 + cos πx)(sin πy), which is graphed in
Figure 3.R.2.

0

−1

1

0

−2
−1

0
1

−3
−2
−1

1
2
3

y axis
x axis

figure 3.R.2 Graph of z = (2 + cos πx) ( sin πy).

13. Find and describe the critical points of
f (x , y) = y sin (πx) . (See Figure 3.R.3.)

0

−2
−1

1
2

−1
0

1
2

−2
−1

0
1
2

y axis x axis

figure 3.R.3 Graph of z = y sin (πx).

14. A graph of the function z = sin(πx)/(1 + y2) is shown
in Figure 3.R.4. Verify that this function has alternating
maxima and minima on the x axis, with no other critical
points.

0

−2
−1

1

−2
−1

0
1

2

−0.5

0

0.5

1

y axis
x axis

figure 3.R.4 Graph of z = sin (πx)/(1 + y2).

In Exercises 15 to 20, find the extrema of the given functions subject to the given constraints.

15. f (x , y) = x2 − 2xy + 2y2, subject to x2 + y2 = 1

16. f (x , y) = xy − y2, subject to x2 + y2 = 1

17. f (x , y) = cos(x2 − y2), subject to x2 + y2 = 1

18. f (x , y) = x2 − y2

x2 + y2 , subject to x + y = 1

19. z = xy, subject to the condition x + y = 1

20. z = cos2 x + cos2 y, subject to the condition
x + y = π/4

21. Find the points on the surface z2 − xy = 1 nearest to the
origin.

22. Use the implicit function theorem to compute dy/dx for

(a) x/y = 10

(b) x3 − sin y + y4 = 4

(c) ex+y2 + y3 = 0
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23. Find the shortest distance from the point (0, b) to the
parabola x2 − 4y = 0. Solve this problem using the
Lagrange multiplier method and also without using
Lagrange’s method.

24. Determine all values of k for which the function
g(x , y, z) = x2 + kxy + kxz + ky2 + kz2 has a local
minimum at (0, 0, 0).

25. Find and classify all critical points of the function
g(x , y) = 1

4 x4 − 5
3 x3 + y3 + 3x2 − 3

2 y2 + 20.

26. Solve the following geometric problems by Lagrange’s
method.

(a) Find the shortest distance from the point (a1, a2, a3)
in R3 to the plane whose equation is given by
b1x1 + b2x2 + b3x3 + b0 = 0, where
(b1, b2, b3) �= (0, 0, 0).

(b) Find the point on the line of intersection of the two
planes a1x1 + a2x2 + a3x3 = 0 and
b1x1 + b2x2 + b3x3 + b0 = 0 that is nearest to the
origin.

(c) Show that the volume of the largest rectangular
parallelepiped that can be inscribed in the ellipsoid

x2

a2 + y2

b2 + z2

c2 = 1

is 8abc/3
√

3.

27. A particle moves in a potential V (x , y) =
x3 − y2 + x2 + 3xy. Determine whether (0, 0) is a stable
equilibrium point; that is, whether or not (0, 0) is a strict
local minimum of V .

28. Study the nature of the function f (x , y) = x3 − 3xy2

near (0, 0). Show that the point (0, 0) is a degenerate
critical point; that is, D = 0. This surface is called a
monkey saddle.

29. Find the maximum of f (x , y) = xy on the curve
(x + 1)2 + y2 = 1.

30. Find the maximum and minimum of
f (x , y) = xy − y + x − 1 on the set x2 + y2 ≤ 2.

31. The Baraboo, Wisconsin, plant of International Widget
Co., Inc., uses aluminium, iron, and magnesium to
produce high-quality widgets. The quantity of widgets
that may be produced using x tons of aluminum, y tons
of iron, and z tons of magnesium is Q(x , y, z) = xyz.
The cost of raw materials is aluminum, $6 per ton; iron,
$4 per ton; and magnesium, $8 per ton. How many tons
each of aluminum, iron, and magnesium should be used
to manufacture 1000 widgets at the lowest possible cost?

(HINT: Find an extreme value for what function subject
to what constraint.)

32. Let f : R → R be of class C1 and let

u = f (x)
v = −y + x f (x).

If f ′(x0) �= 0, show that this transformation of R2 to R2

is invertible near (x0, y0) and its inverse is given by

x = f −1(u)
y = −v + u f −1(u).

33. Show that the pair of equations

x2 − y2 − u3 + v2 + 4 = 0
2xy + y2 − 2u2 + 3v4 + 8 = 0

determine functions u(x , y) and v(x , y) defined for
(x , y) near x = 2 and y = −1 such that u(2, −1) = 2
and v(2, −1) = 1. Compute ∂u/∂x at (2, −1).

34. Show that there are positive numbers p and q and unique
functions u and v from the interval (−1 − p, −1 + p)
into the interval (1 − q, 1 + q) satisfying

xeu(x) + u(x)ev(x) = 0 = xev(x) + v(x)eu(x)

for all x in the interval (−1 − p, −1 + p) with
u(−1) = 1 = v(−1).

35. To work this exercise, you should be familiar with
the technique of diagonalizing a 2 × 2 matrix. Let
a(x), b(x), and c(x) be three continuous functions
defined on U ∪ ∂U , where U is an open set and ∂U
denotes its set of boundary points (see Section 2.2). Use
the notation of Lemma 2 in Section 3.3, and assume that
for each x ∈ U ∪ ∂U the quadratic form defined by the
matrix

[
a b
b c

]

is positive-definite. For a C2 function v on U ∪ ∂U , we
define a differential operator L by

Lv = a(∂2v/∂x2) + 2b(∂2v/∂x∂y) + c(∂2v/∂y2).

With this positive-definite condition, such an operator is
said to be elliptic. A function v is said to be strictly
subharmonic relative to L if Lv > 0. Show that a
strictly subharmonic function cannot have a maximum
point in U .



Marsden-3620111 VC September 27, 2011 9:38 214

214 Higher-Order Derivatives: Maxima and Minima

36. A function v is said to be in the kernel of the operator L
described in Exercise 35 if Lv = 0 on U ∪ ∂U . Arguing
as in Exercise 47 of Section 3.3, show that if v achieves
its maximum on U , it also achieves it on ∂U . This is
called the weak maximum principle for elliptic
operators.

37. Let L be an elliptic differential operator as in Exercises
35 and 36.

(a) Define the notion of a strict superharmonic function.

(b) Show that such functions cannot achieve a minimum
on U .

(c) If v is as in Exercise 36, show that if v achieves its
minimum on U , it also achieves it on ∂U .

38. Consider the surface S given by
x2z + x sin y + yez−1 = 1.

(a) Find the equation of the tangent plane to S at the
point (1, 0, 1).

(b) Is it possible to solve the equation defining S for the
variable y as a function of the variables x and z near
(1, 0, 1)? Why?

(c) Find ∂y
∂x at (1, 0, 1).

39. Consider the system of equations

2xu3v − yv = 1
y3v + x5u2 = 2

Show that near the point (x , y, u, v) = (1, 1, 1, 1), this
system defines u and v implicitly as functions of x and y.
For such local functions u and v, define the local function
f by f (x , y) = (u(x , y), v(x , y)). Find D f (1, 1).

The following method of least squares should be applied to
Exercises 40 to 45.

It sometimes happens that the theory behind an
experiment indicates that the experimental data should lie
approximately along a straight line of the form y = mx + b.
The actual results, of course, never match the theory exactly.
We are then faced with the problem of finding the straight line
that best fits some set of experimental data (x1, y1), . . . ,
(xn , yn) as in Figure 3.R.5. If we guess at a straight line
y = mx + b to fit the data, each point will deviate vertically
from the line by an amount di = yi − (mxi + b).

We would like to choose m and b in such a way as to
make the total effect of these deviations as small as possible.
However, because some are negative and some positive, we
could get a lot of cancellations and still have a pretty bad fit.
This leads us to suspect that a better measure of the total error
might be the sum of the squares of these deviations. Thus, we
are led to the problem of finding the m and b that minimize

the function

s = f (m, b) = d2
1 +d2

2 +· · ·+d2
n =

n∑
i=1

( yi −mxi −b)2,

where x1, . . . , xn and y1, . . . , yn are the given data.

x

y

b

d

(x , y )1

d3

d2
1

1

(x , y )22

(x , y )33

figure 3.R.5 The method of least squares tries to find a
straight line that best approximates a set of data.

40. For each set of three data points, plot the points, write
down the function f (m, b) from the preceding equation,
find m and b to give the best straight-line fit according to
the method of least squares, and plot the straight line.

(a) (x1, y1) = (1, 1)
(x2, y2) = (2, 3)
(x3, y3) = (4, 3)

(b) (x1, y1) = (0, 0)
(x2, y2) = (1, 2)
(x3, y3) = (2, 3)

41. Show that if only two data points (x1, y1) and (x2, y2)
are given, this method produces the line through (x1, y1)
and (x2, y2).

42. Show that the equations for a critical point, ∂s/∂b = 0
and ∂s/∂m = 0, are equivalent to

m

(∑
xi

)
+ nb =

(∑
yi

)

and

m

(∑
x2

i

)
+ b

(∑
xi

)
=

(∑
xi yi

)
,

where all the sums run from i = 1 to i = n.

43. If y = mx + b is the best-fitting straight line to the data
points (x1, y1), . . . , (xn , yn) according to the
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least-square method, show that

n∑
i=1

( yi − mxi − b) = 0;

that is, the positive and negative deviations cancel (see
Exercise 42).

44. Use the second-derivative test to show that the critical
point of f is a minimum.

45. Use the method of least squares to find the straight line
that best fits the points (0, 1), (1, 3), (2, 2), (3, 4), and
(4, 5). Plot the points and line.16

46. The partial differential equation

∂4u

∂x4 = − 1

c2

∂2u

∂t2 ,

where c is a constant, comes up in the study of
deflections of a thin beam. Show that

u(x , t) = sin(λπx) cos(λ2π2ct)

is a solution for any choice of the parameter λ.

47. The Kortweg–DeVries equation

∂u

∂t
+ u

∂u

∂x
+ ∂3u

∂x3 = 0

arises in modeling shallow water waves (called solitons).
Show that

u(x , t) = 12a2sech2(ax − 4a3t)

is a solution to the Kortweg–DeVries equation (see the
Internet supplement).

48. The heat-conduction equation in two space dimensions is

k(uxx + uyy) = ut .

Assuming that u(x , y, t) = X (x)Y (y)T (t), find ordinary
differential equations satisfied by X (x), Y (y), and T (t).

49. The heat conduction equation in two space dimensions
may be expressed in terms of polar coordinates as

k
(

urr + 1

r
ur + 1

r2 uθθ

)
= ut .

Assuming that u(r, θ , t) = R(r )(θ )T (t), find ordinary
differential equations satisfied by R(r ), (θ ), and T (t).

16The method of least squares may be varied and generalized in a number of ways. The basic idea can be applied to equations of more
complicated curves than the straight line. For example, this might be done to find the parabola that best fits a given set of data points. These
ideas also formed part of the basis for the development of the science of cybernetics by Norbert Wiener. Another version of the data is the
following problem of least-square approximation: Given a function f defined and integrable on an interval [a, b], find a polynomial P of
degree ≤n such that the mean square error ∫ b

a

| f (x) − P(x)|2 dx

is as small as possible.
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4

Vector-Valued Functions

. . .who by vigor of mind almost divine, the motions and figures of the planets, the paths

of comets, and the tides of the seas first demonstrated. ---Newton’s Epitaph

Chapters 2 and 3 focused on real-valued functions. This chapter is

largely concerned with vector-valued functions. We begin in the first

section of this chapter with a continuation of our study of paths, adding

applications of Newton's second law. Then we study arc length of paths.

Following this, we introduce the divergence and curl of a vector field

which, in addition to the gradient, are basic operations in vector dif-

ferential calculus. Then the geometry and calculus of the divergence

and curl are studied. The associated integral calculus will be given in

Chapter 8.

4.1 Acceleration and Newton’s Second Law

In Section 2.4 we studied the basic geometry of paths, learning how to sketch curves
(the images of paths) and compute tangent lines. We also learned to think of, as the name
suggests, a path as the trajectory of a particle and to regard the derivative of the path as
its velocity vector. In this section we continue our study of paths, including additional
topics, especially acceleration and Newton’s second law.

Differentiation of Paths
Recall that a path in Rn is a map c of R or an interval in R to Rn . If the path is differ-
entiable, its derivative at each time t is an n × 1 matrix. Specifically, if x1(t), . . . , xn(t)
are the component functions of c, the derivative matrix is

c′(t) =

⎡
⎢⎢⎢⎣

dx1/dt
dx2/dt

...

dxn/dt

⎤
⎥⎥⎥⎦ ,

which can also be written in vector form as

(dx1/dt, . . . , dxn/dt) or as (x ′
1(t), . . . , x ′

n(t)).

217
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Recall from Section 2.4 that c′(t) is the tangent vector to the path at the point c(t).
Also recall that if c represents the path of a moving particle, then its velocity vector is

v = c′(t),

and its speed is s = ‖v‖.
The differentiation of paths is facilitated by the following rules.

Differentiation Rules Let b(t) and c(t) be differentiable paths in R3 and p(t)
and q(t) be differentiable scalar functions:

Sum Rule :
d

dt
[b(t) + c(t)] = b′(t) + c′(t)

Scalar Multiplication Rule :
d

dt
[p(t)c(t)] = p′(t)c(t) + p(t)c′(t)

Dot Product Rule :
d

dt
[b(t) · c(t)] = b′(t) · c(t) + b(t) · c′(t)

Cross Product Rule :
d

dt
[b(t) × c(t)] = b′(t) × c(t) + b(t) × c′(t)

Chain Rule :
d

dt
[c(q(t))] = q ′(t)c′(q(t))

These rules follow by applying the usual differentiation rules to the components.

example 1 Show that if c(t) is a vector function such that ‖c(t)‖ is constant, then c′(t) is perpen-
dicular to c(t) for all t .

solut ion Because ‖c(t)‖ is constant, so is its square ‖c(t)‖2 = c(t) · c(t). The derivative of this
constant is zero, so by the dot product rule,

0 = d

dt
[c(t) · c(t)] = c′(t) · c(t) + c(t) · c′(t) = 2c(t) · c′(t);

thus, c(t) · c′(t) = 0; that is, c′(t) is perpendicular to c(t). ▲

For a path describing uniform rectilinear motion, the velocity vector is constant. In
general, the velocity vector is a vector function v = c′(t) that depends on t . The
derivative a = dv/dt = c′′(t) is called the acceleration of the curve. If the curve is
(x(t), y(t), z(t)), then the acceleration at time t is given by

a(t) = x ′′(t)i + y′′(t)j + z′′(t)k

example 2 A particle moves in such a way that its acceleration is constantly equal to −k. If the
position when t = 0 is (0, 0, 1) and the velocity at t = 0 is i + j, when and where
does the particle fall below the plane z = 0? Describe the path traveled by the particle
(assume t ≥ 0).

wujiayao
高亮
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s o l u t i o n Let c(t) = (x(t), y(t), z(t)) = x(t)i + y(t)j + z(t)k be the path traced out by the
particle, so that the velocity vector is c′(t) = x ′(t)i + y′(t)j + z′(t)k. The acceleration
c′′(t) is −k, so x ′′(t) = 0, y′′(t) = 0, and z′′(t) = −1. It follows that x ′(t) and y′(t) are
constant functions, and z′(t) is a linear function with slope −1. Because c′(0) = i + j,
we get c′(t) = i + j − tk. Integrating again and using the initial position (0, 0, 1), we

find that (x(t), y(t), z(t)) = (t , t , 1 − 1
2 t2). The particle drops below the plane z = 0

when 1 − 1
2 t2 = 0; that is, t = √

2 (because t ≥ 0). At that instant, the position is
(
√

2,
√

2, 0). The path traveled by the particle is a parabola in the plane y = x (see
Figure 4.1.1), because in this plane the equation is described by z = 1 − 1

2 x2. ▲

(0, 0, 1)

v(0)

y

x
2,( 2, 0)

z

figure 4.1.1 The path of the
particle with initial position
(0, 0, 1), initial velocity i + j, and
constant acceleration −k
is a parabola in the plane y = x.

The image of a C1 path is not necessarily “very smooth”; indeed, it may have sharp
bends or changes of direction. For instance, the cycloid c(t) = (t − sin t , 1 − cos t)
shown in Figure 2.4.6 has cusps at all points where c touches the x axis (that is, when
1 − cos t = 0, which happens when t = 2πn, n = 0, ±1, . . .). Another example is the
hypocycloid of four cusps, c: [0, 2π] → R2, t �→ ( cos3 t , sin3 t), which has cusps at
four points (Figure 4.1.2). At all such points, however, c′(t) = 0, and the tangent line is
not well defined. Evidently, the direction of c′(t) may change abruptly at points where
it slows to rest.

A differentiable path c is said to be regular at t = t0 if c′(t0) �= 0. If c′(t) �= 0 for all
t , we say that c is a regular path. In this case, the image curve looks smooth.

example 3 A particle moves along a hypocycloid according to the equations

x = cos3 t , y = sin3 t , a ≤ t ≤ b.

What are the velocity and speed of the particle?

solut ion The velocity vector of the particle is

v = dx

dt
i + dy

dt
j = −(3 sin t cos2 t)i + (3 cos t sin2 t)j,

and its speed is

s = ‖v‖ = (9 sin2 t cos4 t + 9 cos2 t sin4 t)1/2 = 3 | sin t | |cos t |. ▲

x

y

Image of c

c′(t) c(t) figure 4.1.2 The image of the smooth path
c(t) = ( cos3 t, sin3 t), a hypocycloid, does
not “look smooth.”
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Newton’s Second Law
If a particle of mass m moves in R3, the force F acting on it at the point c(t) is related
to the acceleration a(t) by Newton’s second law:1

F(c(t)) = ma(t).

In particular, if no forces act on a particle, then a(t) = 0, so c′(t) is constant and the
particle follows a straight line.

Acceleration and Newton’s Second Law The acceleration of a path
c(t) is

a(t) = c′′(t).

If F is the force acting and m is the mass of the particle, then

F = ma.

In the problem of determining the path c(t) of a particle under the influence of a given
force field, F, Newton’s law becomes a differential equation (i.e., an equation involving
derivatives) for c(t).

For example, the motion of a planet moving along a path r(t) around the sun (con-
sidered to be located at the origin in R3) obeys the law

mr′′ = −GmM

r 3
r,

where M is the mass of the sun, m that of the planet, r = ‖r‖, and G is the gravita-
tional constant. The relation used in determining the force, F = −GmMr/r3, is called
Newton’s law of gravitation (see Figure 4.1.3). We shall not make a general study
of such equations in this book, but content ourselves with the special case of cir-
cular orbits. (More general orbits—the conic sections—are discussed in the Internet
supplement.)

F

M

m

y

x

z

figure 4.1.3 A mass M attracts a
mass mwith a force F given by
Newton’s law of gravitation:
F = −GmMr/r 3.

Circular Orbits
Consider a particle of mass m moving at constant speed s in a circular path of radius
r0. Supposing that it moves in the xy plane, we can suppress the third component and
write its location as

r(t) =
(

r0 cos
st

r0
, r0 sin

st

r0

)
.

1Most scientists acknowledge that F = ma is the single most important equation in all of science and
engineering.
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x
a(t)

r(t)

y

r′(t) = v

figure 4.1.4 The position, velocity, and acceleration
of a particle in circular motion.

Note that this is a circle of radius r0 and that its speed is given by ‖r ′(t)‖ = s. The
quantity s/r0 is called the frequency and is denoted ω. Thus,

r(t) = (r0 cos ωt , r0 sin ωt).

The acceleration is given by

a(t) = r ′′(t) =
(

− s2

r0
cos

st

r0
, − s2

r0
sin

st

r0

)
= − s2

r 2
0

r(t) = −ω2r(t).

Thus, the acceleration is in a direction opposite to r(t); that is, it is directed toward the
center of the circle (see Figure 4.1.4). This acceleration multiplied by the mass of the
particle is called the centripetal force. Even though the speed is constant, the direction
of the velocity is continuously changing and therefore the acceleration, which is a rate
of change in either speed or direction or both, is nonzero.

Newton’s law helps us discover a relationship between the radius of the orbit of a
revolving body and the period; that is, the time it takes for one complete revolution.
Consider a satellite of mass m moving with a speed s around a central body with mass
M in a circular orbit of radius r0 (distance from the center of the spherical central body).
By Newton’s second law F = ma, we get

− s2m

r 2
0

r(t) = −GmM

r 3
0

r(t).

The lengths of the vectors on both sides of this equation must be equal. Hence

s2 = GM

r0
.

If T denotes the period, then s = 2πr0/T ; substituting this value for s in the preceding
equation and solving for T , we obtain the following:

Kepler’s Law

T 2 = r 3
0

(2π )2

GM
.

Thus, the square of the period is proportional to the cube of the radius.
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We have defined two basic concepts associated with a path: its velocity and its
acceleration. Both involve differential calculus. The basic concept of the length of a
path, which involves integral calculus, will be taken up in the next section.

example 4 Suppose that a satellite is to be in a circular orbit about the earth such that it stays fixed
in the sky over one point on the equator. What is the radius of such a geosynchronous
orbit? (The mass of the earth is 5.98 × 1024 kilograms and G = 6.67 × 10−11 in the
meter-kilogram-second [kgs] system of units.)

solut ion The period of the satellite should be 1 day, so T = 60 × 60 × 24 = 86,400 seconds.
From the formula T 2 = r 3

0 (2π )2/GM , we get r 3
0 = T 2GM/(2π )2, and so

r 3
0 = T 2GM

(2π )2
= (86,400)2 × (6.67 × 10−11) × (5.98 × 1024)

(2π )2
≈ 7.54 × 1022 m3.

Thus, r0 = 4.23 × 107 m = 42,300 km ≈ 26,200 mi. ▲

Supplement to Section 4.1: Planetary Orbits, Hamilton’s
Principle, and Spacecraft Trajectories
In this section we have been studying paths in space and Newton’s second law. Hopefully,
you realize that these ideas apply to the real world—the motion of our earth around the
sun, for example, is governed by these laws. But there is more to the story, and we will
try to convey some of it here.

Historical Note

Kepler, Newton, Hamilton, Feynman, and Planck

As we discussed in the historical introduction, the law of planetary motion stating
that the square of the period is proportional to the cube of the radius of an orbit is
one of the three that Kepler observed before Newton formulated his laws of
motion, known more generally as Newton's mechanics. These mechanics
enable us to compute the period of a satellite about the earth or a planet about
the sun (when the radius of its orbit is given), and, as we will indicate shortly,
trajectories of space missions.

Kepler discovered and used results like this not only for circular orbits but more
generally for elliptical orbits. Newton was able to derive Kepler's three celestial
laws from his own law of gravitation. The neat mathematical order of the universe
that these laws provided had a great impact on eighteenth-century thought.

Newton never wrote down his laws of mechanics as differential equations.
This was first done by Euler around 1730. Newton made most of his deductions (at
least those in published form) by geometric methods. Euler also showed how
Newton’s equations followed from Maupertuis’ action principle. The clearest
version of the action principle in mechanics, now known as Hamilton’s
principle, is due to William Rowan Hamilton around 1830, who, as we all should
now know, happens to also be the father of vector calculus. Hamilton’s version of
Maupertuis’ principle was elegantly presented by Richard Feynman, as we
discuss next.
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figure 4.1.5 Richard P. Feynman
(1918--1988).

FEYNMAN AND HAMILTON’S PRINCIPLE. In his legendary Caltech Lectures on
Physics, Nobel Prize--winning physicist Richard Phillips Feynman (see Figures 4.1.5
and 4.1.6) included what he called a “Special Lecture” on a topic clearly very
close to his heart---one that he first heard about from his New York high school
teacher, Mr. Bader. Mr. Bader told his (apparently bored) student Feynman how
principles of maxima and minima apply to the trajectories of moving objects
and in particular how the action principle of Maupertuis, Leibniz, and Hamilton
(discussed in Section 3.3) applies to Newton’s mechanics, governed by F = ma.

Professor Feynman, at the end of his lecture, notes that “a physicist, a student
of Mr. Bader, in 1942 showed how this action principle applied to quantum
mechanics.” That student was Feynman himself, who received the Nobel Prize for
his insights, which also included the discovery of Feynman integrals. The moral
here is pay attention to your teachers---especially the best ones!

figure 4.1.6 Feynman lecturing
at Caltech.

We include the first part of Feynman’s lecture here and more of it in the
Internet supplement; see Volume II, Lecture 19, of the Feynman Lectures on
Physics for the entire lecture.

The Principle of Least Action, by Richard Feynman
When I was in high school, my physics teacher---whose name was Mr.
Bader---called me down one day after physics class and said, “You look
bored; I want to tell you something interesting.” Then he told me something
which I found absolutely fascinating, and have, since then, always found
fascinating. Every time the subject comes up, I work on it. In fact, when I
began to prepare this lecture I found myself making more analyses on the
thing. Instead of worrying about the lecture, I got involved in a new
problem. The subject is this---the principle of least action.

Mr. Bader told me the following: Suppose you have a particle (in a
gravitational field, for instance) which starts somewhere and moves to
some other point by free motion---you throw it, and it goes up and comes
down [see Figure 4.1.7].

Here

Actual motion

t1

t2
There

figure 4.1.7

It goes from the original place to the final place in a certain amount of
time. Now, you try a different motion. Suppose that to get from here to
there, it went like this [see Figure 4.1.8], but got there in just the same
amount of time.

Then he said this: “If you calculate the kinetic energy at every moment
on the path, take away the potential energy, and integrate it over the time
during the whole path, you’ll find that the number you’ll get is bigger than
that for the actual motion.”
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t1

t2

Here

Imagined
motion

There

figure 4.1.8

In other words, the laws of Newton could be stated not in the form
F = ma but in the form: The average kinetic energy less the average
potential energy is as little as possible for the path of an object going from
one point to another.

Let me illustrate a little better what this means. If you take the case of the
gravitational field, then if the particle has the path x(t) (let’s just take one
dimension for a moment; we take a trajectory that goes up and down
and not sideways), where x is the height above the ground, the kinetic
energy is 1

2 m(dx/dt )2, and the potential energy at any time is mgx. Now I
take the kinetic energy minus the potential energy at every moment along
the path and integrate that with respect to time from the initial time to the
final time. Let’s suppose that at the original time t1 we started at some
height and at the end of the time t2 we are definitely ending at some other
place [see Figure 4.1.9].

x

t
t2t1

figure 4.1.9

Then the integral is ∫ t2

t1

[
1
2

m
(

dx
dt

)2

− mgx

]
dt.
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The actual motion is some kind of curve---it’s a parabola if we plot against
the time---and gives a certain value for the integral. But we could imagine
some other motion that went very high and came up and down in some
peculiar way [see Figure 4.1.10].

x

t
t2t1

figure 4.1.10

We can calculate the kinetic energy minus the potential energy and
integrate for such a path . . . or for any other path we want. The miracle is
that the true path is the one for which that integral is least.

MAX PLANCK AND THE PRINCIPLE OF LEAST ACTION. Max Planck (see
Figure 4.1.11), one of the greatest scientists of the modern era and the discoverer
of the “quantization” of nature, was also a profound believer in the mathematical
design of the universe, and in particular the principle of least action. He argued
that the universality of this principle was evidence of a divine creator, and the
structure of the universe a result of divine reason. On June 29, 1922, on “Leibniz
Day” in Berlin, Germany, just a few years after World War I, with all its terrible
carnage, Planck delivered an address honoring this great scholar and his
discovery of the principle of least action.

In the following paragraphs we excerpt some of Planck’s remarks.

figure 4.1.11 Max Planck
(1858--1947).

Modern science, in particular under the influence of the development of the
notion of causality, has moved far away from Leibniz’s teleological point of view.
Science has abandoned the assumption of a special, anticipating reason, and it
considers each event in the natural and spiritual world, at least in principle, as
reducible to prior states. But still we notice a fact, particularly in the most exact
science, which, at least in this context, is most surprising. Present-day physics, as
far as it is theoretically organized, is completely governed by a system of
space--time differential equations which state that each process in nature is
totally determined by the events which occur in its immediate temporal and
spatial neighborhood.

This entire rich system of differential equations, though they differ in detail,
since they refer to mechanical, electric, magnetic, and thermal processes, is
now completely contained in a single dictum---the principle of least action. This,
in short, states that, of all possible processes, the only ones that actually occur
are those that involve minimum expenditure of action. As we can see, only a
short step is required to recognize in the preference for the smallest quantity of
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figure 4.1.12 Trajectory of the
Genesis spacecraft from the
earth to a periodic orbit about a
million and a half kilometers from
earth and the interesting return
trajectory to earth. 0
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action the ruling of divine reason, and thus to discover a part of Leibniz’s
teleological ordering of the universe.2

In present-day physics the principle of least action plays a relatively minor
role. It does not quite fit into the framework of present theories. Of course,
admittedly it is a correct statement; yet usually it serves not as the foundation of
the theory, but as a true but dispensable appendix, because present theoretical
physics is entirely tailored to the principle of infinitesimal local effects, and sees
extensions to larger spaces and times as an unnecessary and uneconomical
complication of the method of treatment. Hence, physics is inclined to view the
principle of least action more as a formal and accidental curiosity than as a
pillar of physical knowledge.

Real-Life Trajectories
Interesting paths in R3 that obey Newton’s second law occur in our own solar system
and are used by NASA to plan space missions. One such mission, the Genesis Discovery
Mission, launched from earth August 8, 2001, has a particularly interesting trajectory,
as shown in Figure 4.1.12. More information about this trajectory and the mission
objectives can be found at http://genesismission.jpl.nasa.gov/.

The points denoted L1 and L2 in this figure denote places of balance (discovered
by Euler) between the earth and the sun. A motionless spacecraft positioned there
will remain there. There are periodic orbits about these points that we have (loosely)
called halo orbits. The main dynamics of the spacecraft is governed by the pull of both
the earth and the sun (and to a very small extent the moon) on the spacecraft. This
is thus part of the famous three-body problem studied and made famous by Poincaré
around 1890.3

2For more information and history, consult S. Hildebrandt and A. J. Tromba, The Parsimonious Uni-
verse: Shape and Form in the Natural World, Springer-Verlag, New York/Berlin, 1995.
3For more information about Poincaré, see F. Diacu and P. Holmes, Celestial Encounters. The Origins
of Chaos and Stability, Princeton University Press: Princeton, NJ, 1996.

http://genesismission.jpl.nasa.gov/
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exercises

In Exercises 1 to 4, find the velocity and acceleration vectors and the equation of the tangent line for each of the following
curves, at the given value of t .

1. r(t) = (cos t)i + (sin 2t)j, at t = 0

2. c(t) = (t sin t , t cos t ,
√

3t), at t = 0

3. r(t) = √
2t i + et j + e−t k, at t = 0

4. c(t) = t i + tj + 2
3 t3/2k, at t = 9

In Exercises 5 to 8, let c1(t) = et i + (sin t)j + t3k and c2(t) =
e−t i + ( cos t)j − 2t3k. Find each of the stated derivatives in two
different ways to verify the rules in the box preceding Example 1.

5.
d

dt
[c1(t) + c2(t)]

6.
d

dt
[c1(t) · c2(t)]

7.
d

dt
[c1(t) × c2(t)]

8.
d

dt
{c1(t) · [2c2(t) + c1(t)]}

9. Consider the helix given by c(t) = (a cos t , a sin t , bt).
Show that the acceleration vector is always parallel to
the xy plane.

10. Prove the dot product rule.

11. Determine which of the following paths are regular:

(a) c(t) = (cos t , sin t , t)

(b) c(t) = (t3, t5, cos t)

(c) c(t) = (t2, et , 3t + 1)

12. Let v and a denote the velocity and acceleration vectors
of a particle moving on a path c. Suppose the initial
position of the particle is c(0) = (3, 4, 0), the initial
velocity is v(0) = (1, 1, −2), and the acceleration
function is a(t) = (0, 0, 6). Find v(t) and c(t).

13. The acceleration, initial velocity, and initial position of a
particle traveling through space are given by

a(t) = (2, −6, −4), v(0) = (−5, 1, 3), r(0) = (6, −2, 1).

The particle’s trajectory intersects the yz plane exactly
twice. Find these two intersection points.

14. The acceleration, initial velocity, and initial position of a
particle traveling through space are given by

a(t) = (−6, 2, 4), v(0) = (2, −5, 1), r(0) = (−3, 6, 2).

The particle’s trajectory intersects the yz plane exactly
twice. Find these two intersection points.

15. If r(t) = 6t i + 3t2j + t3k, what force acts on a particle
of mass m moving along r at t = 0?

16. Let a particle of mass 1 gram (g) follow the path in
Exercise 1, with units in seconds and centimeters. What
force acts on it at t = 0? (Give the units in your answer.)

17. A body of mass 2 kilograms moves on a circle of radius
3 meters, making one revolution every 5 seconds. Find
the centripetal force acting on the body.

18. Find the centripetal force acting on a body of mass
4 kilograms (kg), moving on a circle of radius 10 meters
(m) with a frequency of 2 revolutions per second (rps).

19. Show that if the acceleration of an object is always
perpendicular to the velocity, then the speed of the
object is constant. (HINT: See Example 1.)

20. Show that, at a local maximum or minimum of ‖r(t)‖,
the vector r ′(t) is perpendicular to r(t).

21. A satellite is in a circular orbit 500 miles above the
surface of the earth. What is the period of the orbit?
(You may take the radius of the earth to be 4000 miles,
or 6.436 × 106 meters.)

22. What is the acceleration of the satellite in Exercise 21?
The centripetal force?

23. Find the path c such that c(0) = (0, −5, 1) and
c′(t) = (t , et , t2).

24. Let c be a path in R3 with zero acceleration. Prove that c
is a straight line or a point.

25. Find paths c(t) that represent the following curves or
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trajectories.

(a) {(x , y) | y = ex }
(b) {(x , y) | 4x2 + y2 = 1}
(c) A straight line in R3 passing through the origin and

the point (a, b, c)

(d) {(x , y) | 9x2 + 16y2 = 4}

26. Let c(t) be a path, v(t) its velocity, and a(t) the
acceleration. Suppose F is a C1 mapping of R3 to R3,
m > 0, and F(c(t)) = ma(t) (Newton’s second law).

Prove that

d

dt
[mc(t) × v(t)] = c(t) × F(c(t))

(i.e., “rate of change of angular momentum = torque”).
What can you conclude if F(c(t)) is parallel to c(t)? Is
this the case in planetary motion?

27. Continue the investigations in Exercise 26 to prove
Kepler’s law that a planet moving under the influence of
gravity about the sun does so in a fixed plane.

4.2 Arc Length

Definition of Arc Length
What is the length of a path c(t)? Because the speed ‖c′(t)‖ is the rate of change of
distance traveled with respect to time, the distance traveled by a point moving along the
curve should be the integral of speed with respect to the time over the interval [t0, t1] of
travel time; that is, the length of the path, also called its arc length, is

L(c) =
∫ t1

t0

‖c′(t)‖ dt.

There is the question as to whether or not this formula actually corresponds to the
true arc length. For example, suppose we take a curve in space and glue a string tightly to
it, cutting the string so it exactly fits the curve. If we then remove the string, straighten it
out, and measure it with a straight edge, we surely should obtain the length of the curve.
That our formula for arc length agrees with such a process is justified in the supplement
at the end of this section.

Arc Length The length of the path c(t) = (x(t), y(t), z(t)) for t0 ≤ t ≤ t1, is

L(c) =
∫ t1

t0

√
[x ′(t)]2 + [ y′(t)]2 + [z′(t)]2 dt.

example 1 The arc length of the path c(t) = (r cos t , r sin t), for t lying in the interval [0, 2π ];
that is, for 0 ≤ t ≤ 2π , is

L(c) =
∫ 2π

0

√
(−r sin t)2 + (r cos t)2 dt = 2πr,

which is the circumference of a circle of radius r . If we had allowed 0 ≤ t ≤
4π , we would have obtained 4πr , because the path traverses the same circle twice
(Figure 4.2.1).
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r

figure 4.2.1 The arc length of a circle traversed
twice is 4πr.

▲

For planar curves, we omit the z′(t) term, as in Example 1. Here is an example
in R3.

example 2 Consider the point with position function

c(t) = (t − sin t , 1 − cos t),

which traces out the cycloid discussed in Section 2.4 (see Figure 2.4.6). Find the velocity,
the speed, and the length of one arch.

solut ion The velocity vector is c′(t) = (1 − cos t , sin t), so the speed of the point c(t) is

‖c′(t)‖ =
√

(1 − cos t)2 + sin2 t = √
2 − 2 cos t .

Hence, c(t) moves at variable speed although the circle rolls at constant speed. Further-
more, the speed of c(t) is zero when t is an integral multiple of 2π . At these values of
t , the y coordinate of the point c(t) is zero, and so the point lies on the x axis. The arc
length of one cycle is

L(c) =
∫ 2π

0

√
2 − 2 cos t dt = 2

∫ 2π

0

√
1 − cos t

2
dt

= 2
∫ 2π

0
sin

t

2
dt

(
because 1 − cos t = 2 sin2 t

2
and sin

t

2
≥ 0 on [0, 2π ]

)

= 4

(
−cos

t

2

)∣∣∣∣
2π

0

= 8.
▲

If a curve is made up of a finite number of pieces, each of which is C1 (with bounded
derivative), we compute the arc length by adding the lengths of the component pieces.
Such curves are called piecewise C1. Sometimes we just say “piecewise smooth.”

example 3 A billiard ball on a pool table follows the path c: [−1, 1] → R2, defined by c(t) =
(x(t), y(t), z(t)) = (|t |, |t − 1

2 |). Find the distance traveled by the ball.

solut ion This path is not smooth, because x(t) = |t | is not differentiable at 0, nor is y(t) =
|t − 1

2 | differentiable at 1
2 . However, if we divide the interval [−1, 1] into the pieces

[−1, 0], [0, 1
2 ], and [ 1

2 , 1], we see that x(t) and y(t) have continuous derivatives on each
of the intervals [−1, 0], [0, 1

2 ], and [ 1
2 , 1]. (See Figure 4.2.2.)
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c(0) c(1)

21

2

1
1
2

3
2

x

y

c(1/2)

figure 4.2.2 A piecewise smooth path.

On [−1, 0], x(t) = −t , y(t) = −t + 1
2 , so ‖c′(t)‖ = √

2. Hence, the arc length of
c between −1 and 0 is

∫ 0
−1

√
2 dt = √

2. Similarly, on [0, 1
2 ], x(t) = t , y(t) = −t + 1

2 ,

and again ‖c′(t)‖ = √
2, so that the arc length of c between 0 and 1

2 is 1
2

√
2. Finally, on

[ 1
2 , 1] we have x(t) = t , y(t) = t − 1

2 , and the arc length of c between 1
2 and 1 is 1

2

√
2.

Thus, the total arc length of c is 2
√

2. Of course, we can also compute the answer as the
sum of the distances from c(−1) to c(0) to c( 1

2 ) to c(1). ▲

example 4 Find the arc length of (cos t , sin t , t2), 0 ≤ t ≤ π .

solut ion The path c(t) = (cos t , sin t , t2) has the velocity vector given by v = (−sin t , cos t , 2t).
Because

‖v‖ =
√

sin2 t + cos2 t + 4t2 =
√

1 + 4t2 = 2

√
t2 +

(1

2

)2
,

the arc length is

L(c) =
∫ π

0
2

√
t2 +

(
1

2

)2

dt.

This integral may be evaluated using the following formula from the table of integrals:
∫ √

x2 + a2 dx = 1

2

[
x
√

x2 + a2 + a2 log (x +
√

x2 + a2)
] + C.

Thus,

L(c) = 2 · 1

2

⎡
⎣t

√
t2 +

(
1

2

)2

+
(

1

2

)2

log

⎛
⎝t +

√
t2 +

(
1

2

)2
⎞
⎠

⎤
⎦

∣∣∣∣∣
π

t=0

= π

√
π2 + 1

4
+ 1

4
log

(
π +

√
π2 + 1

4

)
− 1

4
log

(√
1

4

)

= π

2

√
1 + 4π2 + 1

4
log (2π +

√
1 + 4π2) ≈ 10.63.

As a check on our answer, we may note that the path c connects the points (1, 0, 0) and
(−1, 0, π 2). The distance between these points is

√
4 + π2 ≈ 3.72, which is less than

10.63, as it should be. ▲

The Differential of Arc Length
The arc-length formula suggests that we introduce the following notation, which will
be useful in Chapter 7 in our discussion of line integrals.
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figure 4.2.3 Differential of arc
length. x

z

z

y

y

x

d

d

dx2 + dy2 + dz2

d

dd
d s

s
==s ||||

Arc-Length Differential An infinitesimal displacement of a particle follow-
ing a path c(t) = x(t)i + y(t)j + z(t)k is

ds = dx i + dy j + dz k =
(

dx

dt
i + dy

dt
j + dz

dt
k

)
dt,

and its length

ds =
√

dx2 + dy2 + dz2 =
√(

dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt

is the differential of arc length. See Figure 4.2.3.

These formulas help us remember the arc-length formula as

arc length =
∫ t1

t0

ds.

As we have done before with such geometric concepts as length and angle, we can
extend the notion of arc length to paths in n-dimensional space.

Arc Length in Rn Let c: [t0, t1] → Rn be a piecewise C1 path. Its length is
defined to be

L(c) =
∫ t1

t0

‖c′(t)‖ dt.

The integrand is the square root of the sum of the squares of the coordinate
functions of c′(t): If

c(t) = (x1(t), x2(t), . . . , xn(t)),

then

L(c) =
∫ t1

t0

√
(x ′

1(t))2 + (x ′
2(t))2 + · · · + (x ′

n(t))2 dt.
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example 5 Find the length of the path c(t) = ( cos t , sin t , cos 2t , sin 2t) in R4, defined on the
interval from 0 to π .

solut ion We have c′(t) = (−sin t , cos t , −2 sin 2t , 2 cos 2t), and so

‖c′(t)‖ =
√

sin2 t + cos2 t + 4 sin2 2t + 4 cos2 2t = √
1 + 4 = √

5,

a constant, so the length of the path is
∫ π

0

√
5 dt =

√
5π.

▲

It is common to introduce the arc-length function s(t) associated to a path c(t)
given by

s(t) =
∫ t

a
‖c′(u)‖ du,

so that (by the fundamental theorem of calculus)

s ′(t) = ‖c′(t)‖

and

∫ b

a
s ′(t) dt = s(b) − s(a) = s(b).

example 6 Consider the graph of a function of one variable y = f (x) for x in the interval [a, b].
We can consider it to be a curve parametrized by t = x , namely, c(x) = (x , f (x)) for
x ranging from a to b. The arc-length formula gives

L(c) =
∫ b

a

√
1 + [ f ′(x)]2 dx,

which agrees with the formula for the length of a graph from one-variable calculus. ▲

Justification for the Arc-Length Formula
The following discussion assumes an acquaintance with the definite integral defined
in terms of Riemann sums. If your background in this topic needs reinforcement, the
material may be postponed until after Chapter 5.

In R3 there is another way to justify the arc-length formula based on polygonal
approximations. We partition the interval [a, b] into N subintervals of equal length:

a = t0 < t1 < · · · < tN = b;

ti+1 − ti = b − a

N
for 0 ≤ i ≤ N − 1.

We then consider the polygonal line obtained by joining the successive pairs of
points c(ti ), c(ti+1) for 0 ≤ i ≤ N − 1. This yields a polygonal approximation to c as
in Figure 4.2.4. By the formula for distance in R3, it follows that the line segment from
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figure 4.2.4 A path c may be
approximated by a polygonal
path obtained by joining each
c(ti ) to c(ti +1) by a straight line.

a = t t0 1 2 3 Nt t t  = b

c

3

1t

2

N

t0 (c ( )  =     ac )

c ( )

tc ( )

tc ( )

tc ( )

tc ( )N ( =     bc )

x

y

z

c(ti ) to c(ti+1) has length

‖c(ti+1) − c(ti )‖ =
√

[x(ti+1) − x(ti )]2 + [y(ti+1) − y(ti )]2 + [z(ti+1) − z(ti )]2,

where c(t) = (x(t), y(t), z(t)). Applying the mean-value theorem to x(t), y(t), and
z(t) on [ti , ti+1], we obtain three points t∗

i , t∗∗
i , and t∗∗∗

i such that

x(ti+1) − x(ti ) = x ′(t∗
i )(ti+1 − ti ),

y(ti+1) − y(ti ) = y′(t∗∗
i )(ti+1 − ti ),

and

z(ti+1) − z(ti ) = z′(t∗∗∗
i )(ti+1 − ti ).

Thus, the line segment from c(ti ) to c(ti+1) has length

√
[x ′(t∗

i )]2 + [y′(t∗∗
i )]2 + [z′(t∗∗∗

i )]2(ti+1 − ti ).

Therefore, the length of our approximating polygonal line is

SN =
N−1∑
i=0

√
[x ′(t∗

i )]2 + [y′(t∗∗
i )]2 + [z′(t∗∗∗

i )]2(ti+1 − ti ).

As N → ∞, this polygonal line approximates the image of c more closely. Therefore,
we define the arc length of c as the limit, if it exists, of the sequence SN as N → ∞.
Because the derivatives x ′, y′, and z′ are all assumed to be continuous on [a, b], we can
conclude that, in fact, the limit does exist and is given by

limit
N→∞

SN =
∫ b

a

√
[x ′(t)]2 + [y′(t)]2 + [z′(t)]2 dt.

(The theory of integration relates the integral to sums by the formula

∫ b

a
f (t) dt = limit

N→∞

N−1∑
i=0

f (t∗
i )(ti+1 − ti ),
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where t0, . . . , tN is a partition of [a, b], t∗
i ∈ [ti , ti+1] is arbitrary, and f is a continuous

function. Here we have possibly different points t∗
i , t∗∗

i , and t∗∗∗
i , and so this formula

must be extended slightly.)

exercises

Find the arc length of the given curve on the specified interval in Exercises 1 to 6.4

1. (2 cos t , 2 sin t , t), for 0 ≤ t ≤ 2π

2. (1, 3t2, t3), for 0 ≤ t ≤ 1

3. (sin 3t , cos 3t , 2t3/2), for 0 ≤ t ≤ 1

4.
(

t + 1,
2
√

2

3
t3/2 + 7,

1

2
t2

)
, for 1 ≤ t ≤ 2

5. (t , t , t2), for 1 ≤ t ≤ 2

6. (t , t sin t , t cos t), for 0 ≤ t ≤ π

7. Find the arc length of c(t) = (t , |t |) for −1 ≤ t ≤ 1.

8. Recall from Section 2.4 that a rolling circle of radius R
traces out a cycloid, which can be parametrized by
c(t) = (Rt − R sin t , R − R cos t). One arch of the
cycloid is completed from t = 0 to t = 2π . Show that
the length of this arch is always 4 times the diameter of
the rolling circle.

9. Let C be the line segment connecting the point
p = (1, 2, 0) to the point q = (0, 1, −1).

(a) Find a curve c(t): [a, b] → R3 that traces out C .

(b) Find the arc length of c(t).

(c) Find ||p − q||.

10. Compute the length of the curve
c(t) = (log(

√
t),

√
3t , 3

2 t2) for 1 ≤ t ≤ 2.

11. Find the length of the path c(t), defined by
c(t) = (2 cos t , 2 sin t , t), if 0 ≤ t ≤ 2π and
c(t) = (2, t − 2π, t), if 2π ≤ t ≤ 4π .

12. Let c be the path c(t) = (t , t sin t , t cos t). Find the
arc length of c between the two points (0, 0, 0) and
(π, 0, −π).

13. Let c be the path c(t) = (2t , t2, log t), defined for t > 0.
Find the arc length of c between the points (2, 1, 0) and
(4, 4, log 2).

14. The arc-length function s(t) for a given path c(t),
defined by s(t) = ∫ t

a ‖c′(τ )‖ dτ , represents the distance
a particle traversing the trajectory of c will have traveled
by time t if it starts out at time a; that is, it gives the
length of c between c(a) and c(t). Find the arc-length
functions for the curves α(t) = (cosh t , sinh t , t) and
β(t) = (cos t , sin t , t), with a = 0.

15. Let c(t) be a given path, a ≤ t ≤ b. Let s = α(t) be a
new variable, where α is a strictly increasing C1

function given on [a, b]. For each s in [ α(a), α(b)]
there is a unique t with α(t) = s. Define the function
d: [ α(a), α(b)] → R3 by d(s) = c(t).

(a) Argue that the image curves of c and d are the
same.

(b) Show that c and d have the same arc length.

(c) Let s = α(t) = ∫ t
a ‖c′(τ )‖ dτ . Define d as above

by d(s) = c(t). Show that

∥∥∥ d

ds
d(s)

∥∥∥ = 1.

The path s �→ d(s) is said to be an arc-length
reparametrization of c (see also Exercise 17).

4Several of these problems make use of the formula∫ √
x2 + a2 dx = 1

2

[
x
√

x2 + a2 + a2 log (x +
√

x2 + a2)
]

+ C

from the table of integrals in the back of the book.
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Exercises 16, 17, and 20–23 develop some of the classic differential geometry of curves.

16. Let c: [a, b] → R3 be an infinitely differentiable path
(derivatives of all orders exist). Assume c′(t) �= 0 for
any t . The vector c′(t)/‖c′(t)‖ = T(t) is tangent to c at
c(t), and, because ‖T(t)‖ = 1, T is called the unit
tangent to c.

(a) Show that T′(t) · T(t) = 0. [HINT: Differentiate
T(t) · T(t) = 1.]

(b) Write down a formula for T′(t) in terms of c.

17. (a) A path c(s) is said to be parametrized by arc length
or, what is the same thing, to have unit speed if
‖c′(s)‖ = 1. For a path parametrized by arc length
on [a, b], show that l(c) = b − a.

(b) The curvature at a point c(s) on a path is defined by
k = ‖T′(s)‖ when the path is parametrized by arc
length. Show that k = ‖c′′(s)‖.

(c) If c is given in terms of some other parameter t and
c′(t) is never 0, show that
k = ‖c′(t) × c′′(t)‖/‖c′(t)‖3.

(d) Calculate the curvature of the helix
c(t) = (1/

√
2)(cos t , sin t , t). (This c is a scalar

multiple of the right-circular helix.)

18. Show that any line l(t) = x0 + tv, where v is a unit
vector, has zero curvature.

19. Consider the parametrization of the unit circle given by
c(t) = (cos t , sin t).

(a) Verify that c is parametrized by arc length.

(b) Show that the curvature k of c is constant.

20. If T′(t) �= 0, it follows from Exercise 16 that
N(t) = T′(t)/‖T′(t)‖ is normal (i.e., perpendicular) to
T(t); N is called the principal normal vector. Let a third
unit vector that is perpendicular to both T and N be
defined by B = T × N; B is called the binormal vector.
Together, T, N, and B form a right-handed system of
mutually orthogonal vectors that may be thought of as
moving along the path (Figure 4.2.5). Show that

(a)
dB

dt
· B = 0.

(b)
dB

dt
· T = 0.

(c) dB/dt is a scalar multiple of N.

21. If c(s) is parametrized by arc length, we use the result of
Exercise 20(c) to define a scalar-valued function τ ,
called the torsion, by

dB

ds
= −τN.

x

y

z c(t)

N

B
T

figure 4.2.5 The tangent T, principal normal
N, and binormal B.

(a) Show that τ = [c′(s) × c′′(s)] · c′′′(s)/‖c′′(s)‖2.

(b) Show that if c is given in terms of some other
parameter t ,

τ = [c′(t) × c′′(t)] · c′′′(t)
‖c′(t) × c′′(t)‖2 .

Compare with Exercise 17(c).

(c) Compute the torsion of the helix
c(t) = (1/

√
2)(cos t , sin t , t).

22. Show that if a path lies in a plane, then the torsion is
zero. Do this by demonstrating that B is constant and is a
normal vector to the plane in which c lies. (If the torsion
is not zero, it gives a measure of how fast the curve is
twisting out of the plane of T and N.)

23. (a) Use the results of Exercises 17, 20, and 21 to prove
the following Frenet formulas for a unit-speed
curve:

dT

ds
= kN;

dN

ds
= −kT + τB;

dB

ds
= −τN.

(b) Reexpress the results of part (a) as

d

ds

(
T
N
B

)
= ω ×

(
T
N
B

)

for a suitable vector ω.

24. In special relativity, the proper time of a path
c: [a, b] → R4 with components given by
c(λ) = (x(λ), y(λ), z(λ), t (λ)) is defined to be the
quantity

∫ b

a

√
−[x ′(λ)]2 − [y′(λ)]2 − [z′(λ)]2 + c2[t ′(λ)]2 dλ,



Marsden-3620111 VC September 27, 2011 10:5 236

236 Vector-Valued Functions

where c is the velocity of light, a constant. In
Figure 4.2.6, show that, using self-explanatory notation,
the “twin paradox inequality” holds:

proper time (AB) + proper time (BC) < proper time (AC).

x

t

A

B

C

x = ct

figure 4.2.6 The relativistic triangle inequality.

25. The early Greeks knew that a straight line was the
shortest possible path between two points. Euclid, in his
book Optics, stated the “principle of the reflection of
light”—that is, light traveling in a plane travels in a
straight line, and when it is reflected across a mirror, the
angle of incidence equals the angle of reflection.

The Greeks could not have had a proof that straight
lines provided the shortest path between two points
because they, in the first place, had no definition of the
length of a path. They saw this property of straight lines
as more or less “obvious.”

Using the justification of arc length in this section
and the triangle inequality of Section 1.5, argue that if c0

is the straight-line path c0(t) = tP + (1 − t)Q between P
and Q in R3, then

L(c0) ≤ L(c)

for any other path c joining P and Q.

4.3 Vector Fields

The Concept of a Vector Field
In Chapter 2 we introduced a particular kind of vector field, the gradient. In this section
we study general vector fields, discussing their geometric and physical significance.

Vector Fields A vector field in Rn is a map F : A ⊂ Rn → Rn that assigns to
each point x in its domain A a vector F(x). If n = 2, F is called a vector field in
the plane, and if n = 3, F is a vector field in space.

Picture F as attaching an arrow to each point (Figure 4.3.1). By contrast, a map
f : A ⊂ Rn → R that assigns a number to each point is a scalar field. A vector field

x

y

z

x
F(x)

figure 4.3.1 A vector field F assigns a vector
F(x) to each point x of its domain.
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F(x , y, z) on R3 has three component scalar fields F1, F2, and F3, so that

F(x , y, z) = (F1(x , y, z), F2(x , y, z), F3(x , y, z)).

Similarly, a vector field on Rn has n components F1, . . . , Fn . If each component is a
Ck function, we say the vector field F is of class Ck . Vector fields will be assumed to
be at least of class C1 unless otherwise noted. In many applications, F(x) represents a
physical vector quantity (force, velocity, etc.) associated with the position x, as in the
following examples.

example 1 The flow of water through a pipe is said to be steady if, at each point inside the pipe, the
velocity of the fluid passing through that point does not change with time. (Note that
this is quite different from saying that the water in the pipe is not moving.) Attaching to
each point the fluid velocity at that point, we obtain the velocity field V of the fluid (see
Figure 4.3.2). Notice that the length of the arrows (the speed), as well as the direction
of flow, may change from point to point.

figure 4.3.2 A vector field describing
the velocity of flow in a pipe. ▲

example 2 Some forms of rotary motion (such as the motion of particles on a turntable) can be
described by the vector field

V(x , y) = −yi + xj.

See Figure 4.3.3, in which we have shown instead of V the shorter vector field 1
4 V so

that the arrows do not overlap. This is a common convention in drawing pictures of
vector fields.

y

x

figure 4.3.3 A rotary vector field. ▲

example 3 In the plane, R2, let the vector field x be defined by

V(x , y) = yi

x2 + y2
− xj

x2 + y2
=

(
y

x2 + y2
, − x

x2 + y2

)
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(except at the origin, where V is not defined). This vector field is a good approximation
to the planar part of the velocity of water flowing toward a hole in the bottom of a tub
(Figure 4.3.4). Notice that the velocity becomes larger as you approach the hole. ▲

figure 4.3.4 The vector field
describing circular flow in a tub.

Gradient Vector Fields
In Section 2.6 we introduced the gradient of a function by

∇ f (x , y, z) = ∂ f

∂x
(x , y, z)i + ∂ f

∂y
(x , y, z)j + ∂ f

∂z
(x , y, z)k.

Now we want to think of this as an example of a vector field—it assigns a vector to each
point (x , y, z). As such, we refer to ∇ f as a gradient vector field. Gradient fields come
up in a variety of situations, as the next two examples show.

example 4 A piece of material is heated on one side and cooled on another. The temperature at each
point within the body is described at a given moment by a scalar field T (x , y, z). The
flow of heat may be marked by a field of arrows indicating the direction and magnitude
of the flow (Figure 4.3.5). This energy or heat flux vector field is given by J = −k∇T ,
where k > 0 is a constant called the conductivity and ∇T is the gradient of the real-
valued function T . Level sets of T are called isotherms. Note that the heat flows from
hot regions toward cold ones, since −∇T points in the direction of decreasing T .

cooler

Heat flux vector
hotter

figure 4.3.5 A vector field describing
the direction and magnitude of heat
flow.

▲

example 5 The force of attraction of the earth on a mass m can be described by a vector field called
the gravitational force field. Place the origin of a coordinate system at the center of the
earth (assumed spherical). According to Newton’s law of gravity, this field is given by

F = −mMG

r 3
r,

where r(x , y, z) = (x , y, z), and r = ‖r‖ (see Figure 4.3.6). The domain of this vector
field consists of those r for which ‖r‖ is greater than the radius of the earth. As we saw
in Example 6, Section 2.6, F is a gradient field, F = −∇V , where

V = −mMG

r

is the gravitational potential. Note again that F points in the direction of decreasing V .
Writing F in terms of components, we see that

F(x , y, z) =
(−mMG

r 3
x ,

−mMG

r 3
y,

−mMG

r 3
z

)
.
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x

m
FF

z

M

y figure 4.3.6 The vector field F given by
Newton’s law of gravitation.

▲

example 6 According to Coulomb’s law, the force acting on a charge e at position r due to a charge
Q at the origin is

F = εQe

r 3
r = −∇V ,

where V = εQe/r and ε is a constant that depends on the units used. For Qe > 0
(like charges) the force is repulsive [Figure 4.3.7(a)], and for Qe < 0 (unlike charges)
the force is attractive [Figure 4.3.7(b)]. Because the potential V is constant on the
level surfaces of V , they are called equipotential surfaces. Note that the force field is
orthogonal to the equipotential surfaces (the force field is radial and the equipotential
surfaces are concentric spheres).

(a) (b)

figure 4.3.7 The vector fields associated with (a) like charges
(Qe > 0), and (b) unlike charges (Qe < 0). ▲

The next example shows that not every vector field is a gradient.

example 7 Show that the vector field V on R2 defined by V(x , y) = yi− xj is not a gradient vector
field; that is, there is no C1 function f such that

V(x , y) = ∇ f (x , y) = ∂ f

∂x
i + ∂ f

∂y
j.
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s o l u t i o n Suppose that such an f exists. Then ∂ f/∂x = y and ∂ f/∂y = −x . Because these are C1

functions, f itself must have continuous first- and second-order partial derivatives. But,
∂2 f /∂x ∂y = −1, and ∂2 f/∂y ∂x = 1, which violates the equality of mixed partials.
Thus, V cannot be a gradient vector field. ▲

Conservation of Energy and Escaping the Earth’s
Gravitational Field
Consider a particle of mass m moving in a force field F that is a potential field. That is,
assume F = −∇V for a real-valued function V , and that the particle moves according
to F = ma. Thus, if the path is r(t), then

mr̈(t) = −∇V (r(t)). (1)

A basic fact about such motion is the conservation of energy. The energy E of the
particle is defined to be the sum of the kinetic and potential energies, defined as

E = 1

2
m‖ṙ(t)‖2 + V (r(t)). (2)

The principle of conservation of energy states that if Newton’s second law holds, then E
is independent of time; that is, dE/dt = 0. The proof of this fact is a simple calculation;
we use equation (2), the chain rule, and equation (1):

dE

dt
= mṙ · r̈ + (∇V ) · ṙ

= ṙ · (−∇V + ∇V ) = 0.

Escape Velocity
As an application of conservation of energy, we compute the velocity required for a
rocket to escape the earth’s gravitational influence. Assume the rocket has mass m and
is at a distance R0 from the center of the earth (or another planet) when its escape
velocity ve has been reached, and that it will coast thereafter. The energy at this time is

E0 = 1

2
mv2

e − mMG

R0
. (3)

By conservation of energy, E0 will equal the energy at a later time, which we write as

E0 = E = 1

2
mv2 − mMG

R
, (4)

where v is the velocity and R is the distance from the center of the earth (or the other
planet). What we mean by the term escape velocity is that ve is chosen such that the
rocket gets to great distances, at which time it is barely moving. That is, v is close to
zero and R is very large. Thus, from equation (4), we see that E = 0 and hence E0 = 0;
solving E0 = 0 for ve using equation (3) gives:

ve =
√

2MG

R0
.
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Now GM/R2
0 is exactly g, the acceleration due to gravity at the distance R0 from the

center of the planet. Thus, we can write:

ve =
√

2gR0.

For the earth, if the escape velocity were to be achieved at the surface of the earth (of
course, this is a bit unrealistic), this would give

ve =
√

2 · 9.8 m/s2· 6,371,000 m = 11,127 m/s.

However, this is a good approximation to the velocity that a satellite in low earth orbit
needs in order to escape the earth’s gravitational field.

Flow Lines
An important concept related to general (not necessarily gradient) vector fields is that
of a flow line, defined as follows.

Flow Lines If F is a vector field, a flow line for F is a path c(t) such that

c′(t) = F(c(t)).

In the context of Example 1, a flow line is the path followed by a small particle suspended
in the fluid (Figure 4.3.8). Flow lines are also appropriately called streamlines or integral
curves.

Geometrically, a flow line for a given vector filed F is a curve that threads its way
through the domain of the vector field in such a way that the tangent vector of the curve
coincides with the vector field, as in Figure 4.3.9.

Velocity vector Flow line

figure 4.3.8 The velocity vector of
a fluid is tangent to a flow line.

x0

figure 4.3.9 A flow line threading its way
through a vector field in the plane.
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A flow line may be viewed as a solution of a system of differential equations. Indeed,
we can write the definition c′(t) = F(c(t)) as

x ′(t) = P(x(t), y(t), z(t)),

y′(t) = Q(x(t), y(t), z(t)),

z′(t) = R(x(t), y(t), z(t)),

where c(t) = x(t)i + y(t)j + z(t)k, and where

F = Pi + Qj + Rk.

You probably learned about such systems in courses on differential equations, but we
are not presuming such a course has been taken.

example 8 Show that the path c(t) = (cos t , sin t) is a flow line of the vector field F(x , y) =
−yi + xj. Can you find others?

solut ion We must verify that c′(t) = F(c(t)). The left side is (−sin t)i + (cos t)j, while the right
side is F(cos t , sin t) = (−sin t)i + (cos t)j, so we have a flow line. As suggested by
Figure 4.3.3, the other flow lines are also circles. They have the form

c(t) = (r cos (t − t0), r sin (t − t0))

for constants r and t0. ▲

In many cases, explicit formulas for flow lines are not available, so we must resort
to numerical methods. Figure 4.3.10 shows some output from a program that computes
flow lines numerically and plots them on the screen.

x

y

figure 4.3.10 Computer-generated
integral curves of the vector field
F(x, y) = ( sin y)i + (x2 − y)j. This figure was
created using 3D-XplorMath, available
from Richard Palais' Web site at
http://3D-XplorMath.org.

Historical Note

The Field Concept

The concept of a “field,” such as a vector field, has had an enormous impact on
the development of conceptual frameworks for physics and engineering. It is
truly one of the great breakthrough ideas in the history of human thought. It is the
notion that allows us to describe, in a systematic way, influences on objects and
between objects that are spatially separated.

http://3D-XplorMath.org
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The idea of a field began with Newton’s concept of the gravitational field. In
this case, the gravitational field describes the attractive influence of a group of
bodies on each other. Similarly, the electric field produced by a charged object
or group of objects creates, according to Coulomb’s law, a force on another
charged object. Using vector fields to describe these sorts of forces has led to a
deeper understanding of attractive and repulsive forces in nature.

However, it was the monumental discovery of the Maxwell field equations,
which describe the propagation of electromagnetic energy, that cemented the
concept of “field” in scientific thought. This example is particularly interesting
because these fields can propagate. The contrast between the electromagnetic
field that can propagate and the gravitational field that involves instantaneous
action at a distance has caused great interest among philosophers of science.

Einstein’s idea is that gravitation can be described in terms of the metric
properties of space--time and that in this theory the associated field can also
propagate, just like the electromagnetic field, thus providing profound
philosophical evidence that Einstein’s version of gravity may be correct. These
ideas have also led to modern efforts to detect gravitational waves. For a further
discussion of Einstein’s work, see Section 7.7.

The idea of a field is also used in engineering to describe elastic systems and
interesting microstructural properties of materials. In modern theoretical physics,
the field concept is used to describe elementary particles and is central to
attempts by modern theoretical physicists to unify gravity with the quantum
mechanical physics of elementary particles. It is impossible to imagine a
modern theoretical framework that does not incorporate some sort of field
concept as a central ingredient.

exercises

In Exercises 1 to 8, sketch the given vector field or a small multiple of it.

1. F(x , y) = (2, 2)

2. F(x , y) = (4, 0)

3. F(x , y) = (x , y)

4. F(x , y) = (−x , y)

5. F(x , y) = (2y, x)

6. F(x , y) = ( y, −2x)

7. F(x , y) =
(

x√
x2 + y2

,
y√

x2 + y2

)

8. F(x , y) =
(

y√
x2 + y2

,
x√

x2 + y2

)

In the following two exercises, match the given vector field with its pictorial description (see Figures 4.3.11 and 4.3.12).

9. (a) V(x , y) = x i + yj

(b) V(x , y) = yi − xj

10. (a) V(x , y) = y√
x2 + y2

i − x√
x2 + y2

j

(b) V(x , y) = x√
x2 + y2

i + y√
x2 + y2

j

Where are these vector fields not defined? How are these
vector fields related to those in Problem 9?

In Exercises 11 to 14, sketch a few flow lines of the given vector field.

11. F(x , y) = ( y, −x)

12. F(x , y) = (x , −y)

13. F(x , y) = (x , x2)

14. F(x , y, z) = ( y, −x , 0)
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figure 4.3.11 Exercise 9. x

y

x

y

(i) (ii)

figure 4.3.12 Exercise 10. x

y

x

y

(i) (ii)

In Exercises 15 to 18, show that the given curve c(t) is a flow line of the given velocity vector field F(x , y, z).

15. c(t) = (e2t , log |t |, 1/t), t �= 0; F(x , y, z) =
(2x , z, −z2)

16. c(t) = (t2, 2t − 1,
√

t), t > 0; F(x , y, z) =
( y + 1, 2, 1/2z)

17. c(t) = (sin t , cos t , et ); F(x , y, z) = ( y, −x , z)

18. c(t) = (
1

t3 , et ,
1

t
); F(x , y, z) = (−3z4, y, −z2)

19. Let F(x , y, z) = (x2, yx2, z + zx) and

c(t) = (
1

1 − t
, 0,

et

1 − t
). Show c(t) is a flow line for F.

20. Show that c(t) = (a cos t − b sin t , a sin t + b cos t) is a
flow line for F(x , y) = (−y, x) for all real values of a
and b.

21. (a) Let F(x , y, z) = (yz, xz, xy). Find a function
f : R3 → R such that F = ∇ f .

(b) Let F(x , y, z) = (x , y, z). Find a function
f : R3 → R such that F = ∇ f .

22. Let f (x , y) = x2 + y2. Sketch the gradient vector field
∇ f together with some level sets of f . How are they
related?

23. Show that it takes half as much energy to launch a
satellite into an orbit just above the earth as it does to
escape the earth. (Ignore the rotation of the earth.)

24. Let c(t) be a flow line of a gradient field F = −∇V .
Prove that V (c(t)) is a decreasing function of t .

25. Suppose that the isotherms in a region are all concentric
spheres centered at the origin. Prove that the energy flux
vector field points either toward or away from the origin.

26. Sketch the gradient field −∇V for
V (x , y) = (x + y)/(x2 + y2) and the equipotential
surface V = 1.

27. Let F(x , y, z) = (xey , y2z2, xyz) and suppose
c(t) = (

x(t), y(t), z(t)
)

is a flow line for F. Find the
system of differential equations that the functions
x(t), y(t), and z(t) must satisfy.
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4.4 Divergence and Curl

For each of the divergence and curl operations, we will make use of the del operator,
defined by

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

In n-space

∇ =
(

∂

∂x1
,

∂

∂x2
, · · · ,

∂

∂xn

)
.

For functions of one variable, taking a derivative can be thought of as an operation
or process; that is, given a function y = f (x), its derivative is the result of operating
on y by the derivative operator d/dx. Similarly, we can write the gradient as

∇ f =
(

i
∂

∂x
+ j

∂

∂y

)
f = i

∂ f

∂x
+ j

∂ f

∂y

for functions of two variables, and

∇ f =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
f = i

∂ f

∂x
+ j

∂ f

∂y
+ k

∂ f

∂z

for three variables. In operational terms, the gradient of f is obtained by taking the ∇
operator and applying it to f .

Definition of Divergence
We define the divergence of a vector field F by taking the dot product of ∇ with F.

Divergence If F = F1i + F2j + F3k, the divergence of F is the scalar field

div F = ∇ · F = ∂ F1

∂x
+ ∂ F2

∂y
+ ∂ F3

∂z
.

Similarly, if F = (F1, . . . , Fn) is a vector field on Rn , its divergence is

div F =
n∑

i=1

∂ Fi

∂xi
= ∂ F1

∂x1
+ ∂ F2

∂x2
+ · · · + ∂ Fn

∂xn
.

example 1 Compute the divergence of

F = x2 yi + zj + xyzk.

solut ion
div F = ∂

∂x
(x2 y) + ∂

∂y
(z) + ∂

∂z
(xyz) = 2xy + 0 + xy = 3xy

▲
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figure 4.4.1 Flowing a region W
along the flow lines of a vector
field.

y

z

xx
x0

x (t)

W

Interpretation
The divergence has an important physical interpretation. If we imagine F to be the
velocity field of a gas (or a fluid), then div F represents the rate of expansion per unit
volume under the flow of the gas (or fluid). If div F < 0, the gas (or fluid) is compressing.
For a vector field F(x , y) = F1i + F2j on the plane, the divergence

∇ · F = ∂ F1

∂x
+ ∂ F2

∂y

measures the rate of expansion of area.
This interpretation is explained graphically, as follows. Choose a small region W

about a point x0. For each point x in W , let x(t) be the flow line emanating from x.
The set of points x(t) describe how the set W flows after time t (see Figure 4.4.1).

Call the region that results after time t has elapsed W (t), and let V(t) be its volume
(or area in two dimensions). Then the relative rate of change of volume is the divergence;
more precisely,

1

V(0)

d

dt
V(t)

∣∣∣∣
t=0

≈ div F(x0),

with the approximation being more exact as W shrinks to x0. A direct proof of this is
given in the Internet supplement, but a more natural argument is given in Chapter 8, in
the context of the integral theorems of vector calculus.

example 2 Consider the vector field in the plane given by V(x , y) = x i. Relate the sign of the
divergence of V with the rate of change of areas under the flow.

solut ion We think of V as the velocity field of a fluid in the plane. The vector field V points to
the right for x > 0 and to the left if x < 0, as we see in Figure 4.4.2. The length of V
gets shorter toward the origin. As the fluid moves, it expands (the area of the shaded
rectangle increases), so we expect div V > 0. Indeed, div V = 1.
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y

x

figure 4.4.2 This fluid is expanding.

▲

example 3 The flow lines of the vector field F = x i + yj are straight lines directed away from the
origin (Figure 4.4.3).

y

x

figure 4.4.3 The vector field F(x, y) = xi + y j.

If these flow lines are those of a fluid, the fluid is expanding as it moves out from the
origin, so div F should be positive. In fact,

∇ · F = ∂

∂x
x + ∂

∂y
y = 2 > 0.

▲

example 4 Consider the vector field F = −x i − yj. Here the flow lines point toward the origin
instead of away from it (see Figure 4.4.4). Therefore, the fluid is compressing, so we
expect (div F) < 0. Calculating, we see that

∇ · F = ∂

∂x
(−x) + ∂

∂y
(−y) = −1 − 1 = −2 < 0.

▲

example 5 As we saw in the last section, the flow lines of F = −yi+ xj are concentric circles about
the origin, moving counterclockwise (see Figure 4.4.5). From this figure, it appears that
the fluid is neither compressing nor expanding. This is confirmed by calculating

∇ · F = ∂

∂x
(−y) + ∂

∂y
(x) = 0 + 0 = 0.

▲
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y

x

figure 4.4.4 The vector field
F(x, y) = −x i − y j.

figure 4.4.5 The vector field
F(x, y) = −y i + x j has zero
divergence.

y

x

example 6 Some flow lines of F = x i − yj are shown in Figure 4.4.6. Here our intuition about
expansion or compression is less clear. However, it is true that the shaded regions shown
have the same area, and we calculate that

∇ · F = ∂

∂x
x + ∂

∂y
(−y) = 1 + (−1) = 0.

x

Fluid particles move from
shaded region to shaded
region after a fixed time
interval.  The two areas 
are the same.

y

figure 4.4.6 The vector field F(x, y) = xi − y j. ▲
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Curl
To calculate the curl, the second basic operation performed on vector fields, we take the
cross product of ∇ with F.

Curl of a Vector Field If F = F1i + F2j + F3k, the curl of F is the vector
field

curl F = ∇ × F =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
F1 F2 F3

∣∣∣∣∣∣∣∣
=

(
∂ F3

∂y
− ∂ F2

∂z

)
i +

(
∂ F1

∂z
− ∂ F3

∂x

)
j +

(
∂ F2

∂x
− ∂ F1

∂y

)
k.

If we write F = Pi + Qj + Rk, which is alternative notation, the same formula for
the curl reads

curl F =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
P Q R

∣∣∣∣∣∣∣∣
=

(
∂ R

∂y
− ∂ Q

∂z

)
i −

(
∂ R

∂x
− ∂ P

∂z

)
j +

(
∂ Q

∂x
− ∂ P

∂y

)
k.

example 7 Let F(x , y, z) = x i + xyj + k. Find ∇ × F.

solut ion We use the preceding formula:

∇ × F =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
x xy 1

∣∣∣∣∣∣∣∣
= (0 − 0)i − (0 − 0)j + ( y − 0)k.

Thus, ∇ × F = yk. ▲

example 8 Find the curl of xyi − sin zj + k.

solut ion Letting F = xyi − sin zj + k,

∇ × F =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
xy −sin z 1

∣∣∣∣∣∣∣∣

=
∣∣∣∣∣∣

∂

∂y

∂

∂z
−sin z 1

∣∣∣∣∣∣ i −
∣∣∣∣∣∣

∂

∂x

∂

∂z
xy 1

∣∣∣∣∣∣ j +
∣∣∣∣∣∣

∂

∂x

∂

∂y
xy −sin z

∣∣∣∣∣∣ k

= cos zi − xk. ▲
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Unlike the divergence, which can be defined in Rn for any n, we define the curl only
in three-dimensional space (or for planar vector fields, regarding their third component
as zero).

The Curl and Rotations
The physical significance of the curl will be discussed in Chapter 8, when we study
Stokes’ theorem. However, we can now consider a specific situation, in which the curl
is associated with rotations.

example 9 Consider a solid rigid body B rotating about an axis L . The rotational motion of the body
can be described by a vector ω along the axis of rotation, the direction being chosen so
that the body rotates about ω, as in Figure 4.4.7. We call ω the angular velocity vector.
The length ω = ‖ω‖ is taken to be the angular speed of the body B; that is, the speed of
any point in B divided by its distance from the axis L of rotation. The motion of points in
the rotating body is described by the vector field v whose value at each point is the veloc-
ity at that point. To find v, let Q be any point in B and let α be the distance from Q to L .

Figure 4.4.7 shows that α = ‖r‖ sin θ , where r is the vector whose initial point is
the origin and whose terminal point is Q and θ is the angle between r and the axis L of
rotation. The tangential velocity v of Q is directed counterclockwise along the tangent
to a circle parallel to the xy plane with radius α and has magnitude

‖v‖ = ω α = ω‖r‖ sin θ = ‖ω‖‖r‖ sin θ.

The direction and magnitude of v imply that v = ω × r. Selecting a coordinate system
in which L is the z axis, we can write ω = ωk and r = x i + yj + zk. Thus,

v = ω × r = −ωyi + ωxj,

and so

curl v =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
−ωy ωx 0

∣∣∣∣∣∣∣∣
= 2 ωk = 2ω.

Hence, for the rotation of a rigid body, the curl of the velocity vector field is a vector
field whose value is the same at each point. It is directed along the axis of rotation with
magnitude twice the angular speed.

Q

x

y

v
a

u

z

L

�

B

r

figure 4.4.7 The velocity v and angular velocity
ω of a rotating body are related by v = ω × r.

▲
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figure 4.4.8 Looking at a
paddle wheel from above a
moving fluid. The velocity field
V(x, y, z) = ( y i − x j)/(x2 + y2) is
irrotational; the paddle wheel
does not rotate around its axis ω.

ω

The Curl and Rotational Flow
If a vector field represents the flow of a fluid, then the value of ∇ × F at a point is
twice the angular velocity vector of a rigid body that rotates as the fluid does near that
point. In particular, ∇ × F = 0 at a point P means that the fluid is free from rigid
rotations at P; that is, it has no whirlpools. Another justification of this idea depends
on Stokes’ theorem from Chapter 8. However, we can say informally that curl F = 0
means that if a small rigid paddle wheel is placed in the fluid, it will move with the
fluid but will not rotate around its own axis. Such a vector field is called irrotational.
For example, it has been determined from experiments that fluid draining from a tub is
usually irrotational except right at the center, even though the fluid is “rotating” around
the drain (see Figure 4.4.8). In Example 10, the flow lines of the vector field V are circles
about the origin, yet we show that the flow is irrotational. Thus, the reader should be
warned of the possible confusion the word “irrotational” can cause.

example 10 Verify that the vector field

V(x , y, z) = yi − xj

x2 + y2

is irrotational when (x , y) �= (0, 0) (i.e., except where V is not defined).

solut ion The curl is

∇ × V =

∣∣∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

y

x2 + y2

−x

x2 + y2
0

∣∣∣∣∣∣∣∣∣∣∣

= 0i + 0j +
[

∂

∂x

( −x

x2 + y2

)
− ∂

∂y

(
y

x2 + y2

)]
k

=
[−(x2 + y2) + 2x2

(x2 + y2)2
+ −(x2 + y2) + 2y2

(x2 + y2)2

]
k = 0.

▲
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Gradients Are Curl Free
The following identity is a basic relation between the gradient and curl, which should
be compared with the fact that for any vector v, we have v × v = 0.

Theorem 1 Curl of a Gradient For any C2 function f ,

∇ × (∇ f ) = 0.

That is, the curl of any gradient is the zero vector.

proof Because ∇ f = (∂ f/∂x , ∂ f/∂y, ∂ f/∂z) we have, by definition,

∇ × ∇ f =

∣∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
∂ f

∂x

∂ f

∂y

∂ f

∂z

∣∣∣∣∣∣∣∣∣∣

=
(

∂2 f

∂y ∂z
− ∂2 f

∂z ∂y

)
i +

(
∂2 f

∂z ∂x
− ∂2 f

∂x ∂z

)
j +

(
∂2 f

∂x ∂y
− ∂2 f

∂y ∂x

)
k.

Each component is zero because of the equality of mixed partial derivatives. ■

The converse to this theorem (a vector field with zero curl is a gradient, under suitable
hypotheses) will be discussed in Chapter 8.

example 11 Let V(x , y, z) = yi − xj. Show that V is not a gradient field.

solut ion If V were a gradient field, then it would satisfy curl V = 0 by Theorem 1. But

curl V =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
y −x 0

∣∣∣∣∣∣∣∣
= −2k �= 0,

so V cannot be a gradient. ▲

Scalar Curl
There is an operation on vector fields in the plane that is closely related to the curl.
If F = P(x , y)i + Q(x , y)j is a vector field in the plane, it can also be regarded as a
vector field in space for which the k component is zero and the other two components
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are independent of z. The curl of F then reduces to

∇ × F =
(

∂ Q

∂x
− ∂ P

∂y

)
k

and always points in the k direction. The function

∂ Q

∂x
− ∂ P

∂y

of x and y is called the scalar curl of F.

example 12 Find the scalar curl of V(x , y) = −y2i + xj.

solut ion The curl is

∇ × V =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
−y2 x 0

∣∣∣∣∣∣∣∣
= (1 + 2y) k,

so the scalar curl, which is the coefficient of k, is 1 + 2y. ▲

Curls Are Divergence Free
A basic relation between the divergence and curl operations is given next.

Theorem 2 Divergence of a Curl For any C2 vector field F,

div curl F = ∇ · (∇ × F) = 0.

That is, the divergence of any curl is zero.

As with the curl of a gradient, the proof rests on the equality of the mixed partial
derivatives. You should write out the details. A converse will be discussed in Chapter 8.

example 13 Show that the vector field V(x , y, z) = x i + yj + zk cannot be the curl of some vector
field F; that is, there is no F with V = curl F.

solut ion If this were so, then div V would be zero by Theorem 2. But

div V = ∂x

∂x
+ ∂y

∂y
+ ∂z

∂z
= 3 �= 0,

so V cannot be curl F for any F. ▲
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Laplacian
The Laplace operator ∇2, which operates on functions f , is defined to be the divergence
of the gradient:

∇2 f = ∇ · (∇ f ) = ∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2
.

This operator plays an important role in many physical laws, as we have mentioned in
Section 3.1.

The next example is important in mathematical physics.

example 14 Show that ∇2 f = 0 for

f (x , y, z) = 1√
x2 + y2 + z2

= 1

r
and (x , y, z) �= (0, 0, 0),

where r = x i + yj + zk and r = ‖r‖.

solut ion The first derivatives are

∂ f

∂x
= −x

(x2 + y2 + z2)3/2
,

∂ f

∂y
= −y

(x2 + y2 + z2)3/2
,

∂ f

∂z
= −z

(x2 + y2 + z2)3/2
.

Computing the second derivatives, we find that

∂2 f

∂x2
= 3x2

(x2 + y2 + z2)5/2
− 1

(x2 + y2 + z2)3/2
,

∂2 f

∂y2
= 3y2

(x2 + y2 + z2)5/2
− 1

(x2 + y2 + z2)3/2
,

∂2 f

∂z2
= 3z2

(x2 + y2 + z2)5/2
− 1

(x2 + y2 + z2)3/2
.

Thus,

∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2
= 3(x2 + y2 + z2)

(x2 + y2 + z2)5/2
− 3

(x2 + y2 + z2)3/2

= 3

(x2 + y2 + z2)3/2
− 3

(x2 + y2 + z2)3/2
= 0.

▲

Vector Identities
We now have these basic operations on hand: gradient, divergence, curl, and the Laplace
operator. The following box contains some basic general formulas that are useful when
computing with vector fields.
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Basic Identities of Vector Analysis

1. ∇( f + g) = ∇ f + ∇g

2. ∇(c f ) = c∇ f , for a constant c

3. ∇( f g) = f ∇g + g∇ f

4. ∇( f/g) = (g∇ f − f ∇g)/g2, at points x where g(x) �= 0

5. div (F + G) = div F + div G

6. curl (F + G) = curl F + curl G

7. div ( f F) = f div F + F · ∇ f

8. div (F × G) = G · curl F − F · curl G

9. div curl F = 0

10. curl ( f F) = f curl F + ∇ f × F

11. curl ∇ f = 0

12. ∇2( f g) = f ∇2g + g∇2 f + 2(∇ f · ∇g)

13. div (∇ f × ∇g) = 0

14. div ( f ∇g − g∇ f ) = f ∇2g − g∇2 f

example 15 Prove identity 7 in the preceding box.

solut ion The vector field f F has components f Fi , for i = 1, 2, 3, and so

div ( f F) = ∂

∂x
( f F1) + ∂

∂y
( f F2) + ∂

∂z
( f F3).

However, (∂/∂x)( f F1) = f ∂ F1/∂x + F1∂ f/∂x by the product rule, with similar ex-
pressions for the other terms. Therefore,

div ( f F) = f

(
∂ F1

∂x
+ ∂ F2

∂y
+ ∂ F3

∂z

)
+ F1

∂ f

∂x
+ F2

∂ f

∂y
+ F3

∂ f

∂z

= f (∇ · F) + F · ∇ f.
▲

Let us use these identities to redo Example 14.
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example 16 Show that for r �= 0, ∇2(1/r ) = 0.

solut ion As in the case of the gravitational potential, ∇(1/r ) = −r/r3. In general, ∇(rn) =
nrn−2r (see Exercise 38). By the identity ∇ · ( f F) = f ∇ · F + ∇ f · F, we get

∇ ·
(

r

r 3

)
= 1

r 3
∇ · r + r · ∇

(
1

r 3

)

= 3

r 3
+ r ·

(−3r

r 5

)
= 3

r 3
− 3

r 3
= 0. ▲

Historical Note

Divergence and Curl

William Rowan Hamilton, in his investigation of quaternions (discussed in
Section 1.3), introduced the del operator, defined formally as

∇ = ∂

∂x
i + ∂

∂y
j + ∂

∂z
k.

Hamilton firmly believed in the significance of this operator. If f (x, y, z) is a
scalar function on R3, then “multiplication” by ∇ gives the gradient of f :

∇ f = ∂ f
∂x

i + ∂ f
∂y

j + ∂ f
∂z

k,

which, of course, gives the direction of steepest ascent (see Section 2.6). If

V(x,y,z) = V1(x,y,z)i + V2(x,y,z)j + V3(x,y,z)k

is a vector field, then the “quaternionic multiplication” of ∇ with V yields

∇V = −div V + curl V.

Thus, what we now call the divergence of V is the negative of the scalar part of
this product, and curl V is the vector part (c.f. the quaternion discussion in
Section 1.3).

As far as we are aware, Hamilton never gave a physical interpretation of
divergence and curl, but he surely believed that, as a consequence of his faith in
them, they must have an important physical interpretation. His faith in his
mathematical formalism was justified, but a physical explanation of divergence
and curl had to wait for James Clerk Maxwell’s Treatise on Electricity and
Magnetism. Here, Maxwell used both the divergence and the curl in his
equations for the interaction of electric and magnetic fields (the Maxwell
equations are discussed in Chapter 8).

Curiously, Maxwell referred to divergence as convergence and to curl as
rotation, a term still used in scientific research. It was Josiah Gibbs (Figure 4.4.9)
who renamed convergence and rotation as the more familiar terms we use
today---divergence and curl.

figure 4.4.9 Josiah Willard Gibbs
(1839--1903).

Maxwell gave a physical interpretation of the divergence using the Gauss
divergence theorem, as we do in Section 8.4. His physical interpretation of the
curl as a rotation was rather brief. Gibbs provided a more elementary
interpretation of divergence, as we do in this section. In the spirit of Leibniz (who
believed in infinitesimal quantities dx,dy,dz), Gibbs imagined placing a small
cube of dimensions dx by dy by dz in a fluid. The faces of this cube have areas
dx dy, dy dz, and dx dz.
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At this point, you may be interested to hear Gibbs through the words of his student
E. B. Wilson:

Consider the amount of fluid which passes through those faces of the cube
which are parallel to the yz plane, i.e., perpendicular to the x axis [see
Figure 4.4.10].

The normal to the face whose x coordinate is the lesser, that is, the
normal to the left-hand face of the cube is --i. The flux of substance through
this face is

−i · V(x, y, z) dy dz.

y

x

(x, y, z) (x + dx, y, z)

z

−i dy dz i dy dz

figure 4.4.10 Cube with faces
parallel to the yz plane.

The normal to the opposite face, the face whose x coordinate is greater
by the amount dx, is +i, and the flux through it is therefore

i · V(x + dx, y, z) dy dz = i ·
[
V(x, y, z) + ∂V

∂x
dx

]
dy dz

= i · V(x, y, z) dy dz + i · ∂V
∂x

dx dy dz.

The total flux outward from the cube through these two faces is therefore
the algebraic sum of these quantities. This is simply

i · ∂V
∂x

dx dy dz = ∂V1

∂x
dx dy dz.

In like manner the fluxes through the other pairs of faces of the cube are

j · ∂V
∂y

dx dy dz and k · ∂V
∂z

dx dy dz.

The total flux out from the cube is therefore(
i · ∂V

∂x
+ j · ∂V

∂y
+ k · ∂V

∂z

)
dx dy dz.

This is the net quantity of fluid that leaves the cube per unit time. The
quotient of this by the volume dx dy dz of the cube gives the rate of
diminution of density. This is

∇ · V = i · ∂V
∂x

+ j · ∂V
∂y

+ k · ∂V
∂z

= ∂V1

∂x
+ ∂V2

∂y
+ ∂V3

∂z
.
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Because ∇ · V thus represents the diminution of density or the rate at which
matter is leaving a point per unit volume per unit time, it is called the
divergence. Maxwell employed the term convergence to denote the rate
at which fluid approaches a point per unit volume per unit time. This is the
negative of the divergence. In the case that the fluid is incompressible, as
much matter must leave the cube as enters it. The total change of contents
must therefore be zero. For this reason, the characteristic differential
equation that any incompressible fluid must satisfy is

∇ · V = 0,

where V is the velocity of the fluid. This equation is often known as the
hydrodynamic equation. It is satisfied by any flow of water, since water is
practically incompressible. The great importance of the equation for work
in electricity is due to the fact that according to Maxwell’s hypothesis,
electric displacement obeys the same laws as an incompressible fluid. If,
then, D is the electric displacement,

div D = ∇ · D = 0.

Gibbs’ interpretation of curl was much like the one we gave in Example 9 for the
rotation of a rigid body. Wilson remarks that an analysis of the meaning of curl for
fluid motion was “rather difficult.” It remains a bit elusive, even today, as can be
seen from our discussion following Example 9. We provide another interpretation
in Chapter 8.

exercises

Find the divergence of the vector fields in Exercises 1 to 4.

1. V(x , y, z) = exy i − exyj + eyzk

2. V(x , y, z) = yzi + xzj + xyk

3. V(x , y, z) = x i + ( y + cos x)j + (z + exy)k

4. V(x , y, z) = x2i + (x + y)2j + (x + y + z)2k

5. Figure 4.4.11 shows some flow lines and moving regions
for a fluid moving in the plane-field velocity field V.
Where is div V > 0, and also where is div V < 0?

6. Let V (x , y, z) = x i be the velocity field of a fluid in
space. Relate the sign of the divergence with the rate of
change of volume under the flow.

7. Sketch a few flow lines for F(x , y) = yi. Calculate ∇ · F
and explain why your answer is consistent with your
sketch.

8. Sketch a few flow lines for F(x , y) = −3x i − yj.
Calculate ∇ · F and explain why your answer is
consistent with your sketch.

x

y

figure 4.4.11 The flow lines of a fluid moving in the plane.
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Calculate the divergence of the vector fields in Exercises 9 to 12.

9. F(x , y) = x3i − x sin (xy)j

10. F(x , y) = yi − xj

11. F(x , y) = sin (xy)i − cos (x2 y)j

12. F(x , y) = xey i − [ y/(x + y)]j

Compute the curl, ∇ × F, of the vector fields in Exercises 13 to 16.

13. F(x , y, z) = x i + yj + zk

14. F(x , y, z) = yzi + xzj + xyk

15. F(x , y, z) = (x2 + y2 + z2)(3i + 4j + 5k)

16. F(x , y, z) = yzi − xzj + xyk

x2 + y2 + z2

Calculate the scalar curl of each of the vector fields in Exercises 17 to 20.

17. F(x , y) = sin x i + cos xj

18. F(x , y) = yi − xj

19. F(x , y) = xyi + (x2 − y2)j

20. F(x , y) = x i + yj

21. Let F(x , y, z) = (x2, x2 y, z + zx).

(a) Verify that ∇ · (∇ × F) = 0.

(b) Can there exist a function f : R3 → R such that
F = ∇ f ? Explain.

22. (a) Which of the vector fields in Exercises 13–16 could
be gradient fields?

(b) Which of the vector fields in Exercises 9–12 could
be the curl of some vector field V: R3 → R3?

23. Let F(x , y, z) = (exz , sin(xy), x5 y3z2).

(a) Find the divergence of F.

(b) Find the curl of F.

24. Suppose f : R3 → R is a C2 scalar function. Which of
the following expressions are meaningful, and which are
nonsense? For those which are meaningful, decide
whether the expression defines a scalar function or a
vector field.

(a) curl(grad f )

(b) grad(curl f ))

(c) div(grad f )

(d) grad(div f )

(e) curl (div f )

(f) div(curl f )

25. Suppose F: R3 → R3 is a C2 vector field. Which of the
following expressions are meaningful, and which are
nonsense? For those which are meaningful, decide
whether the expression defines a scalar function or a
vector field.

(a) curl(grad F)

(b) grad(curl F))

(c) div(grad F)

(d) grad(div F)

(e) curl (div F)

(f) div(curl F)

26. Suppose f, g, h: R → R are differentiable. Show that
the vector field F(x , y, z) = (

f (x), g(y), h(z)
)

is
irrotational.

27. Suppose f, g, h: R2 → R are differentiable. Show that
the vector field F(x , y, z) = (

f (y, z), g(x , z), h(x , y)
)

has zero divergence.

28. Prove identity 13 in the list of vector identities.

Verify that ∇ × (∇ f ) = 0 for the functions in Exercises 29 to 32.

29. f (x , y, z) =
√

x2 + y2 + z2

30. f (x , y, z) = xy + yz + xz

31. f (x , y, z) = 1/(x2 + y2 + z2)

32. f (x , y, z) = x2 y2 + y2z2

33. Show that F = y(cos x)i + x(sin y)j is not a gradient
vector field.

34. Show that F = (x2 + y2)i − 2xyj is not a gradient field.
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35. Prove identity 10 in the list of vector identities.

36. Suppose that ∇ · F = 0 and ∇ · G = 0. Which of the
following necessarily have zero divergence?

(a) F + G

(b) F × G

37. Let F = 2xz2i + j + y3zxk and f = x2 y. Compute the
following quantities.

(a) ∇ f

(b) ∇ × F

(c) F × ∇ f

(d) F · (∇ f )

38. Let r(x , y, z) = (x , y, z) and

r =
√

x2 + y2 + z2 = ‖r‖. Prove the following
identities.

(a) ∇(1/r ) = −r/r3, r �= 0; and, in general,
∇(rn) = nrn−2r and ∇(log r ) = r/r2.

(b) ∇2(1/r ) = 0, r �= 0; and, in general,
∇2rn = n(n + 1) rn−2.

(c) ∇ · (r/r3) = 0; and, in general,
∇ · (rnr) = (n + 3) rn .

(d) ∇ × r = 0; and, in general, ∇ × (rnr) = 0.

39. Does ∇ × F have to be perpendicular to F?

40. Let F(x , y, z) = 3x2 yi + (x3 + y3)j.

(a) Verify that curl F = 0.

(b) Find a function f such that F = ∇ f . (Techniques
for constructing f in general are given in Chapter 8.
The one in this problem should be sought by trial
and error.)

41. Show that the real and imaginary parts of each of the
following complex functions form the components of an
irrotational and incompressible vector field in the plane;
here i = √−1.

(a) (x − iy)2

(b) (x − iy)3

(c) ex−iy = ex (cos y − i sin y)

review exercises for chapter 4

For Exercises 1 to 4, at the indicated point, compute the velocity vector, the acceleration vector, the speed, and the equation of
the tangent line.

1. c(t) = (t3 + 1, e−t , cos (π t/2)), at t = 1

2. c(t) = (t2 − 1, cos (t2), t4), at t = √
π

3. c(t) = (et , sin t , cos t), at t = 0

4. c(t) = t2

1 + t2 i + tj + k, at t = 2

5. Calculate the tangent and acceleration vectors for the
helix c(t) = (cos t , sin t , t) at t = π/4.

6. Calculate the tangent and acceleration vector for the
cycloid c(t) = (t −sin t , 1−cos t) at t = π/4 and sketch.

7. Let a particle of mass m move on the path
c(t) = (t2, sin t , cos t). Compute the force acting on the
particle at t = 0.

8. (a) Let c(t) be a path with ‖c(t)‖ = constant; that is, the
curve lies on a sphere. Show that c′(t) is orthogonal
to c(t).

(b) Let c be a path whose speed is never zero. Show
that c has constant speed if and only if the
acceleration vector c′′ is always perpendicular to the
velocity vector c′.

9. Let c(t) = (cos t , sin t ,
√

3t) be a path in R3.

(a) Find the velocity and acceleration of this path.

(b) Find a parametrization for the tangent line to this
path at t = 0.

(c) Find the arc length of this path for t ∈ [0, 2π ].

10. Let F(x , y, z) = (sin(xz), exy , x2 y3z5).

(a) Find the divergence of F.

(b) Find the curl of F.

11. Verify that the gravitational force field

F(x , y, z) = −A
(x , y, z)

(x2 + y2 + z2)3/2 , where A is some

constant, is curl free away from the origin.
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12. Show that the vector field V(x , y, z) = 2x i − 3yj + 4zk
is not the curl of any vector field.

13. Express the arc length of the curve x2 = y3 = z5

between x = 1 and x = 4 as an integral, using a suitable
parametrization.

14. Find the arc length of c(t) = t i + (log t)j + 2
√

2tk for
1 ≤ t ≤ 2.

15. A particle is constrained to move around the unit circle
in the xy plane according to the formula
(x , y, z) = (cos (t2), sin (t2), 0), t ≥ 0.

(a) What are the velocity vector and speed of the
particle as functions of t?

(b) At what point on the circle should the particle be
released to hit a target at (2, 0, 0)? (Be careful about
which direction the particle is moving around the
circle.)

(c) At what time t should the release take place? (Use
the smallest t > 0 that will work.)

(d) What are the velocity and speed at the time of
release?

(e) At what time is the target hit?

16. A particle of mass m moves under the influence of a
force F = −kr, where k is a constant and r(t) is the
position of the particle at time t .

(a) Write down differential equations for the
components of r(t).

(b) Solve the equations in part (a) subject to the initial
conditions r(0) = 0, r′(0) = 2j + k.

17. Write the curve described by the equations
x − 1 = 2y + 1 = 3z + 2 in parametric form.

18. Write the curve x = y3 = z2 + 1 in parametric form.

19. Show that c(t) = (1/(1 − t), 0, et/(1 − t)) is a flow line
of the vector field defined by F(x , y, z) = (x2, 0,
z(1 + x)).

20. Let F(x , y) = f (x2 + y2)[−yi + xj] for a function f of
one variable. What equation must g(t) satisfy for

c(t) = [cos g(t)]i + [sin g(t)]j

to be a flow line for F?

Compute ∇ · F and ∇ × F for the vector fields in Exercises 21 to 24.

21. F = 2x i + 3yj + 4zk

22. F = x2i + y2j + z2k

23. F = (x + y)i + ( y + z)j + (z + x)k

24. F = x i + 3xyj + zk

Compute the divergence and curl of the vector fields in Exercises 25 and 26 at the points indicated.

25. F(x , y, z) = yi + zj + xk, at the point (1, 1, 1) 26. F(x , y, z) = (x + y)3i + (sin xy)j + (cos xyz)k, at the
point (2, 0, 1)

Calculate the gradients of the functions in Exercises 27 to 30, and verify that ∇ × ∇ f = 0.

27. f (x , y) = exy + cos (xy)

28. f (x , y) = x2 − y2

x2 + y2

29. f (x , y) = ex2 − cos (xy2)

30. f (x , y) = tan−1 (x2 + y2)

31. (a) Let f (x , y, z) = xyz2; compute ∇ f .

(b) Let F(x , y, z) = xyi + yzj + zyk; compute ∇ × F.

(c) Compute ∇ × ( f F) using identity 10 of the list of
vector identities. Compare with a direct computation.

32. (a) Let F = 2xyez i + ez x2j + (x2 yez + z2)k. Compute
∇ · F and ∇ × F.

(b) Find a function f (x , y, z) such that F = ∇ f .

33. Let F(x , y) = f (x2 + y2)[−yi + xj], as in Exercise 20.
Calculate div F and curl F and discuss your answers in
view of the results of Exercise 20.

34. Let a particle of mass m move along the elliptical helix
c(t) = (4 cos t , sin t , t).

(a) Find the equation of the tangent line to the helix at
t = π/4.

(b) Find the force acting on the particle at time t = π/4.

(c) Write an expression (in terms of an integral) for the
arc length of the curve c(t) between t = 0 and
t = π/4.
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35. (a) Let g(x , y, z) = x3 + 5yz + z2 and let h(u) be a
function of one variable such that h′(1) = 1/2. Let
f = h ◦ g. Starting at (1, 0, 0), in what directions is
f changing at 50% of its maximum rate?

(b) For g(x , y, z) = x3 + 5yz + z2, calculate F = ∇g,
the gradient of g, and verify directly that ∇ × F = 0
at each point (x , y, z).

36. (a) Write in parametric form the curve that is the
intersection of the surfaces x2 + y2 + z2 = 3 and
y = 1.

(b) Find the equation of the line tangent to this curve at
(1, 1, 1).

(c) Write an integral expression for the arc length of
this curve. What is the value of this integral?

37. In meteorology, the negative pressure gradient G is a
vector quantity that points from regions of high pressure
to regions of low pressure, normal to the lines of
constant pressure (isobars).

(a) In an xy coordinate system,

G = −∂ P

∂x
i − ∂ P

∂y
j.

Write a formula for the magnitude of the negative
pressure gradient.

(b) If the horizontal pressure gradient provided the only
horizontal force acting on the air, the wind would
blow directly across the isobars in the direction of
G, and for a given air mass, with acceleration
proportional to the magnitude of G. Explain, using
Newton’s second law.

(c) Because of the rotation of the earth, the wind does
not blow in the direction that part
(b) would suggest. Instead, it obeys Buys–Ballot’s
law, which states: “If in the Northern Hemisphere,
you stand with your back to the wind, the high
pressure is on your right and the low pressure is on
your left.” Draw a figure and introduce xy
coordinates so that G points in the proper direction.

(d) State and graphically illustrate Buys–Ballot’s law for
the Southern Hemisphere, in which the orientation
of high and low pressure is reversed.

38. A sphere of mass m, radius a, and uniform density has
potential u and gravitational force F, at a distance r from
the center (0, 0, 0), given by

u = 3m

2a
− mr2

2a3 , F = − m

a3 r (r ≤ a);

u = m

r
, F = − m

r3 r (r > a).

Here, r = ‖r‖, r = x i + yj + zk.

(a) Verify that F = ∇u on the inside and outside of the
sphere.

(b) Check that u satisfies Poisson’s equation:
∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2 = constant inside
the sphere.

(c) Show that u satisfies Laplace’s equation:
∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2 = 0 outside the
sphere.

39. A circular helix that lies on the cylinder x2 + y2 = R2

with pitch ρ may be described parametrically by

x = R cos θ , y = R sin θ , z = ρθ , θ ≥ 0.

A particle slides under the action of gravity (which acts
parallel to the z axis) without friction along the helix.
If the particle starts out at the height z0 > 0, then when
it reaches the height z along the helix, its speed is
given by

ds

dt
=

√
(z0 − z)2g,

where s is arc length along the helix, g is the constant of
gravity, t is time, and 0 ≤ z ≤ z0.

(a) Find the length of the part of the helix between the
planes z = z0 and z = z1, 0 ≤ z1 < z0.

(b) Compute the time T0 it takes the particle to reach the
plane z = 0.

40. A sphere of radius 10 centimeters (cm) with center at
(0, 0, 0) rotates about the z axis with angular velocity 4
in such a direction that the rotation looks
counterclockwise from the positive z axis.

(a) Find the rotation vector ω (see Example 9, in
Section 4.4).

(b) Find the velocity v = ω × r when r = 5
√

2(i − j) is
on the “equator.”

(c) Find the velocity of the point (0, 5
√

3, 5) on the
sphere.

41. Find the speed of the students in a classroom located at a
latitude 49◦N due to the rotation of the earth. (Ignore the
motion of the earth about the sun, the sun in the galaxy,
etc.; the radius of the earth is 3960 miles.)
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Double and Triple Integrals

It is to Archimedes himself (c. 225 B.C.) that we owe the nearest approach to actual inte-

gration to be found among the Greeks. His first noteworthy advance in this direction was

concerned with his proof that the area of a parabolic segment is four thirds of the triangle

with the same base and vertex, or two thirds of the circumscribed parallelogram.

---D. E. Smith,

History of Mathematics

In this chapter and the next we study the integration of real-valued

functions of several variables; this chapter treats integrals of functions

of two and three variables, or double and triple integrals. The double

integral has a basic geometric interpretation as volume, and can be

defined rigorously as a limit of approximating sums. We shall present sev-

eral techniques for evaluating double and triple integrals and consider

some applications.

5.1 Introduction

This section discusses some geometric aspects of the double integral, deferring a more
rigorous discussion in terms of Riemann sums until Section 5.2.

Double Integrals as Volumes
Consider a continuous function of two variables f : R ⊂ R2 → R whose domain R is a
rectangle with sides parallel to the coordinate axes. The rectangle R can be described in
terms of the two closed intervals [a, b] and [c, d], representing the sides of R along the
x and y axes, respectively, as in Figure 5.1.1. In this case, we say that R is the Cartesian
product of [a, b] and [c, d] and write R = [a, b] × [c, d].

Assume that f (x , y) ≥ 0 on R, so that the graph of z = f (x , y) is a surface
lying above the rectangle R. This surface, the rectangle R, and the four planes x = a,
x = b, y = c, and y = d form the boundary of a region V in space (see Figure 5.1.1).

The problem of how to rigorously define the volume of V has to be faced, and we
shall solve it in Section 5.2 by the classic method of exhaustion, or rather, in more

263
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y

x

z

Graph of
z = f (x, y)

c

b

a

R

d

Region V

figure 5.1.1 The region V in space is
bounded by the graph of f , the rectangle
R, and the four vertical sides indicated.

modern terms, the method of Riemann sums. To gain an intuitive grasp of the double
integral, we provisionally assume that the volume of a region has been defined.

Double Integrals The volume of the region above R and under the graph of a
nonnegative function f is called the (double) integral of f over R and is denoted
by

∫∫
R

f (x , y) dA, or
∫∫

R
f (x , y) dx dy.

example 1 (a) If f is defined by f (x , y) = k, where k is a positive constant, then
∫∫

R
f (x , y) dA = k(b − a)(d − c),

because the integral is equal to the volume of a rectangular box with base R and height k.

(b) If f (x , y) = 1 − x and R = [0, 1] × [0, 1], then∫∫
R

f (x , y) dA = 1

2
,

because the integral is equal to the volume of the triangular solid shown in Figure 5.1.2.

y

x

z

(1, 0, 0) 

(1, 1, 0) 

(0, 1, 0) 

z = 1 − x

R

figure 5.1.2 Volume under the graph z = 1 − x
and over R = [0, 1] × [0, 1].

▲
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example 2 Suppose z = f (x , y) = x2 + y2 and R = [−1, 1] × [0, 1]. Then the integral∫∫
R(x2 + y2) dx dy is equal to the volume of the solid sketched in Figure 5.1.3. We

shall compute this integral in Example 3.

z = f (x, y) = x2 + y2

x

y

R
(1, 0, 0) 

(1, 1, 0) 

(−1, 1, 0) 

z

figure 5.1.3 Volume under z = x2 + y2 and over
R = [−1, 1] × [0, 1].

▲

These ideas are similar to those for a single integral
∫ b

a f (x) dx, which represents
the area under the graph of f if f ≥ 0; see Figure 5.1.4.1

x

y

x = a

a b

y = f (x) x = b

figure 5.1.4 Area under the
graph of a nonnegative
continuous function f from x = a
to x = b is

∫ b

a
f (x) dx .

Single integrals
∫ b

a f (x) dx can be rigorously defined, without recourse to the area
concept, as a limit of Riemann sums. The idea is to approximate

∫ b
a f (x) dx by choosing

a partition a = x0 < x1 < · · · < xn = b of [a, b], selecting points ci ∈ [xi , xi+1], and
forming the Riemann sum

n−1∑
i=0

f (ci )(xi+1 − xi ) ≈
∫ b

a
f (x) dx

(see Figure 5.1.5). We examine the analogous process for double integrals in the next
section.

figure 5.1.5 The sum of the
areas of the shaded rectangles is
a Riemann sum, which
approximates the area under f
from x = a to x = b.

y

a x0 c0 c1 c2 c3x1 x2 x3 x4

x

b==

y f= ( )

x

Cavalieri’s Principle
There is a useful method for computing volumes, known as Cavalieri’s principle. Sup-
pose we have a solid body and we let A(x) denote its cross-sectional area in a plane Px

measured at a distance x from a reference plane (Figure 5.1.6).

1Readers not already familiar with this idea should review the appropriate sections of their introductory
calculus text.
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figure 5.1.6 A solid body with
cross-sectional area A(x) at
distance x from a reference
plane.

a

x
b

Reference plane

A(x) = area of
cross section

Px

According to Cavalieri’s principle, the volume of the body is given by

volume =
∫ b

a
A(x) dx,

where a and b are the minimum and maximum distances from the reference plane.
This can be made intuitively clear as follows. If we partition [a, b] into n-equal parts
by taking a = x0 < x1 < · · · < xn = b, then if �x = xi+1 − xi an approximating
Riemann sum for the preceding integral is

n−1∑
i=0

A(ci )(xi+1 − xi ) =
n−1∑
i=0

A(ci )�x .

But this sum also approximates the volume of the body, because A(x) �x is the volume
of a slab with cross-sectional area A(x) and thickness �x (Figure 5.1.7). Therefore, it is
reasonable to accept the preceding formula for the volume. A more careful justification
of this method is given in the Internet supplement for Chapter 5.

Δx

A(x)

figure 5.1.7 Volume of a slab
with cross-sectional area A(x)
and thickness �x equals A(x) �x.
The total volume of the body is∫ b

a
A(x) dx .

The Slice Method---Cavalieri’s Principle Let S be a solid and, for x
satisfying a ≤ x ≤ b, let Px be a family of parallel planes such that:

1. S lies between Pa and Pb;

2. The area of the slice of S cut by Px is A(x).

Then the volume of S is equal to

∫ b

a
A(x) dx.

Historical Note

Bonaventura Cavalieri (1598--1647) was a pupil of Galileo and a professor in
Bologna. His investigations into area and volume were important building blocks
of the foundations of calculus. Although his methods were criticized by his
contemporaries, similar ideas had been used by Archimedes in antiquity and
were later taken up by the “fathers” of calculus, Newton and Leibniz.
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y

x

z

z = f (x, y)

a

R

b

x0

c

d
y0

figure 5.1.8 Two different cross sections
sweeping out the volume under
z = f (x, y) .

Reduction to Iterated Integrals
We now use Cavalieri’s principle to evaluate double integrals. Consider the solid region
under a graph z = f (x , y) defined on the region [a, b] × [c, d], where f is continuous
and greater than zero. There are two natural cross-sectional area functions: one obtained
by using cutting planes perpendicular to the x axis, and the other obtained by using
cutting planes perpendicular to the y axis. The cross section determined by a cutting
plane x = x0, of the first sort, is the plane region under the graph of z = f (x0, y) from
y = c to y = d (Figure 5.1.8).

When we fix x = x0, we obtain the function y �→ f (x0, y), which is continuous on
[c, d]. The cross-sectional area A(x0) is, therefore, equal to the integral

∫ d
c f (x0, y) dy.

Thus, the cross-sectional area function A has domain [a, b], and is given by the rule
A: x �→ ∫ d

c f (x , y) dy. By Cavalieri’s principle, the volume V of the region under
z = f (x , y) must be equal to

V =
∫ b

a
A(x) dx =

∫ b

a

[ ∫ d

c
f (x , y) dy

]
dx.

The integral
∫ b

a

[ ∫ d
c f (x , y) dy

]
dx is known as an iterated integral because it is obtained

by integrating with respect to y and then integrating the result with respect to x . Because∫∫
R f (x , y) dA is equal to the volume V , we get the following result.

Double and Iterated Integrals
∫∫

R
f (x , y) dA =

∫ b

a

[ ∫ d

c
f (x , y) dy

]
dx (1)

If we use cutting planes perpendicular to the y axis, we obtain

∫∫
R

f (x , y) dA =
∫ d

c

[ ∫ b

a
f (x , y) dx

]
dy (2)

The expression on the right of formula (2) is the iterated integral obtained by
integrating with respect to x and then integrating the result with respect to y.
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Thus, if our intuition about volumes is correct, formulas (1) and (2) ought to be valid.
This is in fact true when the concepts we are discussing are defined rigorously, and is
known as Fubini’s theorem. We give a proof of this theorem in the next section.

As the following examples illustrate, the notion of the iterated integral and equations
(1) and (2) provide a powerful method for computing the double integral of a function
of two variables.

example 3 Evaluate the integral

∫∫
R

(x2 + y2) dx dy,

where R = [−1, 1] × [0, 1].

solut ion By equation (2),

∫∫
R

(x2 + y2) dx dy =
∫ 1

0

[ ∫ 1

−1
(x2 + y2) dx

]
dy.

To find
∫ 1

−1 (x2 + y2) dx, we treat y as a constant and integrate with respect to x . Because
x3/3 + y2x is an antiderivative of x2 + y2 with respect to x , we can integrate, using the
fundamental theorem of calculus, to obtain

∫ 1

−1
(x2 + y2) dx =

[
x3

3
+ y2x

]1

x=−1

= 2

3
+ 2y2.

Next, we integrate 2
3 + 2y2 with respect to y from 0 to 1 to obtain

∫ 1

0

(
2

3
+ 2y2

)
dy =

[
2

3
y + 2

3
y3

]1

y=0

= 4

3
.

Hence, the volume of the solid we saw in Figure 5.1.3 is 4/3.
For completeness, let us evaluate

∫∫
R(x2 + y2) dx dy using equation (1)—that is,

integrating with respect to y first and then with respect to x . We have

∫∫
R

(x2 + y2) dx dy =
∫ 1

−1

[ ∫ 1

0
(x2 + y2) dy

]
dx.

Treating x as a constant in the y integration, we obtain

∫ 1

0
(x2 + y2) dy =

[
x2 y + y3

3

]1

y=0

= x2 + 1

3
.

Next, we evaluate
∫ 1

−1

(
x2 + 1

3

)
dx to obtain

∫ 1

−1

(
x2 + 1

3

)
dx =

[
x3

3
+ x

3

]1

x=−1

= 4

3
,

which agrees with our previous answer. ▲
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example 4 Compute the double integral
∫∫

S cos x sin y dx dy, where S is the square [0, π/2] ×
[0, π/2] (see Figure 5.1.9).

z

z = cos x sin y

x

y
π
2(    ,    , 0)π

2

π
2(    , 0, 0)

(0,    , 1)π
2 figure 5.1.9 Volume under z = cos x sin y

and over the rectangle [0, π/2] × [0, π/2].

solut ion By equation (2),
∫∫

S
cos x sin y dx dy =

∫ π/2

0

[ ∫ π/2

0
cos x sin y dx

]
dy

=
∫ π/2

0
sin y

[ ∫ π/2

0
cos x dx

]
dy =

∫ π/2

0
sin y dy = 1.

▲

In the next section, we shall use Riemann sums to rigorously define the double integral
for a large class of functions of two variables without recourse to the notion of volume.
Although we shall drop the requirement that f (x , y) ≥ 0, equations (1) and (2) will
remain valid. Therefore, the iterated integral will again provide the key to computing
the double integral. In Section 5.3, we treat double integrals over regions more general
than rectangles.

Finally, we remark that it is common to delete the brackets in iterated integrals such
as equations (1) and (2) and to write

∫ b

a

∫ d

c
f (x , y) dy dx in place of

∫ b

a

[ ∫ d

c
f (x , y) dy

]
dx

and ∫ d

c

∫ b

a
f (x , y) dx dy in place of

∫ d

c

[ ∫ b

a
f (x , y) dx

]
dy.

exercises

1. Evaluate the following iterated integrals:

(a)

∫ 1

0

∫ 1

0
(1 − x3 + xy) dx dy

(b)

∫ π/2

0

∫ π/2

−π/2
cos x sin y dx dy

(c)

∫ 2

1

∫ 4

2

(
x

y
+ y

x

)
dx dy

(d)

∫ π/4

0

∫ π/4

0
tan x sec2 y dx dy
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2. Evaluate the integrals in Exercise 1 by integrating first
with respect to y and then with respect to x .

3. Evaluate the following iterated integrals:

(a)

∫ 1

−1

∫ 1

0
(x4 y + y2) dy dx

(b)

∫ π/2

0

∫ 1

0
( y cos x + 2) dy dx

(c)

∫ 1

0

∫ 1

0
(xyex+y) dy dx

(d)

∫ 0

−1

∫ 2

1
(−x log y) dy dx

4. Evaluate the integrals in Exercise 3 by integrating with
respect to x and then with respect to y. [The solution to
part (b) only is in the Study Guide to this text.]

5. Use Cavalieri’s principle to show that the volumes of two
cylinders with the same base and height are equal (see
Figure 5.1.10).

r r

h

figure 5.1.10 Two cylinders with the same base and
height have the same volume.

6. Using Cavalieri’s principle, compute the volume of the
structure shown in Figure 5.1.11; each cross section is a
rectangle of length 5 and width 3.

5 3

7

figure 5.1.11 Compute this volume.

7. A lumberjack cuts out a wedge-shaped piece W of a
cylindrical tree of radius r obtained by making two saw
cuts to the tree’s center, one horizontally and one at an
angle θ . Compute the volume of the wedge W using
Cavalieri’s principle. (See Figure 5.1.12.)

x

h

y

x

r
bυ

W

figure 5.1.12 Find the volume of W.

8. (a) Show that the volume of the solid of revolution
shown in Figure 5.1.13(a) is

π

∫ b

a
[ f (x)]2 dx.

(b) Show that the volume of the region obtained by
rotating the region under the graph of the parabola
y = −x2 + 2x + 3, −1 ≤ x ≤ 3, about the x axis is
512π/15 [see Figure 5.1.13(b)].

y � f (x, y)
y = �x2 + 2x + 3

y

xa
b 3

3

�1x

y

(a) (b)

figure 5.1.13 The solid of revolution (a) has volume π
∫ b

a
[ f (x)]2dx .

Part (b) shows the region between the graph of y = −x2 + 2x + 3
and the x axis rotated about the x axis.
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Evaluate the double integrals in Exercises 9 to 11, where R is the rectangle [0, 2] × [−1, 0].

9.
∫∫

R
(x2 y2 + x) dy dx

10.
∫∫

R

(
|y| cos

1

4
πx

)
dy dx

11.
∫∫

R

(
−xex sin

1

2
πy

)
dy dx

12. Evaluate the iterated integral:

∫ 3

1

∫ 2

1

xy(
x2 + y2

)3/2 dx dy.

13. Evaluate the iterated integral:

∫ 1

0

∫ 1

0
(3x + 2y)7 dx dy.

14. Find the volume bounded by the graph of
f (x , y) = 1 + 2x + 3y, the rectangle [1, 2] × [0, 1],
and the four vertical sides of the rectangle R, as in
Figure 5.1.1.

15. Repeat Exercise 14 for the function f (x , y) = x4 + y2

and the rectangle [−1, 1] × [−3, −2].

5.2 The Double Integral Over a Rectangle

We are ready to give a rigorous definition of the double integral as the limit of a sequence
of sums. This will then be used to define the volume of the region under the graph of a
function f (x , y). We shall not require that f (x , y) ≥ 0; but if f (x , y) assumes negative
values, we shall interpret the integral as a signed volume, just as for the area under the
graph of a function of one variable. In addition, we shall discuss some of the fundamental
algebraic properties of the double integral and prove Fubini’s theorem, which states that
the double integral can be calculated as an iterated integral. To begin, let us establish
some notation for partitions and sums.

Definition of the Integral
Consider a closed rectangle R ⊂ R2; that is, R is a Cartesian product of two inter-
vals: R = [a, b] × [c, d]. By a regular partition of R of order n we mean the two
ordered collections of n + 1 equally spaced points {x j }n

j=0 and {yk}n
k=0; that is, the

points satisfying

a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < yn = d

and

x j+1 − x j = b − a

n
, yk+1 − yk = d − c

n

(see Figure 5.2.1).
A function f (x , y) is said to be bounded if there is a number M > 0 such that

−M ≤ f (x , y) ≤ M for all (x , y) in the domain of f . A continuous function on a
closed rectangle is always bounded, but, for example, f (x , y) = 1/x on (0, 1] × [0, 1]
is continuous but is not bounded, because 1/x becomes arbitrarily large for x near 0.
The rectangle (0, 1] × [0, 1] is not closed, because the endpoint 0 is missing in the first
factor.
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figure 5.2.1 A regular partition
of a rectangle R, with n = 4.

d y4

c

a x1 bx0 x2 x3 x4

y3

y2

y1

y0

=
x

=

=

=

y

R

Let R jk be the rectangle [x j , x j+1] × [yk , yk+1], and let c jk be any point in R jk .
Suppose f : R → R is a bounded real-valued function. Form the sum

Sn =
n−1∑
j,k=0

f (cjk) �x �y =
n−1∑
j,k=0

f (cjk) �A, (1)

where

�x = x j+1 − x j = b − a

n
, �y = yk+1 − yk = d − c

n
,

and

�A = �x �y.

This sum is taken over all j’s and k’s from 0 to n − 1, and so there are n2 terms. A sum
of this type is called a Riemann sum for f .

Definition Double Integral If the sequence {Sn} converges to a limit S as
n → ∞ and if the limit S is the same for any choice of points cjk in the rectangles
Rjk , then we say that f is integrable over R and we write

∫∫
R

f (x , y) dA,
∫∫

R
f (x , y) dx dy, or

∫∫
R

f dx dy

for the limit S.

Thus, we can rewrite integrability in the following way:

limit
n→∞

n−1∑
j,k=0

f (cjk) �x �y =
∫∫

R
f dx dy

for any choice of cjk ∈ Rjk .

Properties of the Integral
The proof of the following basic theorem is presented in the Internet supplement for
Chapter 5.
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Theorem 1 Any continuous function defined on a closed rectangle R is
integrable.

If f (x , y) ≥ 0, the existence of limitn→∞ Sn has a straightforward geometric mean-
ing. Consider the graph of z = f (x , y) as the top of a solid whose base is the rectangle
R. If we take each cjk to be a point where f (x , y) has its minimum value2 on Rjk ,
then f (cjk) �x �y represents the volume of a rectangular box with base Rjk . The sum∑n−1

j,k=0 f (cjk) �x �y equals the volume of an inscribed solid, part of which is shown in
Figure 5.2.2.

Similarly, if cjk is a point where f (x , y) has its maximum on Rjk , then the sum∑n−1
j,k=0 f (cjk) �x �y is equal to the volume of a circumscribed solid (see Figure 5.2.3).

figure 5.2.2 The sum of inscribed
boxes approximates the volume
under the graph of z = f (x, y ).

y

x

z

a

b

d

R cjk

c

Rij

f (cjk )

figure 5.2.3 The volume of
circumscribed boxes also
approximates the volume under
z = f (x, y ).

y

x

z

a

b

d

R

c

Rij

f (cjk )
cjk

2Such cjk exist by virtue of the continuity of f on R; see Theorem 7 in Section 3.3.
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x

z

y

A“broken surface”
z = f (x, y)

R

Set of discontinuities of f
Set of discontinuities of f

R

Break in the
surface
z = f (x, y)

x

z

y

figure 5.2.4 What the graphs of discontinuous functions of two variables might look like.

figure 5.2.5 Curves in the plane
represented as graphs.

x

y

y =  (x)1

2

y

x

y =  (x)

x =  (y)1

2x =  (y)

a b

c

d

Therefore, if limitn→∞ Sn exists and is independent of cjk ∈ Rjk , it follows that the
volumes of the inscribed and circumscribed solids approach the same limit as n → ∞. It
is therefore reasonable to call this limit the exact volume of the solid under the graph of
f . Thus, the method of Riemann sums supports the concepts introduced on an intuitive
basis in Section 5.1.

There is a theorem guaranteeing the existence of the integral of certain discontinuous
functions as well. We shall need this result in the next section in order to discuss the
integrals of functions over regions more general than rectangles. We shall be specifically
interested in functions whose discontinuities lie on curves in the xy plane. Figure 5.2.4
shows two functions defined on a rectangle R whose discontinuities lie along curves. In
other words, f is continuous at each point that is in R, but not necessarily on the curve.

Useful curves are graphs of functions such as y = φ(x), a ≤ x ≤ b, or x = ψ( y),
c ≤ y ≤ d , or finite unions of such graphs. Some examples are shown in Figure 5.2.5.

The next theorem provides an important criterion for determining whether a function
is integrable. The proof is discussed in the Internet supplement.

Theorem 2 Integrability of Bounded Functions Let f : R → R be a
bounded real-valued function on the rectangle R, and suppose that the set of
points where f is discontinuous lies on a finite union of graphs of continuous
functions. Then f is integrable over R.
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Using Theorem 2 and the remarks preceding it, we see that the functions sketched in
Figure 5.2.4 are integrable over R, because these functions are bounded and continuous
except on graphs of continuous functions.

From the definition of the integral as a limit of sums and the limit theorems, we can
deduce some fundamental properties of the integral

∫∫
R f (x , y) dA; these properties

are essentially the same as for the integral of a real-valued function of a single variable.
Let f and g be integrable functions on the rectangle R, and let c be a constant. Then

f + g and c f are integrable, and

(i) Linearity

∫∫
R

[ f (x , y) + g(x , y)] dA =
∫∫

R
f (x , y) dA +

∫∫
R

g(x , y) dA.

(ii) Homogeneity

∫∫
R

c f (x , y) dA = c

∫∫
R

f (x , y) dA.

(iii) Monotonicity If f (x , y) ≥ g(x , y), then

∫∫
R

f (x , y) dA ≥
∫∫

R
g(x , y) dA.

(iv) Additivity If Ri , i = 1, . . . , m, are pairwise disjoint rectangles such that f is
bounded and integrable over each Ri and if Q = R1 ∪ R2 ∪· · ·∪ Rm is a rectangle,
then f : Q → R is integrable over Q and

∫∫
Q

f (x , y) dA =
m∑

i=1

∫∫
Ri

f (x , y) dA.

Properties (i) and (ii) are a consequence of the definition of the integral as a limit of
a sum and the following facts for convergent sequences {Sn} and {Tn}, which are proved
as with the limit theorems in Chapter 2:

limit
n→∞

(Tn + Sn) = limit
n→∞

Tn + limit
n→∞

Sn

limit
n→∞

(cSn) = c limit
n→∞

Sn.

To demonstrate monotonicity, we first observe that if h(x , y) ≥ 0 and {Sn} is a
sequence of Riemann sums that converges to

∫∫
R h(x , y) dA, then Sn ≥ 0 for all n, so

that
∫∫

R h(x , y) dA = limitn→∞Sn ≥ 0. If f (x , y) ≥ g(x , y) for all (x , y) ∈ R, then
( f − g)(x , y) ≥ 0 for all (x , y), and, using properties (i) and (ii), we have

∫∫
R

f (x , y) dA −
∫∫

R
g(x , y) dA =

∫∫
R

[ f (x , y) − g(x , y)] dA ≥ 0.

This proves property (iii). The proof of property (iv) is more technical, and a special
case is proved in the Internet supplement. It should be intuitively obvious.

Another important result is the inequality
∣∣∣∣
∫∫

R
f dA

∣∣∣∣ ≤
∫∫

R
| f | dA. (2)
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To see why formula (2) is true, note that, by the definition of absolute value,

−| f | ≤ f ≤ | f |;

therefore, from the monotonicity and homogeneity of integration (with c = −1),

−
∫∫

R
| f | dA ≤

∫∫
R

f dA ≤
∫∫

R
| f | dA,

which is equivalent to formula (2).

Fubini’s Theorem
Although we have noted the integrability of a variety of functions, we have not yet
established rigorously a general method of computing integrals. In the case of one
variable, we avoid computing

∫ b
a f (x) dx from its definition as a limit of a sum by using

the fundamental theorem of integral calculus. This important theorem tells us that if f
is continuous, then

∫ b

a
f (x) dx = F(b) − F(a),

where F is an antiderivative of f ; that is, F ′ = f .
This technique will not work as stated for functions f (x , y) of two variables. How-

ever, as we indicate in Section 5.1, we can often reduce a double integral over a rectangle
to iterated single integrals; the fundamental theorem then applies to each of these sin-
gle integrals. Fubini’s theorem, which was mentioned in the last section, establishes
this reduction to iterated integrals rigorously, by using Riemann sums. As we saw in
Section 5.1, the reduction,

∫∫
R

f (x , y) dA =
∫ b

a

[ ∫ d

c
f (x , y) dy

]
dx =

∫ d

c

[ ∫ b

a
f (x , y) dx

]
dy,

is a consequence of Cavalieri’s principle, at least if f (x , y) ≥ 0. In terms of Riemann
sums, it corresponds to the following equality:

n−1∑
j,k=0

f (cjk) �x �y =
n−1∑
j=0

(
n−1∑
k=0

f (cjk) �y

)
�x =

n−1∑
k=0

(
n−1∑
j=0

f (cjk) �x

)
�y,

which may be proved more generally as follows: Let [ajk] be an n × n matrix, where
0 ≤ j ≤ n − 1 and 0 ≤ k ≤ n − 1. Let

∑n−1
j,k=0 ajk be the sum of the n2 matrix entries.

Then

n−1∑
j,k=0

ajk =
n−1∑
j=0

(
n−1∑
k=0

ajk

)
=

n−1∑
k=0

(
n−1∑
j=0

ajk

)
. (3)
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In the first equality, the right-hand side represents summing the matrix entries first
by rows and then adding the results:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a00 a01 a02 · · · −−−−−−−−−−−−−−→a0k · · · a0(n−1)

...
...

a j0 a j1 · · · −−−−−−−−−−−−−−→ajk · · · a j (n−1)

...
...

a(n−1)0 a(n−1)1 · · · −−−−−−−−−−−−−−−→a(n−1)k · · · a(n−1)(n−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n−1∑
k=0

a0k

...
n−1∑
k=0

ajk

...
n−1∑
k=0

a(n−1)k↓
n−1∑
j=0

(
n−1∑
k=0

ajk

)
.

Clearly, this is equal to
∑n−1

j,k=0 ajk ; that is, the sum of all the ajk . Similarly, the sum
∑n−1

k=0( ∑n−1
j=0 ajk

)
represents a summing of the matrix entries by columns. This establishes

equation (3) and makes the reduction to iterated integrals quite plausible if we remember
that integrals can be approximated by the corresponding Riemann sums. The actual proof
of Fubini’s theorem exploits this idea.

Theorem 3 Fubini’s Theorem Let f be a continuous function with a rect-
angular domain R = [a, b] × [c, d]. Then

∫ b

a

∫ d

c
f (x , y) dy dx =

∫ d

c

∫ b

a
f (x , y) dx dy =

∫∫
R

f (x , y) dA. (4)

proof We shall first show that∫ b

a

∫ d

c
f (x , y) dy dx =

∫∫
R

f (x , y) dA.

Let c = y0 < y1 < · · · < yn = d be a partition of [c, d] into n equal parts. Define

F(x) =
∫ d

c
f (x , y) dy.

Then

F(x) =
n−1∑
k=0

∫ yk+1

yk

f (x , y) dy.

Using the integral version of the mean-value theorem,3 for each fixed x and for each k
we have ∫ yk+1

yk

f (x , y) dy = f (x , Yk(x))( yk+1 − yk)

3This states that if g(x) is continuous on [a, b], then
∫ b

a
g(x) dx = g(c)(b−a) for some point c ∈ [a, b].

The more general second mean-value theorem was proved in Section 3.2.
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figure 5.2.6 The notation
needed in the proof of Fubini’s
theorem: n = 8.

z � f (x, y)

c = y0a = x0

d = y8

z

b = x8

x1x2x3x4

x6x7

y7
y6

y5
y4

y3

P4

y1

f (cij)

y3(x)

y

x

y2

x5 cij

(see Figure 5.2.6), where the point Yk(x) belongs to [yk , yk+1] and may depend on x , k,
and n.

We have thus shown that

F(x) =
n−1∑
k=0

f (x , Yk(x))( yk+1 − yk). (5)

By the definition of the integral in one variable as a limit of Riemann sums,

∫ b

a
F(x) dx =

∫ b

a

[ ∫ d

c
f (x , y) dy

]
dx = limit

n→∞

n−1∑
j=0

F( p j )(x j+1 − x j ),

where a = x0 < x1 < · · · < xn = b is a partition of the interval [a, b] into n equal parts
and p j is any point in [x j , x j+1]. Setting cjk = ( p j , Yk( p j )) ∈ Rjk , we have [substituting
p j for x in equation (5)]

F( p j ) =
n−1∑
k=0

f (cjk)( yk+1 − yk).

Therefore,

∫ b

a

∫ d

c
f (x , y) dy dx =

∫ b

a
F(x) dx = limit

n→∞

n−1∑
j=0

F( p j )(x j+1 − x j )

= limit
n→∞

n−1∑
j=0

n−1∑
k=0

f (cjk)( yk+1 − yk)(x j+1 − x j )

=
∫∫

R
f (x , y) dA.

Thus, we have proved that
∫ b

a

∫ d

c
f (x , y) dy dx =

∫∫
R

f (x , y) dA.
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By the same reasoning we can show that

∫ d

c

∫ b

a
f (x , y) dx dy =

∫∫
R

f (x , y) dA.

These two conclusions are exactly what we wanted to prove. ■

Fubini’s theorem can be generalized to the case where f is not necessarily continuous.
Although we shall not present a proof, we state here this more general version.

Theorem 3′ Fubini’s Theorem Let f be a bounded function with domain a
rectangle R = [a, b] × [c, d], and suppose the discontinuities of f lie on a finite
union of graphs of continuous functions. If the integral

∫ d
c f (x , y) dy exists for

each x ∈ [a, b], then
∫ b

a

[ ∫ d

c
f (x , y) dy

]
dx

exists and ∫ b

a

∫ d

c
f (x , y) dy dx =

∫∫
R

f (x , y) dA.

Similarly, if
∫ b

a f (x , y) dx exists for each y ∈ [c, d], then

∫ d

c

[ ∫ b

a
f (x , y) dx

]
dy

exists and ∫ d

c

∫ b

a
f (x , y) dx dy =

∫∫
R

f (x , y) dA.

Thus, if all these conditions hold simultaneously,
∫ b

a

∫ d

c
f (x , y) dy dx =

∫ d

c

∫ b

a
f (x , y) dx dy =

∫∫
R

f (x , y) dA.

The assumptions made for this version of Fubini’s theorem are more complicated
than those we made in Theorem 3. They are necessary because if f is not continuous

everywhere, for example, there is no guarantee that
∫ d

c f (x , y) dy will exist for each x .

example 1 Compute
∫∫

R (x2 + y) dA, where R is the square [0, 1] × [0, 1].

solut ion By Fubini’s theorem,
∫∫

R
(x2 + y) dA =

∫ 1

0

∫ 1

0
(x2 + y) dx dy =

∫ 1

0

[ ∫ 1

0
(x2 + y) dx

]
dy.
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By the fundamental theorem of calculus, the x integration may be performed:

∫ 1

0
(x2 + y) dx =

[
x3

3
+ yx

]1

x=0

= 1

3
+ y.

Thus,
∫∫

R
(x2 + y) dA =

∫ 1

0

[
1

3
+ y

]
dy =

[
1

3
y + y2

2

]1

0

= 5

6
.

What we have done is hold y fixed, integrate with respect to x , and then evaluate the
result between the given limits for the x variable. Next, we integrated the remaining
function (of y alone) with respect to y to obtain the final answer. ▲

example 2 A consequence of Fubini’s theorem is that interchanging the order of integration in the
iterated integrals does not change the answer. Verify this for Example 1.

solut ion We carry out the integration in the other order:

∫ 1

0

∫ 1

0
(x2 + y) dy dx =

∫ 1

0

[
x2 y + y2

2

]1

y=0

dx =
∫ 1

0

[
x2 + 1

2

]
dx

=
[

x3

3
+ x

2

]1

0

= 5

6
.

▲

We have seen that when f (x , y) ≥ 0 on R = [a, b]×[c, d], the integral
∫∫

R f (x , y) dA
can be interpreted as a volume. If the function also takes on negative values, then the
double integral can be thought of as the sum of all volumes lying between the surface
z = f (x , y) and the plane z = 0, bounded by the planes x = a, x = b, y = c, and
y = d; here the volumes above z = 0 are counted as positive and those below as
negative. However, Fubini’s theorem as stated remains valid in the case where f (x , y)
is negative or changes sign on R; that is, there is no restriction on the sign of f in the
hypotheses of the theorem.

example 3 Let R be the rectangle [−2, 1] × [0, 1] and let f be defined by f (x , y) =
y(x3 − 12x); f (x , y) takes on both positive and negative values on R. Evaluate the
integral

∫∫
R f (x , y) dx dy = ∫∫

R y(x3 − 12x) dx dy.

solut ion By Fubini’s theorem, we can write

∫∫
R

y(x3 − 12x) dx dy =
∫ 1

0

[ ∫ 1

−2
y(x3 − 12x) dx

]
dy = 57

4

∫ 1

0
y dy = 57

8
.

Alternatively, integrating first with respect to y, we find

∫∫
R

y(x3 − 12x) dy dx =
∫ 1

−2

[ ∫ 1

0
(x3 − 12x)y dy

]
dx

= 1

2

∫ 1

−2
(x3 − 12x) dx = 1

2

[
x4

4
− 6x2

]1

−2

= 57

8
.

▲
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Historical Note

The Riemann Integral

The first time most mathematics students encounter the name of Bernhard
Riemann is in their calculus courses, where they read about the Riemann
integral. Leibniz had thought of the integral of a function of one variable as an
infinite sum (the

∫
standing for a sum) of infinitesimal areas f (x) dx, where dx is

an “infinitesimal width” and f (x) is the height of the corresponding “infinitesimally
thin” rectangle. This intuitive approach sufficed for most purposes because the
fundamental theorem

∫ b

a

f (x) dx = F (b) − F (a)

showed how to evaluate this (nebulously defined) integral when one knows the
antiderivative F of f .

However, Riemann was interested in applying integration to functions of one
variable where the antiderivative was not known, and to functions in number
theory or in general to those functions that “one need not find in nature.”

Cauchy had already known that all continuous functions could be integrated
and that the fundamental theorem was valid---that is, every continuous function
had an antiderivative. However, his proofs were not entirely rigorous. For
applications to number theory and to certain series (called Fourier series),
Riemann needed a clear, precise definition of the integral, which he presented in
a paper in 1854. In this paper he defines his integral and gives necessary and
sufficient conditions for a bounded function f to be integrable over an interval
[a, b].

In 1876, the German mathematician Karl J. Thomae generalized Riemann’s
integral to apply to functions of several variables, as we do in this chapter. We
further develop this approach in the Internet supplement.

In the first half of the nineteenth century, Cauchy had observed that for
continuous function of two variables, Fubini’s theorem was valid. But Cauchy also
gave an example of an unbounded function of two variables for which the
iterated integrals were not equal. In 1878, Thomae gave the first example of a
bounded function of two variables where one iterated integral exists and the
other does not. In these examples, the functions were not “Riemann integrable”
in the sense described in this section. Cauchy and Thomae’s examples
demonstrated that one must apply caution and not necessarily assume that
iterated integrals are always equal.

In 1902, the French mathematician Henri Lebesgue developed a truly
sweeping generalization of the Riemann integral. Lebesgue’s theory allowed
integration of vastly more functions than did Riemann’s approach. Perhaps,
unforeseen by Lebesgue, his theory was to have a profound impact on the
development of many areas of mathematics in the twentieth century---in
particular the theory of partial differential equations and probability theory.
Mathematics students go into more depth about the Lebesgue integral in their
first year of graduate study.

In 1907, the Italian mathematician Guido Fubini used the Lebesgue integral to
state the most general form of the theorem on the equality of iterated integrals,
the form that is studied today and used by working mathematicians and
scientists in their research.
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exercises

1. Evaluate each of the following integrals if
R = [0, 1] × [0, 1].

(a)

∫∫
R

(x3 + y2) dA

(b)

∫∫
R

yexy dA

(c)

∫∫
R

(xy)2 cos x3 dA

(d)

∫∫
R

ln [(x + 1)( y + 1)] dA

2. Evaluate each of the following integrals if
R = [0, 1] × [0, 1].

(a)

∫∫
R

(xm yn) dx dy, where m, n > 0

(b)

∫∫
R

(ax + by + c) dx dy

(c)

∫∫
R

sin (x + y) dx dy

(d)

∫∫
R

(x2 + 2xy + y
√

x) dx dy

3. Evaluate over the region R:

∫∫

R

yx3

y2 + 2
dy dx, R: [0, 2] × [−1, 1].

4. Evaluate over the region R:

∫∫

R

y

1 + x2 dx dy, R: [0, 1] × [−2, 2].

5. Sketch the solid whose volume is given by:

∫ 1

0

∫ 1

0
(5 − x − y) dy dx.

6. Sketch the solid whose volume is given by:

∫ 3

0

∫ 2

0
(9 + x2 + y2) dx dy.

7. Compute the volume of the region over the rectangle
[0, 1] × [0, 1] and under the graph of z = xy.

8. Compute the volume of the solid bounded by the xz
plane, the yz plane, the xy plane, the planes x = 1 and
y = 1, and the surface z = x2 + y4.

9. Let f be continuous on [a, b] and g continuous on
[c, d]. Show that

∫∫
R

[ f (x)g( y)] dx dy =
[∫ b

a
f (x) dx

][∫ d

c
g( y) dy

]
,

where R = [a, b] × [c, d ].

10. Compute the volume of the solid bounded by the surface
z = sin y, the planes x = 1, x = 0, y = 0, and y = π/2,
and the xy plane.

11. Compute the volume of the solid bounded by the graph
z = x2 + y, the rectangle R = [0, 1] × [1, 2], and the
“vertical sides” of R.

12. Let f be continuous on R = [a, b] × [c, d]; for
a < x < b, c < y < d, define

F(x , y) =
∫ x

a

∫ y

c
f (u, v) dv du.

Show that ∂2 F/∂x ∂y = ∂2 F/∂y ∂x = f (x , y). Use
this example to discuss the relationship between Fubini’s
theorem and the equality of mixed partial derivatives.

13. Consider the integral in 2(a) as a function of m and n;
that is,

f (m, n) :=
∫∫

R

xm yn dx dy.

Evaluate limm,n→∞ f (m, n).

14. Let:

f (m, n) :=
∫ π

−π

∫ π

−π

cos nx sin my dx dy.

Show that limm,n→∞ f (m, n) = 0.

15. Let f : [0, 1] × [0, 1] → R be defined by

f (x , y) =
{

1 x rational

2y x irrational.

Show that the iterated integral
∫ 1

0

[ ∫ 1
0 f (x , y) dy

]
dx

exists but that f is not integrable.

16. Express
∫∫

R cosh xy dx dy as a convergent sequence,
where R = [0, 1] × [0, 1].
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17. Although Fubini’s theorem holds for most functions met
in practice, we must still exercise some caution. This
exercise gives a function for which it fails. By using a
substitution involving the tangent function, show that

∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2 dy dx = π

4
,

yet

∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2 dx dy = −π

4
.

Why does this not contradict Theorem 3 or 3′?

18. Let f be continuous, f ≥ 0, on the rectangle R. If∫∫
R f dA = 0, prove that f = 0 on R.

5.3 The Double Integral Over More General Regions

Our goal in this section is twofold: First, we wish to define the double integral of a
function f (x , y) over regions D more general than rectangles; second, we want to
develop a technique for evaluating this type of integral. To accomplish this, we shall
define three special types of subsets of the xy plane, and then extend the notion of the
double integral to them.

Elementary Regions
Suppose we are given two continuous real-valued functions φ1: [a, b] → R

and φ2: [a, b] → R that satisfy φ1(x) ≤ φ2(x) for all x ∈ [a, b]. Let D be the set
of all points (x , y) such that x ∈ [a, b] and φ1(x) ≤ y ≤ φ2(x). This region D is said
to be y-simple. Figure 5.3.1 shows various examples of y-simple regions. The curves
and straight-line segments that bound the region together constitute the boundary of D,
denoted ∂D. We use the phrase “y-simple” because the region is described in a relatively
simple way, using y as a function of x .

We say that a region D is x-simple if there are continuous functions ψ1 and ψ2 defined
on [c, d] such that D is the set of points (x , y) satisfying

y ∈ [c, d ] and ψ1( y) ≤ x ≤ ψ2( y),

where ψ1( y) ≤ ψ2( y) for all y ∈ [c, d]. Again, the curves that bound the region D con-
stitute its boundary ∂ D. Some examples of x-simple regions are shown in Figure 5.3.2.
In this situation, x is the distinguished variable, given as a function of y. Thus, the
phrase x-simple is appropriate.

Finally, a simple region is one that is both x- and y-simple; that is, a simple region
can be described as both an x-simple region and a y-simple region. An example of a
simple region is a unit disk (see Figure 5.3.3).

figure 5.3.1 Some y- simple
regions.

y y y

x x x

y =   (x)1

y =   (x)1

y =   (x)1

2y =   (x)

2y =   (x)

a ba ab b

2y =   (x)

D

D

D
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figure 5.3.2 Some x-simple
regions.

y

x x x

y y

x = x =   (y)  (y)

1

2

x =   (y)

1

1x =   (y)

x =   (y)2
x =   (y)2 DD D

c

d d d

c c

figure 5.3.3 The unit disk, a
simple region: (a) as a y- simple
region, and (b) as an x-simple
region.

y = 1 (x)

1 − x2 1 − y2

−1 − x2 1 − y2−= =

x = 1 ( y)

x = 2 ( y) =

x

y y

x

y = 2 (x) =

−1 1

(a) (b)

−1

1

Sometimes we will refer to any of the regions as elementary regions. Note that the
boundary ∂D of an elementary region is the type of set of discontinuities of a function
allowed in Theorem 2.

The Integral over an Elementary Region
We can now use an interesting “trick” to extend the definition of the integral from
rectangles to elementary regions.

Definition Integral over an Elementary Region If D is an elementary
region in the plane, choose a rectangle R that contains D. Given f : D → R,
where f is continuous (and hence bounded), define

∫∫
D f (x , y) dA, the integral

of f over the set D, as follows: Extend f to a function f ∗ defined on all of R by

f ∗(x , y) =
{

f (x , y) if (x , y) ∈ D

0 if (x , y) �∈ D and (x , y) ∈ R.

Note that f ∗ is bounded (because f is) and continuous except possibly on the
boundary of D (see Figure 5.3.4). The boundary of D consists of graphs of con-
tinuous functions, and so f ∗ is integrable over R by Theorem 2, Section 5.2.
Therefore, we can define

∫∫
D

f (x , y) dA =
∫∫

R
f ∗(x , y) dA.

When f (x , y) ≥ 0 on D, we can interpret the integral
∫∫

D f (x , y) dA as the volume
of the three-dimensional region between the graph of f and D, as is evident from
Figure 5.3.4.
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figure 5.3.4 (a) Graph of
z = f (x, y) over an elementary
region D. (b) Shaded region
shows graph of z = f ∗(x, y) on
some rectangle R containing D.
From this picture we see that
boundary points of D may be
points of discontinuity of f ∗,
because the graph of
z = f ∗(x, y) can be broken at
these points. x

y

z

x

y

z

D

R

c d dc

D

Graph of f ∗Graph of z = f (x, y)

(a) (b)

Elementary region

We have defined
∫∫

D f (x , y) dx dy by choosing a rectangle R that encloses D. It
should be intuitively clear that the value of

∫∫
D f (x , y) dx dy does not depend on the

particular R we select; we shall demonstrate this fact at the end of this section.

Reduction to Iterated Integrals
If R = [a, b] × [c, d] is a rectangle containing D, we can use the results on iterated
integrals in Section 5.2 to obtain

∫∫
D

f (x , y) dA =
∫∫

R
f ∗(x , y) dA =

∫ b

a

∫ d

c
f ∗(x , y) dy dx

=
∫ d

c

∫ b

a
f ∗(x , y) dx dy,

where f ∗ equals f in D and zero outside D, as before. Assume that D is a y-simple
region determined by functions φ1: [a, b] → R and φ2: [a, b] → R. Consider the
iterated integral

∫ b

a

∫ d

c
f ∗(x , y) dy dx

and, in particular, the inner integral
∫ d

c f ∗(x , y) dy for some fixed x (Figure 5.3.5). By
definition, f ∗(x , y) = 0 if y < φ1(x) or y > φ2(x), so we obtain

∫ d

c
f ∗(x , y) dy =

∫ φ2(x)

φ1(x)
f ∗(x , y) dy =

∫ φ2(x)

φ1(x)
f (x , y) dy.

x

y

c

d

a b

R

y =  (x)

y =  (x)1

2

x

D
figure 5.3.5 The region between two graphs—a
y- simple region.
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We summarize what we have obtained in the following.

Theorem 4 Reduction to Iterated Integrals If D is a y-simple region,
as shown in Figure 5.3.5, then∫∫

D
f (x , y) dA =

∫ b

a

∫ φ2(x)

φ1(x)
f (x , y) dy dx. (1)

In the case f (x , y) = 1 for all (x , y) ∈ D,
∫∫

D f (x , y) dA is the area of D. On the
other hand, in this case, the right-hand side of formula (1) becomes:

∫ b

a

∫ φ2(x)

φ1(x)
f (x , y) dy dx =

∫ b

a
[φ2(x) − φ1(x)] dx = A(D),

which is the formula for the area of D learned in one-variable calculus. Thus, formula
(1) checks in this case.

x

y

f  (x) = 01  

2f (x) = x

π_
2 0( ),

π_
2( , )π_

2

T

figure 5.3.6 A triangle T
represented as a y- simple
region.

example 1 Find
∫∫

T (x3 y + cos x) dA, where T is the triangle consisting of all points (x , y) such
that 0 ≤ x ≤ π/2, 0 ≤ y ≤ x .

solut ion Referring to Figure 5.3.6 and formula (1), we have
∫∫

T
(x3 y + cos x) dA =

∫ π/2

0

∫ x

0
(x3 y + cos x) dy dx

=
∫ π/2

0

[
x3 y2

2
+ y cos x

]x

y=0

dx =
∫ π/2

0

(
x5

2
+ x cos x

)
dx

=
[

x6

12

]π/2

0

+
∫ π/2

0
(x cos x) dx = π6

(12)(64)
+ [x sin x + cos x]π/2

0

= π6

768
+ π

2
− 1.

▲

In the next example, we use formula (1) to find the volume of a solid whose base is
a nonrectangular region D.

example 2 Find the volume of the tetrahedron bounded by the planes y = 0, z = 0, x = 0, and
y − x + z = 1 (Figure 5.3.7).

(0, 1, 0)

(0, 1, 0) y � x + z = 1

(−1, 0, 0)

y

x

z

figure 5.3.7 A tetrahedron bounded by the planes
y = 0, z = 0, x = 0, and y − x + z = 1.
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s o l u t i o n We first note that the given tetrahedron has a triangular base D whose points (x , y)
satisfy −1 ≤ x ≤ 0 and 0 ≤ y ≤ 1 + x ; hence, D is a y-simple region. In fact, D is a
simple region; see Figure 5.3.8.

(0, 1)

(0, 0)(−1, 0)

  (x) = x + 1

1

2

 (x) = 0
x

y

D

figure 5.3.8 The base of the tetrahedron in
Figure 5.3.7 represented as a y- simple region.

For any point (x , y) in D, the height of the surface z above (x , y) is 1 − y + x . Thus,
the volume we seek is given by the integral∫∫

D
(1 − y + x) dA.

Using formula (1) with φ1(x) = 0 and φ2(x) = x + 1, we have
∫∫

D
(1 − y + x) dA =

∫ 0

−1

∫ 1+x

0
(1 − y + x) dy dx =

∫ 0

−1

[
(1 + x)y − y2

2

]1+x

y=0

dx

=
∫ 0

−1

[
(1 + x)2

2

]
dx =

[
(1 + x)3

6

]0

−1

= 1

6
.

▲

example 3 Let D be a y-simple region. Describe its area A(D) as a limit of Riemann sums.

solut ion If we recall the definition, A(D) = ∫∫
D dx dy is the integral over a containing rect-

angle R of the function f = 1. A Riemann sum Sn for this integral is obtained by
dividing R into subrectangles and forming the sum Sn = ∑n−1

j,k=0 f ∗(cjk) �x �y, as
in formula (1) of Section 5.2. Now f ∗(cjk) is 1 or 0, depending on whether or not
cjk is in D. Consider those subrectangles Rjk that have nonvoid intersection with D,
and choose cjk in D ∩ Rjk . Thus, Sn is the sum of the areas of the subrectangles that
meet D and A(D) is the limit of these as n → ∞. Thus, A(D) is the limit of the
areas of the rectangles “circumscribing” D. You should draw a figure to accompany this
discussion. ▲

The methods for treating x-simple regions are entirely analogous. Specifically, we
have the following.

Theorem 4′ Iterated Integrals for x-Simple Regions Suppose that D is
the set of points (x , y) such that y ∈ [c, d] and ψ1( y) ≤ x ≤ ψ2( y). If f is
continuous on D, then

∫∫
D

f (x , y) dA =
∫ d

c

[ ∫ ψ2( y)

ψ1( y)
f (x , y) dx

]
dy. (2)
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To find the area of D, we substitute f = 1 in formula (2); this yields
∫∫

D
dA =

∫ d

c
(ψ2( y) − ψ1( y)) dy.

Again, this result for area agrees with the results of single-variable calculus for the area
of a region between two curves.

Either the method for y-simple or the method for x-simple regions can be used for
integrals over simple regions.

It follows from formulas (1) and (2) that
∫∫

D f dA is independent of the choice of the
rectangle R enclosing D used in the definition of

∫∫
D f dA, because, if we had picked

another rectangle enclosing D, we would have arrived at the same formula (1).

exercises

1. In parts (a) through (d) below, each iterated integral is an
integral over a region D. Match the integral with the
correct region of integration.

(a)

∫ 2

1

∫ ex

ln x
dy dx

(b)

∫ 2

0

∫ x1/3

(1/8)x
dy dx

(c)

∫ 2

0

∫ 0

−
√

9−y2

dx dy

(d)

∫ 3

0

∫ 0

arccos y/3
dx dy

x

y

(ii)(i)

2

2

4

x

y

−3−

2

x

y

1

2

1

(iv)(iii)

π
2

y

x
21

3

2. Sketch the region D in R2 that represents the region of
integration:

(a)

∫ 2

−2

∫ 4−y2

0
(4 − x) dx dy

(b)

∫ 3

0

∫ x

−x
(6 + y − 2x) dy dx

3. Evaluate the following iterated integrals and draw the
regions D determined by the limits. State whether the
regions are x-simple, y-simple, or simple.

(a)

∫ 1

0

∫ x2

0
dy dx

(b)

∫ 2

1

∫ 3x+1

2x
dy dx

(c)

∫ 1

0

∫ ex

1
(x + y) dy dx

(d)

∫ 1

0

∫ x2

x3

y dy dx

4. Evaluate the following integrals and sketch the
corresponding regions.

(a)

∫ 2

−3

∫ y2

0
(x2 + y) dx dy

(b)

∫ 1

−1

∫ |x |

−2|x |
ex+ydy dx

(c)

∫ 1

0

∫ (1−x2)1/2

0
dy dx

(d)

∫ π/2

0

∫ cos x

0
y sin xdy dx

(e)

∫ 1

0

∫ y

y2

(xn + ym ) dx dy, m, n > 0

(f )

∫ 0

−1

∫ 2(1−x2)1/2

0
xdy dx
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5. Use double integrals to compute the area of a circle of
radius r .

6. Using double integrals, determine the area of an ellipse
with semiaxes of length a and b.

7. What is the volume of a barn that has a rectangular base
20 ft by 40 ft, vertical walls 30 ft high at the front (which
we assume is on the 20-ft side of the barn), and 40 ft
high at the rear? The barn has a flat roof. Use double
integrals to compute the volume.

8. Let D be the region bounded by the positive x and
y axes and the line 3x + 4y = 10. Compute∫∫

D
(x2 + y2) dA.

9. Let D be the region bounded by the y axis and the
parabola x = −4y2 + 3. Compute∫∫

D
x3 y dx dy.

10. Evaluate

∫ 1

0

∫ x2

0
(x2 + xy − y2) dy dx. Describe this

iterated integral as an integral over a certain region D in
the xy plane.

11. Let D be the region given as the set of (x , y), where
1 ≤ x2 + y2 ≤ 2 and y ≥ 0. Is D an elementary region?
Evaluate

∫∫
D f (x , y) dA, where f (x , y) = 1 + xy.

12. Evaluate the following double integral:

∫∫
D

cos y dx dy,

where the region D is bounded by y = 2x , y = x ,
x = π , and x = 2π .

13. Evaluate the following double integral:

∫∫
D

xy dA,

where the region D is the triangular region whose
vertices are (0, 0), (0, 2), (2, 0).

14. Use the formula A(D) = ∫∫
D dx dy to find the area

enclosed by one period of the sine function sin x , for
0 ≤ x ≤ 2π , and the x axis.

15. Find the volume of the region inside the surface
z = x2 + y2 and between z = 0 and z = 10.

16. Set up the integral required to calculate the volume of a
cone of base radius r and height h.

17. Evaluate
∫∫

D y dA, where D is the set of points (x , y)
such that 0 ≤ 2x/π ≤ y, y ≤ sin x .

18. From Exercise 9, Section 5.2,∫ b

a

∫ d

c
f (x)g( y) dy dx =

(∫ b

a
f (x) dx

)

(∫ d

c
g( y) dy

)
. Is it true that

∫∫
D f (x)g( y) dx dy =

(∫ b

a
f (x) dx

)(∫ φ2(b)

φ1(a)
g( y) dy

)
for y-simple

regions?

19. Let D be a region given as the set of (x , y) with
−φ(x) ≤ y ≤ φ(x) and a ≤ x ≤ b, where φ is a
nonnegative continuous function on the interval [a, b].
Let f (x , y) be a function on D such that
f (x , y) = − f (x , −y) for all (x , y) ∈ D. Argue that∫∫

D f (x , y) dA = 0.

20. Use the methods of this section to show that the area of
the parallelogram D determined by two planar vectors a
and b is |a1b2 − a2b1|, where a = a1i + a2j and
b = b1i + b2j.

21. Describe the area A(D) of a region as a limit of areas of
inscribed rectangles, as in Example 3.

5.4 Changing the Order of Integration

Suppose that D is a simple region—that is, it is both x-simple and y-simple. Thus, it
can be given as the set of points (x , y) such that

a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x),

and also as the set of points (x , y) such that

c ≤ y ≤ d, ψ1( y) ≤ x ≤ ψ2( y).
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Hence, we have the formulas
∫∫

D
f (x , y) dA =

∫ b

a

∫ φ2(x)

φ1(x)
f (x , y) dy dx =

∫ d

c

∫ ψ2( y)

ψ1( y)
f (x , y) dx dy.

If we are required to compute one of the preceding iterated integrals, we may do so
by evaluating the other iterated integral; this technique is called changing the order of
integration. It can be useful to make such a change when evaluating iterated integrals,
because one of the iterated integrals may be more difficult to compute than the other.

example 1 By changing the order of integration, evaluate

∫ a

0

∫ (a2−x2)1/2

0
(a2 − y2)1/2dy dx.

solut ion Note that x varies between 0 and a, and for each such fixed x , we have 0 ≤ y ≤
(a2 − x2)1/2. Thus, the iterated integral is equivalent to the double integral∫∫

D
(a2 − y2)1/2dy dx,

where D is the set of points (x , y) such that 0 ≤ x ≤ a and 0 ≤ y ≤ (a2 − x2)1/2. But
this is the representation of one-quarter (the positive quadrant portion) of the disk of
radius a; hence, D can also be described as the set of points (x , y) satisfying

0 ≤ y ≤ a, 0 ≤ x ≤ (a2 − y2)1/2

(see Figure 5.4.1). Thus,

∫ a

0

∫ (a2−x2)1/2

0
(a2 − y2)1/2dy dx =

∫ a

0

[ ∫ (a2−y2)1/2

0
(a2 − y2)1/2dx

]
dy

=
∫ a

0

[
x(a2 − y2)1/2

](a2−y2)1/2

x=0
dy

=
∫ a

0
(a2 − y2) dy =

[
a2 y − y3

3

]a

0

= 2a3

3
.

x

y

x =    a − y

y =    a − x

(a, 0)

(0, a) 2

or
2

22 figure 5.4.1 The positive-quadrant portion of a
disk of radius a .

▲

We could have evaluated the initial iterated integral directly, but, as you can easily
verify, changing the order of integration makes the problem simpler. The next example
shows that it may not be obvious how to evaluate an iterated integral, and yet it may
be relatively simple to evaluate the iterated integral obtained by changing the order of
integration.
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x

y

(2, log 2)y = log x

D

1 2

figure 5.4.2 D is the region of
integration for Example 2.

example 2 Evaluate

∫ 2

1

∫ log x

0
(x − 1)

√
1 + e2y dy dx.

solut ion It will simplify matters if we first interchange the order of integration. First, notice that
the integral is equal to

∫∫
D (x − 1)

√
1 + e2y dA, where D is the set of (x , y) such that

1 ≤ x ≤ 2 and 0 ≤ y ≤ log x .

The region D is simple (see Figure 5.4.2) and can also be described by

0 ≤ y ≤ log 2 and ey ≤ x ≤ 2.

Thus, the given iterated integral is equal to
∫ log 2

0

∫ 2

ey

(x − 1)
√

1 + e2y dx dy =
∫ log 2

0

√
1 + e2y

[ ∫ 2

ey

(x − 1) dx

]
dy

=
∫ log 2

0

√
1 + e2y

[
x2

2
− x

]2

ey

dy

= −
∫ log 2

0

(
e2y

2
− ey

)√
1 + e2ydy

= −1

2

∫ log 2

0
e2y

√
1 + e2ydy +

∫ log 2

0
ey

√
1 + e2ydy. (1)

In the first integral in expression (1), we substitute u = e2y , and in the second, v = ey .
Hence, we obtain

−1

4

∫ 4

1

√
1 + u du +

∫ 2

1

√
1 + v2 dv. (2)

Both integrals in expression (2) are easily found with techniques of one-variable calculus
(or by consulting the table of integrals at the back of the book). For the first integral,
we get

1

4

∫ 4

1

√
1 + u du =

[
1

6
(1 + u)3/2

]4

1

= 1

6
[(1 + 4)3/2 − 23/2] = 1

6
[53/2 − 23/2]. (3)

The second integral is

∫ 2

1

√
1 + v2 dv = 1

2

[
v
√

1 + v2 + log (
√

1 + v2 + v)
]2

1

= 1

2

[
2
√

5 + log (
√

5 + 2)
]

− 1

2

[√
2 + log (

√
2 + 1)

]
(4)

(see formula 43 in the table of integrals at the back of the book). Finally, we subtract
equation (3) from equation (4) to obtain the answer

1

2

(
2
√

5 −
√

2 + log

√
5 + 2√
2 + 1

)
− 1

6

[
53/2 − 23/2

]
.

▲
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Mean-Value Inequality
We conclude with an inequality that helps us estimate integrals. Suppose there are
numbers m and M such that for all (x , y) ∈ D, and m ≤ f (x , y) ≤ M , then integrating
over D, we get

m · A(D) ≤
∫∫

D
f (x , y) dA ≤ M · A(D), (5)

where A(D) is the area of the region D. Even though this inequality is obvious, it can
help us estimate integrals that we cannot easily evaluate exactly.

example 3 Consider the integral ∫∫
D

1√
1 + x6 + y8

dx dy,

where D is the unit square [0, 1] × [0, 1]. Because the integrand satisfies, for x and y
between 0 and 1,

1√
3

≤ 1√
1 + x6 + y8

≤ 1,

and because the square has area 1, we get:

1√
3

≤
∫∫

D

1√
1 + x6 + y8

dx dy ≤ 1.
▲

Mean-Value Equality
The mean-value inequality can be turned into an equality when f is continuous. Here
is the formal statement.

Theorem 5 Mean-Value Theorem: Double Integrals
Suppose f : D → R is continuous and D is an elementary region. Then for some
point (x0, y0) in D we have∫∫

D
f (x , y) dA = f (x0, y0) A(D),

where A(D) denotes the area of D.

proof We cannot prove this theorem with complete rigor, because it requires some
concepts about continuous functions not proved in this course; but we can sketch the
main ideas that underlie the proof.

Because f is continuous on D, it has a maximum value M and a minimum value m.
Thus, m ≤ f (x , y) ≤ M for all (x , y) ∈ D. Furthermore, f (x1, y1) = m and
f (x2, y2) = M for some pairs (x1, y1) and (x2, y2) in D.

Dividing through inequality (5) by A(D), we get

m ≤ 1

A(D)

∫∫
D

f (x , y) dA ≤ M. (6)
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Because a continuous function on D takes on every value between its maximum and
minimum values (this is the two-variable intermediate-value theorem proved in advanced
calculus; see also Review Exercise 32), and because the number [1/A(D)]

∫∫
D f (x , y) dA

is, by inequality (6), between these values, there must be a point (x0, y0) ∈ D with

f (x0, y0) = 1

A(D)

∫∫
D

f (x , y) dA,

which is precisely the conclusion of Theorem 5. ■

exercises

1. Change the order of integration, but do not evaluate, the
following integrals:

(a)

∫ 8

0

∫ 4

1/2y
dx dy

(b)

∫ 9

0

∫ √
y

0
dx dy

(c)

∫ 4

0

∫ √
16−y2

−
√

16−y2

dx dy

(d)

∫ π

π/2

∫ sin x

0
dy dx

2. Change the order of integration and evaluate:
∫ 1

0

∫ 1

y
sin(x2) dx dy.

3. In the following integrals, change the order of
integration, sketch the corresponding regions, and
evaluate the integral both ways.

(a)

∫ 1

0

∫ 1

x
xy dy dx

(b)

∫ π/2

0

∫ cos θ

0
cos θ dr dθ

(c)

∫ 1

0

∫ 2−y

1
(x + y)2dx dy

(d)

∫ b

a

∫ y

a
f (x , y) dx dy (express your answer in

terms of antiderivatives).

4. Find

(a)

∫ 1

−1

∫ 1

|y|
(x + y)2dx dy

(b)

∫ 1

−3

∫ √
(9−y2)

−
√

(9−y2)
x2dx dy

(c)

∫ 4

0

∫ 2

y/2
ex2

dx dy

(d)

∫ 1

0

∫ π/4

tan−1 y
(sec5 x) dx dy

5. Change the order of integration and evaluate:
∫ 1

0

∫ 1

√
y

ex3
dx dy.

6. Consider the intuitive fact that if a region D in R2 can
be split into a disjoint union of subsets D = D1 ∪ D2,
then a double integral over D may also be divided into a
sum of two integrals:∫∫

D
f (x , y) dA =

∫∫
D1

f (x , y) dA+
∫∫

D2

f (x , y) dA.

(See Section 5.2 for the analogous statement over a
rectangular box.) Are the following attempts to change
the order of integration true or false?

(a)∫ π/4

0

∫ cos x

sin x
dy dx =

∫ √
2/2

0

∫ arcsin y

0
dx dy +

∫ 2

√
2/2

∫ arccos y

0
dx dy

(b) ∫ 2

−2

∫ 4−x2

0
dy dx =

∫ 4

0

∫ √
4−y

−√
4−y

dx dy

(c)∫ 2

0

∫ (1/2)x

0
dy dx +

∫ 5

2

∫ 1

(1/3)x−(2/3)
dy dx =

∫ 1

0

∫ 3y+2

2y
dx dy

(d) ∫ 1

0

∫ ex

1
dy dx =

∫ e

1

∫ 1

ln y
dx dy

7. If f (x , y) = esin(x+y) and D = [−π, π ] × [−π, π ],
show that

1

e
≤ 1

4π2

∫∫
D

f (x , y) dA ≤ e.

8. Show that

1

2
(1 − cos 1) ≤

∫∫
[0,1]×[0,1]

sin x

1 + (xy)4 dx dy ≤ 1.



Marsden-3620111 VC September 27, 2011 10:11 294

294 Double and Triple Integrals

9. If D = [−1, 1] × [−1, 2], show that

1 ≤
∫∫

D

dx dy

x2 + y2 + 1
≤ 6.

10. Using the mean-value inequality, show that

1

6
≤

∫∫
D

dA

y − x + 3
≤ 1

4
,

where D is the triangle with vertices (0, 0), (1, 1), and
(1, 0).

11. Compute the volume of an ellipsoid with semiaxes a, b,
and c. (HINT: Use symmetry and first find the volume of
one half of the ellipsoid.)

12. Compute

∫∫
D

f (x , y) dA, where f (x , y) = y2√x and

D is the set of (x , y), where x > 0, y > x2, and
y < 10 − x2.

13. Find the volume of the region determined by
x2 + y2 + z2 ≤ 10, z ≥ 2. Use the disk method from
one-variable calculus and state how the method is
related to Cavalieri’s principle.

14. Evaluate

∫∫
D

ex−ydx dy, where D is the interior of the

triangle with vertices (0, 0), (1, 3), and (2, 2).

15. Evaluate

∫∫
D

y3(x2 + y2)−3/2dx dy, where D is the

region determined by the conditions 1
2 ≤ y ≤ 1 and

x2 + y2 ≤ 1.

16. Given that the double integral

∫∫
D

f (x , y) dx dy of a

positive continuous function f equals the iterated

integral

∫ 1

0

[∫ x

x2

f (x , y) dy

]
dx, sketch the region D

and interchange the order of integration.

17. Given that the double integral

∫∫
D

f (x , y) dx dy of a

positive continuous function f equals the iterated

integral

∫ 1

0

[∫ √
2−y2

y
f (x , y) dx

]
dy, sketch the

region D and interchange the order of integration.

18. Prove that

2

∫ b

a

∫ b

x
f (x) f ( y) dy dx =

(∫ b

a
f (x) dx

)2

.

[HINT: Notice that(∫ b

a
f (x) dx

)2

=
∫∫

[a,b]×[a,b]
f (x) f ( y) dx dy.]

19. Show that (see Section 2.5, Exercise 29)

d

dx

∫ x

a

∫ d

c
f (x , y, z) dz dy =

∫ d

c
f (x , y, z) dz

+
∫ x

a

∫ d

c
fx (x , y, z) dz dy.

5.5 The Triple Integral

Triple integrals are needed for many physical problems. For example, if the temperature
inside an oven is not uniform, determining the average temperature involves “summing”
the values of the temperature function at all points in the solid region enclosed by the
oven walls and then dividing the answer by the total volume of the oven. Such a sum is
expressed mathematically as a triple integral.

Definition of the Triple Integral
Our objective now is to define the triple integral of a function f (x , y, z) over a box
(rectangular parallelepiped) B = [a, b] × [c, d] × [p, q]. Proceeding as in double
integrals, we partition the three sides of B into n equal parts and form the sum

Sn =
n−1∑
i=0

n−1∑
j=0

n−1∑
k=0

f (cijk) �V ,

where cijk is a point in Bijk , the i jkth rectangular parallelepiped (or box) in the partition
of B, and �V is the volume of Bijk (see Figure 5.5.1).
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y

x

Bijk

Δz

ΔxΔy

z

BB

B

q

p

c

d

b

a

figure 5.5.1 A partition of a box B
into n3 subboxes Bijk .

Definition Triple Integrals Let f be a bounded function of three variables
defined on B. If limitn→∞ Sn = S exists and is independent of any choice of cijk ,
we call f integrable and call S the triple integral (or simply the integral) of f
over B and denote it by∫∫∫

B
f dV ,

∫∫∫
B

f (x , y, z) dV or
∫∫∫

B
f (x , y, z) dx dy dz.

Properties of Triple Integrals
As before, we can prove that continuous functions defined on B are integrable. Moreover,
bounded functions whose discontinuities are confined to graphs of continuous functions
[such as x = α( y, z), y = β(x , z), or z = γ (x , y)] are integrable. The other basic
properties (such as the fact that the integral of a sum is the sum of the integrals) for
double integrals also hold for triple integrals. Especially important is the reduction to
iterated integrals:

Reduction to Iterated Integrals Let f (x , y, z) be integrable on the box
B = [a, b] × [c, d] × [p, q]. Then any iterated integral that exists is equal to the
triple integral; that is,∫∫∫

B
f (x , y, z) dx dy dz =

∫ q

p

∫ d

c

∫ b

a
f (x , y, z) dx dy dz

=
∫ q

p

∫ b

a

∫ d

c
f (x , y, z) dy dx dz

=
∫ b

a

∫ q

p

∫ d

c
f (x , y, z) dy dz dx,

and so on. (There are six possible orders altogether.)
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example 1 (a) Let B be the box [0, 1] × [− 1
2 , 0

] × [
0, 1

3

]
. Evaluate

∫∫∫
B

(x + 2y + 3z)2dx dy dz.

(b) Verify that we get the same answer if the integration is done in the order y first,
then z, and then x .

solut ion (a) According to the principle of reduction to iterated integrals, this integral may be
evaluated as

∫ 1/3

0

∫ 0

−1/2

∫ 1

0
(x + 2y + 3z)2dx dy dz

=
∫ 1/3

0

∫ 0

−1/2

[
(x + 2y + 3z)3

3

∣∣∣∣
1

x=0

]
dy dz

=
∫ 1/3

0

∫ 0

−1/2

1

3

[
(1 + 2y + 3z)3 − (2y + 3z)3

]
dy dz

=
∫ 1/3

0

1

24

[
(1 + 2y + 3z)4 − (2y + 3z)4

]∣∣∣0

y=−1/2
dz

=
∫ 1/3

0

1

24

[
(3z + 1)4 − 2(3z)4 + (3z − 1)4

]
dz

= 1

24 · 15

[
(3z + 1)5 − 2(3z)5 + (3z − 1)5

]∣∣∣1/3

z=0

= 1

24 · 15
(25 − 2) = 1

12
.

(b) ∫∫∫
B

(x + 2y + 3z)2dy dz dx

=
∫ 1

0

∫ 1/3

0

∫ 0

−1/2
(x + 2y + 3z)2dy dz dx

=
∫ 1

0

∫ 1/3

0

[
(x + 2y + 3z)3

6

∣∣∣∣
0

y=−1/2

]
dz dx

=
∫ 1

0

∫ 1/3

0

1

6

[
(x + 3z)3 − (x + 3z − 1)3

]
dz dx

=
∫ 1

0

1

6

{[
(x + 3z)4

12
− (x + 3z − 1)4

12

]∣∣∣∣
1/3

z=0

}
dx

=
∫ 1

0

1

72

[
(x + 1)4 + (x − 1)4 − 2x4

]
dx

= 1

72

1

5

[
(x + 1)5 + (x − 1)5 − 2x5

]1

x=0
= 1

12
.

▲
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example 2 Integrate ex+y+z over the box [0, 1] × [0, 1] × [0, 1].

solut ion We perform the integrations in the standard order:
∫ 1

0

∫ 1

0

∫ 1

0
ex+y+z dx dy dz =

∫ 1

0

∫ 1

0
(ex+y+z|1x=0) dy dz

=
∫ 1

0

∫ 1

0
(e1+y+z − ey+z) dy dz =

∫ 1

0

[
e1+y+z − ey+z

]1

y=0
dz

=
∫ 1

0

[
e2+z − 2e1+z + ez

]
dz =

[
e2+z − 2e1+z + ez

]1

0

= e3 − 3e2 + 3e − 1 = (e − 1)3. ▲

As in the two-variable case, we define the integral of a function f over a bounded region
W by defining a new function f ∗, equal to f on W and zero outside W , and then setting∫∫∫

W
f (x , y, z) dx dy dz =

∫∫∫
B

f ∗(x , y, z) dx dy dz,

where B is any box containing the region W .

Elementary Regions
As before, we restrict our attention to particularly simple regions. An elementary region
in three-dimensional space is one defined by restricting one of the variables to be
between two functions of the remaining variables, the domains of these functions being
an elementary (i.e., an x-simple or a y-simple) region in the plane. For example, if D
is an elementary region in the xy plane and if γ1(x , y) and γ2(x , y) are two functions
with γ2(x , y) ≥ γ1(x , y), an elementary region consists of all (x , y, z) such that (x , y)
lies in D and γ1(x , y) ≤ z ≤ γ2(x , y). Figure 5.5.2 shows two elementary regions.

example 3 Describe the unit ball x2 + y2 + z2 ≤ 1 as an elementary region.

solut ion This can be done in several ways. One, in which D is y-simple, is:

−1 ≤ x ≤ 1,

−√
1 − x2 ≤ y ≤ √

1 − x2,

−
√

1 − x2 − y2 ≤ z ≤
√

1 − x2 − y2.

figure 5.5.2 Two elementary
regions in space. The domain D
in the figure on the left is
y- simple, while on the right it is
x-simple.

y

x

a

c

z = γ1(x, y)

z = γ2(x, y) z = γ2(x, y)

y = φ1(x) y = φ2(x)

x = χ1(x)

b

z z

D

z = γ1(x, y)
D

y
x

d

x = χ2(x)
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z = γ2(x, y) = 1 − x2 − y2

y = φ1(x) = − 1 − x2

y = φ2(x) = 1 − x2

z = γ1(x, y) = − 1 − x2 − y2

y

x

z

figure 5.5.3 The unit ball as an elementary region in space.

In doing this, we first write the top and bottom hemispheres as z = √
1 − x2 − y2

and z = −√
1 − x2 − y2, respectively, where x and y vary over the unit disk (that is,

−√
1 − x2 ≤ y ≤ √

1 − x2 and x varies between −1 and 1). (See Figure 5.5.3.) We
can describe the region in other ways by interchanging the roles of x , y, and z in the
defining inequalities. ▲

Integrals over Elementary Regions
As with integrals in the plane, any function of three variables that is continuous over an
elementary region is integrable on that region. An argument like that for double integrals
shows that a triple integral over an elementary region can be rewritten as an iterated
integral in which the limits of integration are functions. The formulas for such iterated
integrals are given in the following box.

Triple Integrals by Iterated Integration Suppose that W is an elemen-
tary region described by bounding z between two functions of x and y. Then
either

∫∫∫
W

f (x , y, z) dx dy dz =
∫ b

a

∫ φ2(x)

φ1(x)

∫ γ2(x , y)

γ1(x , y)
f (x , y, z) dz dy dx

[see Figure 5.5.2 (left)] or

∫∫∫
W

f (x , y, z) dx dy dz =
∫ d

c

∫ ψ2( y)

ψ1( y)

∫ γ2(x , y)

γ1(x , y)
f (x , y, z) dz dx dy

[see Figure 5.5.2 (right)].

If f = 1, we get the integral
∫∫∫

W dx dy dz, which is the volume of the region W .

example 4 Verify that the volume formula for the ball of radius 1:

∫∫∫
W

dx dy dz = 4

3
π,

where W is the set of (x , y, z) with x2 + y2 + z2 ≤ 1.
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s o l u t i o n We use the description of the unit ball from Example 3. From the first formula in the
preceding box, the integral is

∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ √
1−x2−y2

−
√

1−x2−y2

dz dy dx.

Holding y and x fixed and integrating with respect to z yields

∫ 1

−1

∫ √
1−x2

−
√

1−x2

[
z
∣∣∣
√

1−x2−y2

−
√

1−x2−y2

]
dy dx = 2

∫ 1

−1

[ ∫ √
1−x2

−
√

1−x2

(1 − x2 − y2)1/2 dy

]
dx.

Because x is fixed in the y-integral, it can be expressed as
∫ a

−a(a2 − y2)1/2 dy, where
a = (1 − x2)1/2. This integral is the area of a semicircular region of radius a, so that

∫ a

−a
(a2 − y2)1/2 dy = a2

2
π.

(We could also have used a trigonometric substitution or a table of integrals.) Thus,

∫ √
1−x2

−
√

1−x2

(1 − x2 − y2)1/2dy = 1 − x2

2
π,

and so

2
∫ 1

−1

∫ √
1−x2

−
√

1−x2

(1 − x2 − y2)1/2dy dx = 2
∫ 1

−1
π

1 − x2

2
dx

= π

∫ 1

−1
(1 − x2) dx = π

(
x − x3

3

)∣∣∣∣
1

x=−1

= 4

3
π.

▲

Other types of elementary regions are shown in Figure 5.5.4. For instance, in the second
region, ( y, z) lies in an elementary region in the yz plane and x lies between two graphs:

ρ1( y, z) ≤ x ≤ ρ2( y, z).

figure 5.5.4 Types of elementary
regions in space.

y
x

z

Top and bottom are
surfaces z = γ(x, y) 

y
x

z

Front and rear are
surfaces x = ρ(y, z) 

y
x

z

Left and side are
surfaces y = δ(x, z) 
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figure 5.5.5 A symmetric
elementary region can be
described in three overall ways.

y
x

z

As shown in Figure 5.5.5, some elementary regions can be simultaneously described in
all three ways. We shall call these regions symmetric elementary regions.

Corresponding to each description of a region as an elementary region is an integra-
tion formula. For instance, if W is expressed as the set of all (x , y, z) such that

c ≤ y ≤ d, ψ1( y) ≤ z ≤ ψ2( y), ρ1( y, z) ≤ x ≤ ρ2( y, z),

then ∫∫∫
W

f (x , y, z) dx dy dz =
∫ d

c

∫ ψ2( y)

ψ1( y)

∫ ρ2( y,z)

ρ1( y,z)
f (x , y, z) dx dz dy.

example 5 Let W be the region bounded by the planes x = 0, y = 0, and z = 2, and the surface

z = x2 + y2 and lying in the quadrant x ≥ 0, y ≥ 0. Compute
∫∫∫

W
x dx dy dz and

sketch the region.

solut ion Method 1. The region W is sketched in Figure 5.5.6. As indicated in the figure, we can
describe this region by the inequalities

0 ≤ x ≤
√

2, 0 ≤ y ≤
√

2 − x2, x2 + y2 ≤ z ≤ 2.

y

x

D

z = 2

z = x2 + y2

y = 0 x = 0

z

y = 2 − x2

figure 5.5.6 W is the region below the plane z = 2,
above the paraboloid z = x2 + y2, and on the
positive sides of the planes x = 0, y = 0.
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Therefore,

∫∫∫
W

x dx dy dz =
∫ √

2

0

[ ∫ √
2−x2

0

( ∫ 2

x2+y2

x dz

)
dy

]
dx

=
∫ √

2

0

∫ √
2−x2

0
x(2 − x2 − y2) dy dx

=
∫ √

2

0
x

[
(2 − x2)3/2 − (2 − x2)3/2

3

]
dx

=
∫ √

2

0

2x

3
(2 − x2)3/2 dx = −2(2 − x2)5/2

15

∣∣∣∣
√

2

0

= 2 · 25/2

15
= 8

√
2

15
.

Method 2. We can also place limits on x first and describe W by 0 ≤ x ≤ (z − y2)1/2

and ( y, z) in D, where D is the subset of the yz plane with 0 ≤ z ≤ 2 and 0 ≤ y ≤ z1/2

(see Figure 5.5.7).

y

x

y = 0

x = 0

y = z

z

x = z − y2

D
figure 5.5.7 A different description of the region in
Example 5.

Therefore,

∫∫∫
W

x dx dy dz =
∫∫

D

( ∫ (z−y2)1/2

0
x dx

)
dy dz

=
∫ 2

0

[ ∫ z1/2

0

( ∫ (z−y2)1/2

0
xdx

)
dy

]
dz

=
∫ 2

0

∫ z1/2

0

(
z − y2

2

)
dy dz

= 1

2

∫ 2

0

(
z3/2 − z3/2

3

)
dz = 1

2

∫ 2

0

2

3
z3/2 dz

=
[

2

15
z5/2

]2

0

= 2

15
25/2 = 8

√
2

15
,

which agrees with our previous answer. ▲
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example 6 Evaluate ∫ 1

0

∫ x

0

∫ 2

x2+y2

dz dy dx.

Sketch the region W of integration and interpret.

solut ion ∫ 1

0

∫ x

0

∫ 2

x2+y2

dz dy dx =
∫ 1

0

∫ x

0
(2 − x2 − y2) dy dx

=
∫ 1

0

(
2x − x3 − x3

3

)
dx = 1 − 1

4
− 1

12
= 2

3
.

This integral is the volume of the region sketched in Figure 5.5.8.

z = x2 + y2

y

x

D

z = 2

z = 1

(1, 1, 0)

(1, 0, 0)

z

(1, 1, 2), 2)11
figure 5.5.8 The region W lies between the
paraboloid z = x2 + y2 and the plane z = 2,
and above the region D.

▲

exercises

1. In parts (a) through (d) below, each iterated integral is an
integral over a region D. Match the integral with the
correct region of integration.

(a)

∫ 2

0

∫ 3

0

∫ √
9−x

−√
9−x

dy dz dx

(b)

∫ 2

0

∫ 3

0

∫ √
9−x2

−√
9−x2

dy dx dz

(c)

∫ 1

0

∫ x

0

∫ y

0
dz dy dx

(d)

∫ 1

0

∫ y

0

∫ x

0
dz dx dy

x

y

(ii)

z

(i)

3

x

y

z

2

3

2

      −3

(iv)(iii)

z

x

y
1

1

z

x

y
1

1

2. Evaluate the following triple integral:

∫∫∫
W

sin x dx dy dz,

where W is the solid given by 0 ≤ x ≤ π , 0 ≤ y ≤ 1,
and 0 ≤ z ≤ x .
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In Exercises 3 to 6, perform the indicated integration over the given box.

3.
∫∫∫

B
x2dx dy dz, B = [0, 1] × [0, 1] × [0, 1]

4.
∫∫∫

B
e−xy y dx dy dz, B = [0, 1] × [0, 1] × [0, 1]

5.
∫∫∫

B
(2x+3y+z) dx dy dz, B = [0, 2]×[−1, 1]×[0, 1]

6.
∫∫∫

B
zex+ydx dy dz, B = [0, 1] × [0, 1] × [0, 1]

In Exercises 7 to 10, describe the given region as an elementary region.

7. The region between the cone z =
√

x2 + y2 and the
paraboloid z = x2 + y2

8. The region cut out of the ball x2 + y2 + z2 ≤ 4 by the
elliptic cylinder 2x2 + z2 = 1; that is, the region inside
the cylinder and the ball

9. The region inside the sphere x2 + y2 + z2 = 1 and
above the plane z = 0

10. The region bounded by the planes x = 0, y = 0,
z = 0, x + y = 4, and x = z − y − 1

Find the volume of the region in Exercises 11 to 14.

11. The region bounded by z = x2 + y2 and
z = 10 − x2 − 2y2

12. The solid bounded by x2 + 2y2 = 2, z = 0, and
x + y + 2z = 2

13. The solid bounded by x = y, z = 0, y = 0, x = 1, and
x + y + z = 0

14. The region common to the intersecting cylinders
x2 + y2 ≤ a2 and x2 + z2 ≤ a2

Evaluate the integrals in Exercises 15 to 23.

15.
∫ 1

0

∫ 2

1

∫ 3

2
cos [π(x + y + z)] dx dy dz

16.
∫ 1

0

∫ x

0

∫ y

0
( y + xz) dz dy dx

17.
∫∫∫

W
(x2 + y2 + z2) dx dy dz; W is the region bounded

by x + y + z = a (where a > 0), x = 0, y = 0, and
z = 0.

18.
∫∫∫

W
z dx dy dz; W is the region bounded by the

planes x = 0, y = 0, z = 0, z = 1, and the cylinder
x2 + y2 = 1, with x ≥ 0, y ≥ 0.

19.
∫∫∫

W
x2 cos zdx dy dz; W is the region bounded by

z = 0, z = π, y = 0, y = 1, x = 0, and x + y = 1.

20.
∫ 2

0

∫ x

0

∫ x+y

0
dz dy dx

21.
∫∫∫

W
(1 − z2) dx dy dz; W is the pyramid with top

vertex at (0, 0, 1) and base vertices at (0, 0, 0), (1, 0, 0),
(0, 1, 0), and (1, 1, 0).

22.
∫∫∫

W
(x2 + y2) dx dy dz; W is the same pyramid as in

Exercise 21.

23.
∫ 1

0

∫ 2x

0

∫ x+y

x2+y2

dz dy dx.

24. (a) Sketch the region for the integral∫ 1

0

∫ x

0

∫ y

0
f (x , y, z) dz dy dx.

(b) Write the integral with the integration order
dx dy dz.

For the regions in Exercises 25 to 28, find the appropriate limits φ1(x), φ2(x), γ1(x , y), and γ2(x , y), and write the triple
integral over the region W as an iterated integral in the form

∫∫∫
W

f dV =
∫ b

a

{∫ φ2(x)

φ1(x)

[∫ γ2(x , y)

γ1(x , y)
f (x , y, z) dz

]
dy

}
dx.
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25. W = {(x , y, z) |
√

x2 + y2 ≤ z ≤ 1}

26. W = {(x , y, z) | 1
2 ≤ z ≤ 1 and x2 + y2 + z2 ≤ 1}

27. W = {(x , y, z) | x2 + y2 ≤ 1, z ≥ 0 and
x2 + y2 + z2 ≤ 4}

28. W = {(x , y, z) | |x | ≤ 1, |y| ≤ 1, z ≥ 0 and
x2 + y2 + z2 ≤ 1}

29. Show that the formula using triple integrals for the
volume under the graph of a positive function f (x , y),
on an elementary region D in the plane, reduces to the
double integral of f over D.

30. Let W be the region bounded by the planes
x = 0, y = 0, z = 0, x + y = 1, and z = x + y.

(a) Find the volume of W .

(b) Evalute
∫∫∫

W xdx dy dz.

(c) Evalute
∫∫∫

W ydx dy dz.

31. Let f be continuous and let Bε be the ball of radius ε

centered at the point (x0, y0, z0). Let vol (Bε) be the
volume of Bε . Prove that

lim
ε→0

1

vol (Bε)

∫∫∫
Bε

f (x , y, z) dV = f (x0, y0, z0).

review exercises for chapter 5

Evaluate the integrals in Exercises 1 to 4.

1.
∫ 3

0

∫ x2+1

−x2+1
xy dy dx

2.
∫ 1

0

∫ 1

√
x

(x + y)2dy dx

3.
∫ 1

0

∫ e2x

ex

x ln y dy dx

4.
∫ 1

0

∫ 2

1

∫ 3

2
cos [π(x + y + z)] dx dy dz.

Reverse the order of integration of the integrals in Exercises 5 to 8 and evaluate.

5. The integral in Exercise 1

6. The integral in Exercise 2

7. The integral in Exercise 3

8. The integral in Exercise 4

9. Evaluate the integral
∫ 1

0

∫ x
0

∫ y
0 ( y + xz) dz dy dx.

10. Evaluate
∫ 1

0

∫ y2

y ex/y dx dy.

11. Evaluate
∫ 1

0

∫ (arcsin y)/y
0 y cos xy dx dy.

12. Change the order of integration and evaluate

∫ 2

0

∫ 1

y/2
(x + y)2dx dy.

13. Show that evaluating
∫∫

D dx dy, where D is a y-simple
region, reproduces the formula from one-variable
calculus for the area between two curves.

14. Change the order of integration and evaluate∫ 1

0

∫ 1

y1/2

(x2 + y3x) dx dy.

15. Let D be the region in the xy plane inside the unit circle
x2 + y2 = 1. Evaluate

∫∫
D f (x , y) dx dy in each of the

following cases:

(a) (a)] f (x , y) = xy

(b) f (x , y) = x2 y2

(c) f (x , y) = x3 y3

16. Find
∫∫

D y[1 − cos (πx/4)]dx dy, where D is the region
in Figure 5.R.1.

x

y = 2

y

y =   x 

figure 5.R.1 The region of integration for
Exercise 16.
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Evaluate the integrals in Exercises 17 to 24. Sketch and identify the type of the region (corresponding to the way the integral is
written).

17.
∫ π

0

∫ 3 sin x

sin x
x(1 + y) dy dx

18.
∫ 1

0

∫ x cos (πx/2)

x−1
(x2 + xy + 1) dy dx

19.
∫ 1

−1

∫ (2−y)2

y2/3

(
3

2

√
x − 2y

)
dx dy

20.
∫ 2

0

∫ 3(
√

4−x2)/2

−3(
√

4−x2)/2

(
5√

2 + x
+ y3

)
dy dx

21.
∫ 1

0

∫ x2

0
(x2 + xy − y2) dy dx

22.
∫ 4

2

∫ y3

y2−1
3dx dy

23.
∫ 1

0

∫ x

x2

(x + y)2dy dx

24.
∫ 1

0

∫ 3y

0
ex+ydx dy

In Exercises 25 to 27, integrate the given function f over the given region D.

25. f (x , y) = x − y; D is the triangle with vertices (0, 0),
(1, 0), and (2, 1).

26. f (x , y) = x3 y + cos x ; D is the triangle defined by
0 ≤ x ≤ π/2, 0 ≤ y ≤ x .

27. f (x , y) = x2 + 2xy2 + 2; D is the region bounded by
the graph of y = −x2 + x , the x axis, and the lines
x = 0 and x = 2.

In Exercises 28 and 29, sketch the region of integration, interchange the order, and evaluate.

28.
∫ 4

1

∫ √
x

1
(x2 + y2) dy dx

29.
∫ 1

0

∫ 1

1−y
(x + y2) dx dy

30. Show that

4e5 ≤
∫∫

[1,3]×[2,4]
ex2+y2

dA ≤ 4e25.

31. Show that

4π ≤
∫∫

D
(x2 + y2 + 1) dx dy ≤ 20π,

where D is the disk of radius 2 centered at the origin.

32. Suppose W is a path-connected region; that is, given
any two points of W there is a continuous path joining
them. If f is a continuous function on W , use the
intermediate-value theorem to show that there is at least
one point in W at which the value of f is equal to the
average of f over W ; that is, the integral of f over W
divided by the volume of W . (Compare this with the
mean-value theorem for double integrals.) What happens
if W is not connected?

33. Prove:
∫ x

0 [
∫ t

0 F(u) du] dt = ∫ x
0 (x − u)F(u) du.

Evaluate the integrals in Exercises 34 to 36.

34.
∫ 1

0

∫ z

0

∫ y

0
xy2z3dx dy dz

35.
∫ 1

0

∫ y

0

∫ x/
√

3

0

x

x2 + z2 dz dx dy

36.
∫ 2

1

∫ z

1

∫ 2

1/y
yz2dx dy dz

37. Write the iterated integral
∫ 1

0

∫ 1
1−x

∫ 1
x f (x , y, z) dz dy dx

as an integral over a region in R3 and then rewrite it in
five other possible orders of integration.



Marsden-3620111 VC˙FM September 27, 2011 9:49 vi

this page left intentionally blank



Marsden-3620111 VC September 27, 2011 10:20 307

6

The Change of Variables
Formula and Applications
of Integration

If you are stuck in a calculus problem and don't know what else to do, try integrating by

parts or changing variables. ---Jerry Kazdan

God does not care about our mathematical difficulties. He integrates empirically.
---Albert Einstein

The change of variables formula is one of the most powerful integration

methods in single-variable calculus; it enables us to evaluate integrals

such as

∫ 1

0
xex2

dx

by using the substitution, or change of variables u = x2, which reduces

the problem to the easy task of integrating eu with respect to u. In this

chapter, we develop the multidimensional change of variables formula,

which is especially important and useful in evaluating multiple integrals

in polar, cylindrical, and spherical coordinates.

One of the key ingredients in the change of variables formula is how to

change variables in several dimensions. This involves the notion of map-

ping, which occurs in various interesting situations. For example, consider

a deforming object, such as a swimming fish. As it changes its shape, one

can imagine the instantaneous correspondence between points on the

fish in its rest state and in its current shape. This type of correspondence is,

in fact, the main idea behind a change of variables, in this case, of

307
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one three-dimensional region (the fish in its rest state) to another (the fish

in its current shape).

The first section in this chapter describes the key concepts for

mappings between regions of the plane. It goes on to develop the

change of variables technique for double and then triple integrals. The

chapter also includes some of the important physical applications of

the integral.

6.1 The Geometry of Maps from R2 to R2

In this section, we shall be interested in maps from subsets of R2 to R2. The resulting
geometric understanding will be useful in the next section, when we discuss the change
of variables formula for multiple integrals.

Maps of One Region to Another
Let D∗ be a subset of R2; suppose we consider a continuously differentiable map
T : D∗ → R2, so T takes points in D∗ to points in R2. We denote the set of image
points by D or by T (D∗); hence, D = T (D∗) is the set of all points (x , y) ∈ R2 such
that

(x , y) = T (x∗, y∗) for some (x∗, y∗) ∈ D∗.

One way to understand the geometry of a map T is to see how it deforms or changes
D∗. For example, Figure 6.1.1 illustrates a map T that takes a slightly twisted region
into a disk.

figure 6.1.1 A function T from a
region D∗ to a disk D.

x

y

x

y

D

T

∗D

example 1 Let D∗ ⊂ R2 be the rectangle D∗ = [0, 1] × [0, 2π ]. Then all points in D∗ are of the
form (r, θ ), where 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π . Let T be the polar coordinate “change of
variables” defined by T (r, θ ) = (r cos θ , r sin θ ). Find the image set D.

solut ion Let (x , y) = (r cos θ , r sin θ ). Because of the identity x2 + y2 = r 2 cos2 θ +r 2 sin2 θ =
r 2 ≤ 1, we see that the set of points (x , y) ∈ R2 such that (x , y) ∈ D has the property
that x2 + y2 ≤ 1, and so D is contained in the unit disk. In addition, any point (x , y) in
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the unit disk can be written as (r cos θ , r sin θ ) for some 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π .
Thus, D is the unit disk (see Figure 6.1.2).

T: (r, θ)        (r cos θ, r sin θ) = (x, y)

x

y

(x, y)
D

∗D

θ

(r,θ)

2π

r
1

figure 6.1.2 T gives a change of variables between Euclidean and polar coordinates. The
unit circle is the image of a rectangle. ▲

example 2 Let T be defined by T (x , y) = ((x + y)/2, (x − y)/2) and let D∗ = [−1, 1] ×
[−1, 1] ⊂ R2 be a square with side of length 2 centered at the origin. Determine the
image D obtained by applying T to D∗.

solut ion Let us first determine the effect of T on the line c1(t) = (t , 1), where −1 ≤ t ≤ 1
(see Figure 6.1.3). We have T (c1(t)) = ((t + 1)/2, (t − 1)/2). The map t �→ T
(c1(t)) is a parametrization of the line y = x − 1, 0 ≤ x ≤ 1, because (t − 1)/
2 = (t + 1)/2 − 1. This is the straight line segment joining (1, 0) and (0, −1).

u
c4

(−1, 1)

(−1, −1) (1, −1)

(1, 1)
c1

c2

c3

Lα

∗D

v

figure 6.1.3 Domain for the transformation T of
Example 2.

Let

c2(t) = (1, t), −1 ≤ t ≤ 1

c3(t) = (t , −1), −1 ≤ t ≤ 1

c4(t) = (−1, t), −1 ≤ t ≤ 1

be parametrizations of the other edges of the square D∗. Using the same argument as
before, we see that T ◦ c2 is a parametrization of the line y = 1 − x , 0 ≤ x ≤ 1
[the straight line segment joining (0, 1) and (1, 0)]; T ◦ c3 is the line y = x + 1, −1 ≤
x ≤ 0 joining (0, 1) and (−1, 0); and T ◦ c4 is the line y = −x − 1, −1 ≤ x ≤ 0
joining (−1, 0) and (0, −1). By this time it seems reasonable to guess that T “flips”
the square D∗ over and takes it to the square D whose vertices are (1, 0), (0, 1),
(−1, 0), (0, −1) (Figure 6.1.4).
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T(−1, −1) = (−1, 0)

T(−1, 1) = (0, −1)

T(1, 1) = (1, 0)

T(1, −1) = (0, 1)

T(c4)

T(c3)
T(c2)

T(c1)

α − 1
2

, α + 1
2( )

1 + α
2

, α − 1
2( )

x

y

T(Lα)

D figure 6.1.4 The effect of T on the
region D∗.

To prove that this is indeed the case, let−1 ≤ α ≤ 1 and let Lα (Figure 6.1.3) be a fixed
line parametrized by c(t) = (α, t), −1 ≤ t ≤ 1; then T (c(t)) = ((α + t)/2, (α − t)/2)
is a parametrization of the line y = −x + α, (α − 1)/2 ≤ x ≤ (α + 1)/2. This
line begins, for t = − 1, at the point ((α − 1)/2, (1 + α)/2) and ends at the point
((1 + α)/2, (α − 1)/2); as is easily checked, these points lie on the lines T ◦ c3 and
T ◦ c1, respectively. Thus, as α varies between −1 and 1, Lα sweeps out the square D∗

while T (Lα) sweeps out the square D determined by the vertices (−1, 0), (0, 1), (1, 0),
and (0, −1). ▲

Images of Maps
The following theorem is a useful way to describe the image T (D∗).

Theorem 1 Let A be a 2 × 2 matrix with det A 	= 0 and let T be the linear
mapping of R2 to R2 given by T (x) = Ax (matrix multiplication). Then T trans-
forms parallelograms into parallelograms and vertices into vertices. Moreover, if
T (D∗) is a parallelogram, D∗ must be a parallelogram.

The proof of Theorem 1 is left as Exercises 14 and 16 at the end of this section. This
theorem simplifies the result of Example 2, because we need only find the vertices of
T (D∗) and then connect them by straight lines.

One-to-One Maps
Although we cannot visualize the graph of a function T : R2 → R2, it does help to con-
sider how the function deforms subsets. However, simply looking at these deformations
does not give us a complete picture of the behavior of T . We may characterize T further
by using the notion of a one-to-one correspondence.

Definition A mapping T is one-to-one on D∗ if for (u, v) and (u′, v′) ∈ D∗,
T (u, v) = T (u′, v′) implies that u = u′ and v = v′.

This statement means that two different points of D∗ are not sent into the same point
of D by T . For example, the function T (x , y) = (x2 + y2, y4) is not one-to-one, because
T (1, −1) = (2, 1) = T (1, 1), and yet (1, −1) 	= (1, 1).
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example 3 Consider the polar coordinate mapping function T : R2 → R2 described in Example 1,
defined by T (r, θ ) = (r cos θ , r sin θ ). Show that T is not one-to-one if its domain is
all of R2.

solut ion If θ1 	= θ2, then T (0, θ1) = T (0, θ2), and so T cannot be one-to-one. This observation
implies that if L is the side of the rectangle D∗ = [0, 1] × [0, 2π ] where 0 ≤ θ ≤ 2π

and r = 0 (Figure 6.1.5), then T maps all of L into a single point, the center of the
unit disk D. However, if we consider the set S∗ = (0, 1] × [0, 2π ), then T : S∗ → S is
one-to-one (see Exercise 5). Evidently, in determining whether a function is one-to-one,
the domain chosen must be carefully considered.

T

θ

r

∗D
L

1

2π

x

y

D

T(L)

1

figure 6.1.5 The polar coordinate transformation T takes the line L to the
point (0, 0). ▲

example 4 Show that the function T : R2 → R2 of Example 2 is one-to-one.

solut ion Suppose T (x , y) = T (x ′, y′); then

(
x + y

2
,

x − y

2

)
=

(
x ′ + y′

2
,

x ′ − y′

2

)

and we have

x + y = x ′ + y′,
x − y = x ′ − y′.

Adding, we have

2x = 2x ′.

Thus, x = x ′ and, similarly, subtracting gives y = y′, which shows that T is one-to-one
(with domain all of R2). Actually, because T is linear and T (x) = Ax, where A is a
2 × 2 matrix, it would also suffice to show that det A 	= 0 (see Exercise 12). ▲

Onto Maps
In Examples 1 and 2, we have been determining the image D = T (D∗) of a region D∗

under a mapping T . What will be of interest to us in the next section is, in part, the
inverse problem: Namely, given D and a one-to-one mapping T of R2 to R2, find D∗

such that T (D∗) = D.
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Before we examine this question in more detail, we introduce the notion of “onto.”

Definition The mapping T is onto D if for every point (x , y) ∈ D there exists
at least one point (u, v) in the domain of T such that T (u, v) = (x , y).

Thus, if T is onto, we can solve the equation T (u, v) = (x , y) for (u, v), given
(x , y) ∈ D. If T is, in addition, one-to-one, this solution is unique.

For linear mappings T of R2 to R2 (or Rn to Rn) it turns out that one-to-one and onto
are equivalent notions (see Exercises 12 and 13).

If we are given a region D and a mapping T , the determination of a region D∗ such
that T (D∗) = D will be possible only when for every (x , y) ∈ D there is a (u, v) in the
domain of T such that T (u, v) = (x , y) (that is, T must be onto D). The next example
shows that this cannot always be done.

example 5 Let T : R2 → R2 be given by T (u, v) = (u, 0). Let D be the square, D = [0, 1]×[0, 1].
Because T takes all of R2 to one axis, it is impossible to find a D∗ such that T (D∗) = D.

▲

Let us revisit Example 2 using these methods.

example 6 Let T be defined as in Example 2 and let D be the square whose vertices are (1, 0), (0, 1),
(−1, 0), (0, −1). Find a D∗ with T (D∗) = D.

solut ion Because T is linear and T (x) = Ax, where A is a 2 × 2 matrix satisfying det A 	= 0, we
know that T : R2 → R2 is onto (see Exercises 12 and 13), and thus D∗ can be found. By
Theorem 1, D∗ must be a parallelogram. In order to find D∗, it suffices to find the four
points that are mapped onto vertices of D; then, by connecting these points, we will have
found D∗. For the vertex (1, 0) of D, we must solve T (x , y) = (1, 0) = ((x + y)/2,
(x − y)/2), so that (x + y)/2 = 1, (x − y)/2 = 0. Thus, (x , y) = (1, 1) is a vertex
of D∗. Solving for the other vertices, we find that D∗ = [−1, 1] × [−1, 1]. This is in
agreement with what we found more laboriously in Example 2. ▲

x

y

r

D

(a, 0) (b, 0)
θ

figure 6.1.6 We seek a region
D∗ in the θr plane whose
image under the polar
coordinate mapping is D.

example 7 Let D be the region in the first quadrant lying between the arcs of the circles x2 + y2 =
a2, x2 + y2 = b2, 0 < a < b (see Figure 6.1.6). These circles have equations r = a
and r = b in polar coordinates. Let T be the polar-coordinate transformation given by
T (r, θ ) = (r cos θ , r sin θ ) = (x , y). Find D∗ such that T (D∗) = D.

solut ion In the region D, a2 ≤ x2 + y2 ≤ b2; and because r 2 = x2 + y2, we see that a ≤ r ≤ b.
Clearly, for this region θ varies between 0 ≤ θ ≤ π/2. Thus, if D∗ = [a, b] × [0, π/2],
we have T (D∗) = D and T is one-to-one. ▲

remark The inverse function theorem discussed in Section 3.5 is relevant to the
material here. It states that if the determinant of DT (u0, v0) [which is the matrix of
partial derivatives of T evaluated at (u0, v0)] is not zero, then for (u, v) near (u0, v0)
and (x , y) near (x0, y0) = T (u0, v0), the equation T (u, v) = (x , y) can be uniquely
solved for (u, v) as functions of (x , y). In particular, by uniqueness, T is one-to-one
near (u0, v0); also, T is onto a neighborhood of (x0, y0), because T (u, v) = (x , y) is
solvable for (u, v) if (x , y) is near (x0, y0).
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However, even if T is one-to-one near every point, and also onto, T need not be
globally one-to-one. Thus, we must exercise caution (see Exercise 17).

Surprisingly, if D∗ and D are elementary regions and T : D∗ → D has the property
that the determinant of DT (u, v) is not zero for any (u, v) in D∗, and if T maps the
boundary of D∗ in a one-to-one and onto manner to the boundary of D, then T is
one-to-one and onto from D∗ to D. (This proof is beyond the scope of this text.)

In summary, we have:

One-to-One and Onto Mappings A mapping T : D∗ → D is one-to-one
when it maps distinct points to distinct points. It is onto when the image of D∗

under T is all of D.
A linear transformation of Rn to Rn given by multiplication by a matrix A is

one-to-one and onto when and only when det A 	= 0.

exercises

1. Determine if the following functions T : R2 → R2 are
one-to-one and/or onto.

(a) T (x , y) = (2x , y)

(b) T (x , y) = (x2, y)

(c) T (x , y) = ( 3
√

x , 3
√

y)

(d) T (x , y) = (sin x , cos y)

2. Determine if the following functions T : R2 → R2 are
one-to-one and/or onto.

(a) T (x , y, z) = (2x + y + 3z, 3y − 4z, 5x)

(b) T (x , y, z) = (y sin x , z cos y, xy)

(c) T (x , y, z) = (xy, yz, xz)

(d) T (x , y, z) = (ex , ey , ez)

3. Let D be a square with vertices
(0, 0), (1, 1), (2, 0), (1, −1) and D∗ be a parallelogram
with vertices (0, 0), (1, 2), (2, 1), (1, −1). Find a linear
map T taking D∗ onto D.

4. Let D be a parallelogram with vertices
(0, 0), (−1, 3), (−2, 0), (−1, −3). Let
D∗ = [0, 1] × [0, 1]. Find a linear map T such that
T (D∗) = D.

5. Let S∗ = (0, 1] × [0, 2π ) and define
T (r, θ ) = (r cos θ , r sin θ ). Determine the image set S.
Show that T is one-to-one on S∗.

6. Define

T (x∗, y∗) =
(

x∗ − y∗
√

2
,

x∗ + y∗
√

2

)
.

Show that T rotates the unit square, D∗ = [0, 1] × [0, 1].

7. Let D∗ = [0, 1] × [0, 1] and define T on D∗ by
T (u, v) = (−u2 + 4u, v). Find the image D. Is T
one-to-one?

8. Let D∗ be the parallelogram bounded by the lines
y = 3x − 4, y = 3x , y = 1

2 x , and y = 1
2 (x + 4). Let

D = [0, 1] × [0, 1]. Find a T such that D is the image of
D∗ under T .

9. Let D∗ = [0, 1] × [0, 1] and define T on D∗ by
T (x∗, y∗) = (x∗y∗, x∗). Determine the image set D. Is
T one-to-one? If not, can we eliminate some subset of
D∗ so that on the remainder T is one-to-one?

10. Let D∗ be the parallelogram with vertices at
(−1, 3), (0, 0), (2, −1), and (1, 2), and D be the
rectangle D = [0, 1] × [0, 1]. Find a T such that D is
the image set of D∗ under T .

11. Let T : R3 → R3 be the spherical coordinate mapping
defined by (ρ , φ , θ ) �→ (x , y, z), where

x = ρ sin φ cos θ , y = ρ sin φ sin θ , z = ρ cos φ.
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Let D∗ be the set of points (ρ , φ , θ ) such that
φ ∈ [0, π ], θ ∈ [0, 2π ], ρ ∈ [0, 1]. Find D = T (D∗). Is

T one-to-one? If not, can we eliminate some subset of
D∗ so that, on the remainder, T will be one-to-one?

In Exercises 12 and 13, let T (x) = Ax, where A is a 2 × 2 matrix.

12. Show that T is one-to-one if and only if the determinant
of A is not zero.

13. Show that det A 	= 0 if and only if T is onto.

14. Suppose T : R2 → R2 is linear and is given by T (x) =
Ax, where A is a 2 × 2 matrix. Show that if det A 	= 0,
then T takes parallelograms onto parallelograms. [HINT:
The general parallelogram in R2 can be described by the
set of points q = p + λv + μw for λ, μ ∈ (0, 1) where
p, v, w are vectors in R2 with v not a scalar multiple of w.]

15. A map T : R2 → R2 is called affine if T (x) = Ax + v,
where A is a 2 × 2 matrix, and v is a fixed vector
in R2. Show that Exercises 12, 13, and 14 hold for T .

16. Suppose T : R2 → R2 is as in Exercise 14 and that
T ( P∗) = P is a parallelogram. Show that P∗ is
a parallelogram.

17. Show that T is not one-to-one.

6.2 The Change of Variables Theorem

Given two regions D and D∗ in R2, a differentiable map T on D∗ with image D—that
is, T (D∗) = D—and any real-valued integrable function f : D → R, we would like to
express

∫∫
D f (x , y) d A as an integral over D∗ of the composite function f ◦ T . In this

section we shall see how to do this.
Assume that D∗ is a region in the uv plane and that D is a region in the xy plane.

The map T is given by two coordinate functions:

T (u, v) = (x(u, v), y(u, v)) for (u, v) ∈ D∗.

At first, we might conjecture that

∫∫
D

f (x , y) dx dy
?=

∫∫
D∗

f (x(u, v), y(u, v)) du dv, (1)

where f ◦ T (u, v) = f (x(u, v), y(u, v)) is the composite function defined on D∗.
However, if we consider the function f : D → R2 where f (x , y) = 1, then equation (1)
would imply

A(D) =
∫∫

D
dx dy

?=
∫∫

D∗
du dv = A(D∗). (2)

But equation (2) will hold for only a few special cases and not for a general map T .
For example, define T by T (u, v) = (−u2 + 4u, v). Restrict T to the unit square; that
is, to the region D∗ = [0, 1] × [0, 1] in the uv plane (see Figure 6.2.1). Then, as in

figure 6.2.1 The map T : (u, v) �→
(−u2 + 4u, v) takes the square D∗

onto the rectangle D.

x

y

u

T
(0, 1)

(1, 0) (3, 0)

(0, 1)

D∗
D

v
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Exercise 3, Section 6.1, T takes D∗ onto D = [0, 3] × [0, 1]. Clearly, A(D) 	= A(D∗),
and so formula (2) is not valid.

Jacobian Determinants
To rectify the incorrect formula (1), we need a measure of how a transformation
T : R2 → R2 distorts the area of a region. This is given by the Jacobian determinant,
which is defined as follows.

Definition Jacobian Determinant Let T : D∗ ⊂ R2 → R2 be a C1 trans-
formation given by x = x(u, v) and y = y(u, v). The Jacobian determinant of
T , written ∂(x , y)/∂(u, v), is the determinant of the derivative matrix DT (u, v)
of T :

∂(x , y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
.

example 1 The function from R2 to R2 that transforms polar coordinates into Cartesian coordinates
is given by

x = r cos θ , y = r sin θ

and its Jacobian determinant is

∂(x , y)

∂(r, θ )
=

∣∣∣∣cos θ −r sin θ

sin θ r cos θ

∣∣∣∣ = r (cos2 θ + sin2 θ ) = r.
▲

Under suitable restrictions on the function T , we will argue below that the area of
D = T (D∗) is obtained by integrating the absolute value of the Jacobian ∂(x , y)/∂(u, v)
over D∗; that is, we have the equation

A(D) =
∫∫

D
dx dy =

∫∫
D∗

∣∣∣∣∂(x , y)

∂(u, v)

∣∣∣∣ du dv. (3)

To illustrate: From Example 1 in Section 6.1, take T : D∗ → D, where D = T (D∗)
is the set of (x , y) with x2 + y2 ≤ 1 and D∗ = [0, 1] × [0, 2π ], and T (r, θ ) =
(r cos θ , r sin θ ). By formula (3),

A(D) =
∫∫

D∗

∣∣∣∣∂(x , y)

∂(r, θ )

∣∣∣∣ dr dθ =
∫∫

D∗
r dr dθ (4)

(here r and θ play the role of u and v). From the preceding computation it follows that

∫∫
D∗

r dr dθ =
∫ 2π

0

∫ 1

0
r dr dθ =

∫ 2π

0

[
r 2

2

]1

0

dθ = 1

2

∫ 2π

0
dθ = π
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figure 6.2.2 The effect of the
transformation T on a small
rectangle D∗.

u x

y

Δvj

Δui

D∗
T

(u  , v  )0 0

(u  , v  )0 0T + T ′(D∗)

(x  , y  )0 0
(u  , v  )0 0= T

T(D∗)

∂x
∂v

iΔv + ∂y
∂v

jΔv

∂x
∂u

iΔu + ∂y
∂u

jΔu

v

is the area of the unit disk D, confirming formula (3) in this case. In fact, we can recall
from first-year calculus that equation (4) is the correct formula for the area of a region
in polar coordinates.

It is not so easy to rigorously prove assertion (3). However, looked at in the proper
way, it becomes quite plausible. Recall that A(D) = ∫∫

D dx dy was obtained by dividing
up D into little rectangles, summing their areas, and then taking the limit of this sum as
the size of the subrectangles tended to zero. The problem is that T may map rectangles
into regions whose area is not easy to compute. The solution is to approximate these
images by simpler regions whose area we can compute. A useful tool for doing this is
the derivative of T , which we know (from Chapter 2) gives the best linear approximation
to T .

Consider a small rectangle D∗ in the uv plane as shown in Figure 6.2.2. Let T ′

denote the derivative of T evaluated at (u0, v0), so T ′ is a 2 × 2 matrix. From our work
in Chapter 2, we know that a good approximation to T (u, v) is given by

T (u0, v0) + T ′
(

	u
	v

)
,

where 	u = u − u0 and 	v = v − v0. This mapping T ′ takes D∗ into a parallelogram
with vertex at T (u0, v0) and with adjacent sides given by the vectors

T ′(	u i) =

⎡
⎢⎢⎣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

⎤
⎥⎥⎦

[
	u
0

]
= 	u

⎡
⎢⎢⎣

∂x

∂u
∂y

∂u

⎤
⎥⎥⎦ = 	u Tu

and

T ′(	v j) =

⎡
⎢⎢⎣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

⎤
⎥⎥⎦

[
0

	v

]
= 	v

⎡
⎢⎢⎣

∂x

∂v

∂y

∂v

⎤
⎥⎥⎦ = 	v Tv ,

where

Tu = ∂x

∂u
i + ∂y

∂u
j and Tv = ∂x

∂v
i + ∂y

∂v
j

are evaluated at (u0, v0).
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Recall from Section 1.3 that the area of the parallelogram with sides equal to the
vectors ai + bj and ci + dj is equal to the absolute value of the determinant

∣∣∣∣a b

c d

∣∣∣∣ =
∣∣∣∣a c

b d

∣∣∣∣ .

Thus, the area of T (D∗) is approximately equal to the absolute value of

∣∣∣∣∣∣∣∣

∂x

∂u
	u

∂x

∂v
	v

∂y

∂u
	u

∂y

∂v
	v

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
	u 	v = ∂(x , y)

∂(u, v)
	u 	v

evaluated at (u0, v0).
This fact and a partitioning argument should make formula (3) plausible. Indeed,

if we partition D∗ into small rectangles with sides of length 	u and 	v, the images
of these rectangles are approximated by parallelograms with sides Tu 	u and Tv 	v,
and hence with area |∂(x , y)/∂(u, v)| 	u 	v. Thus, the area of D∗ is approximately∑

	u 	v, where the sum is taken over all the rectangles R inside D∗ (see Figure 6.2.3).
Hence, the area of T (D∗) is approximately the sum

∑ |∂(x , y)/∂(u, v)|	u 	v. In the
limit, this sum becomes

∫∫
D∗

∣∣∣∣∂(x , y)

∂(u, v)

∣∣∣∣ du dv.

Let us give another informal argument for the special case (4) of formula (3); that is,
the case of polar coordinates. Consider a region D in the xy plane and a grid correspond-
ing to a partition of the r and θ variables (Figure 6.2.4). The area of the shaded region
shown is approximately (	r )(r jk 	θ ), because the arc length of a segment of a circle
of radius r subtending an angle φ is rφ. The total area is then the limit of

∑
r jk 	r	θ ;

that is,
∫∫

D∗ r dr dθ . The key idea is thus that the jkth “polar rectangle” in the grid
has area approximately equal to r jk 	r 	θ . (For n large, the jkth polar rectangle will
look like a rectangle with sides of lengths r jk 	θ and 	r .) This should provide some
insight into why we say the “area element dx dy” is transformed into the “area element
rdr dθ .”

figure 6.2.3 The area of the little
rectangle R is 	u 	v . The area
of T (R) is approximately
|∂(x, y)/∂(u, v)|	u 	v .

x

y

D

T

u

v

RΔv

Δu

T(R)

D∗
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figure 6.2.4 D∗ is mapped to D
under the polar coordinate
mapping T .

Δθ

Δrrjk

r

θ

D∗
D

T

rjk

Δr

Δθrjk

x

y

example 2 Let the elementary region D in the xy plane be bounded by the graph of a polar equation
r = f (θ ), where θ0 ≤ θ ≤ θ1 and f (θ ) ≥ 0 (see Figure 6.2.5). In the rθ plane we
consider the r -simple region D∗, where θ0 ≤ θ ≤ θ1 and 0 ≤ r ≤ f (θ ). Under the
transformation x = r cos θ , y = r sin θ , the region D∗ is carried onto the region D. Use
equation (4) to calculate the area of D.

θ0
θ1

r = f (θ)

T

r = f  (θ)

D∗

θ0

θ1

θ

r x

y

D

figure 6.2.5 The effect on the region D∗ of the polar coordinate mapping.

solut ion

A(D) =
∫∫

D
dx dy =

∫∫
D∗

∣∣∣∣∂(x , y)

∂(r, θ )

∣∣∣∣ dr dθ

=
∫∫

D∗
r dr dθ =

∫ θ1

θ0

[∫ f (θ )

0
r dr

]
dθ

=
∫ θ1

θ0

[
r 2

2

] f (θ )

0

dθ =
∫ θ1

θ0

[ f (θ )]2

2
dθ

This formula for A(D) should be familiar from one-variable calculus. ▲

Change of Variables Formula
Before stating the two-variable change of variables formula, which is the culmination
of this discussion, let us recall the corresponding theorem from one-variable calculus
that goes under the name the method of substitution:

∫ b

a
f (x(u))

dx

du
du =

∫ x(b)

x(a)
f (x) dx, (5)

where f is continuous and u �→ x(u) is continuously differentiable on [a, b].
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proof Let F be an antiderivative of f ; that is, F ′ = f , whose existence is guaranteed
by the fundamental theorem of calculus. The right-hand side of equation (5) becomes

∫ x(b)

x(a)
f (x) dx = F(x(b)) − F(x(a)).

To evaluate the left-hand side of equation (5), let G(u) = F(x(u)). By the chain rule,
G ′(u) = F ′(x(u))x ′(u) = f (x(u))x ′(u). Hence, again by the fundamental theorem,

∫ b

a
f (x(u))x ′(u) du =

∫ b

a
G ′(u) du = G(b) − G(a) = F(x(b)) − F(x(a)),

as required. ■

Suppose now that we have a C1 function u �→ x(u) that is one-to-one on [a, b].
Thus, we must have either dx/ du ≥ 0 on [a, b] or dx/du ≤ 0 on [a, b].1 Let I ∗ denote
the interval [a, b], and let I denote the closed interval with endpoints x(a) and x(b).
(Thus, I = [x(a), x(b)] if u �→ x(u) is increasing and I = [x(b), x(a)] if u �→ x(u) is
decreasing.) With these conventions we can rewrite formula (5) as

∫
I ∗

f (x(u))

∣∣∣∣ dx

du

∣∣∣∣ du =
∫

I
f (x) dx.

This formula generalizes to double integrals, as was already given informally in formula
(3): I ∗ becomes D∗, I becomes D, and |dx/du| is replaced by |∂(x , y)/∂(u, v)|. Let
us state the result formally (the technical proof is omitted).

Theorem 2 Change of Variables: Double Integrals Let D and D∗ be
elementary regions in the plane and let T : D∗ → D be of class C1; suppose that
T is one-to-one on D∗. Furthermore, suppose that D = T (D∗). Then for any
integrable function f : D → R, we have

∫∫
D

f (x , y) dx dy =
∫∫

D∗
f (x(u, v), y(u, v))

∣∣∣∣∂(x , y)

∂(u, v)

∣∣∣∣ du dv. (6)

One of the purposes of the change of variables theorem is to supply a method
by which some double integrals can be simplified. We might encounter an integral∫∫

D f dA for which either the integrand f or the region D is complicated and for which
direct evaluation is difficult. Therefore, a mapping T is chosen so that the integral is
easier to evaluate with the new integrand f ◦ T and with the new region D∗ [defined by
T (D∗) = D]. Unfortunately, the problem may actually become more complicated if T
is not selected carefully.

1If dx/du is positive and then negative, the function x = x(u) rises and then falls, and thus is not
one-to-one; a similar statement applies if dx/ du is negative and then positive.
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example 3 Let P be the parallelogram bounded by y = 2x , y = 2x − 2, y = x , and y = x + 1
(see Figure 6.2.6). Evaluate

∫∫
P xy dx dy by making the change of variables

x = u − v, y = 2u − v,

that is, T (u, v) = (u − v, 2u − v).

u x

y

y = x + 1

(1, 2)

(3, 4)

(2, 2)

(0, 0)

(1, −2)(0, −2)

(0, 0) (1, 0)

∗P

T

y = 2x
y = x

y = 2x − 2

P

v

figure 6.2.6 The effect of T (u, v) = (u − v, 2u − v) on the rectangle P∗.

solut ion The transformation T has nonzero determinant and so is one-to-one (see Exercise 12,
Section 6.1). It is designed so that it takes the rectangle P∗ bounded by v = 0, v =
−2, u = 0, u = 1 onto P . The use of T simplifies the region of integration from P to
P∗. Moreover, ∣∣∣∣∂(x , y)

∂(u, v)

∣∣∣∣ =
∣∣∣∣ det

[
1 −1
2 −1

]∣∣∣∣ = 1.

Therefore, by the change of variables formula,∫∫
P

xy dx dy =
∫∫

P∗
(u − v)(2u − v) du dv =

∫ 0

−2

∫ 1

0
(2u2 − 3vu + v2) du dv

=
∫ 0

−2

[
2

3
u3 − 3u2v

2
+ v2u

]1

0

dv =
∫ 0

−2

[
2

3
− 3

2
v + v2

]
dv

=
[

2

3
v − 3

4
v2 + v3

3

]0

−2

= −
[

2

3
(−2) − 3 − 8

3

]

= −
[
−12

3
− 3

]
= 7.

▲

Integrals in Polar Coordinates
Suppose we consider the rectangle D∗ defined by 0 ≤ θ ≤ 2π, 0 ≤ r ≤ a in the rθ

plane. The transformation T given by T (r, θ ) = (r cos θ , r sin θ ) takes D∗ onto the disk
D with equation x2 + y2 ≤ a2 in the xy plane. This transformation represents the
change from Cartesian coordinates to polar coordinates. However, T does not satisfy
the requirements of the change of variables theorem, because it is not one-to-one on
D∗: In particular, T sends all points with r = 0 to (0, 0) (see Figure 6.2.7 and Example
3 of Section 6.1). Nevertheless, the change of variables theorem is valid in this case.
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figure 6.2.7 The image of the
rectangle D∗ under the polar
coordinate transformation is the
disk D.

T

x

y

D

x2 + y2 ≤ a2

r

θ

a

D∗r = 0

2π

Basically, the reason for this is that the set of points where T is not one-to-one lies on
an edge of D∗, which is the graph of a smooth curve and therefore, for the purpose of
integration, can be neglected. In summary, the formula is valid when T sends D∗ onto
D in a one-to-one fashion, except possibly for points on the boundary of D∗.

Change of Variables---Polar Coordinates

∫∫
D

f (x , y) dx dy =
∫∫

D∗
f (r cos θ , r sin θ ) r dr dθ (7)

example 4 Evaluate
∫∫

D log (x2 + y2) dx dy, where D is the region in the first quadrant lying be-

tween the arcs of the circles x2 + y2 = a2 and x2 + y2 = b2, where 0 < a < b
(Figure 6.2.8).

x

y

r

θ

a b (a, 0) (b, 0)

D∗

D

π
2

T

figure 6.2.8 The polar coordinate mapping takes a rectangle D∗ onto part of
an annulus D.

solut ion These circles have the simple equations r = a and r = b in polar coordinates. Moreover,
r2 = x2 + y2 appears in the integrand. Thus, a change to polar coordinates will simplify
both the integrand and the region of integration. From Example 7, Section 6.1, the polar
coordinate transformation

x = r cos θ , y = r sin θ
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sends the rectangle D∗ given by a ≤ r ≤ b, 0 ≤ θ ≤ π/2 onto the region D. This
transformation is one-to-one on D∗ and so, by formula (7), we have

∫∫
D

log (x2 + y2) dx dy =
∫ b

a

∫ π/2

0
r log r2 dθ dr

= π

2

∫ b

a
r log r2 dr = π

2

∫ b

a
2r log r dr.

Applying integration by parts, or using the formula

∫
x log x dx = x2

2
log x − x2

4

from the table of integrals at the back of the book, we obtain the result

π

2

∫ b

a
2r log r dr = π

2

[
b2 log b − a2 log a − 1

2
(b2 − a2)

]
.

▲

example 5 The Gaussian Integral One of the most beautiful applications of the change of
variables formula, polar coordinates, and the reduction to iterated integrals is their
application to the following formula, known as the Gaussian integral:

∫ ∞

−∞
e−x2

dx = √
π.

Not only is this formula very attractive in its own right, but it is also useful in areas such
as statistics. It also illustrates the unity of the transcendental numbers e and π nearly as
well as does the classic formula eiπ = −1.

To carry out the integration of the Gaussian integral,2 we first evaluate the double
integral ∫∫

Da

e−(x2+y2)dx dy,

where Da is the disk x2 + y2 ≤ a2. Because r 2 = x2 + y2, and dx dy = r dr dθ , the
change of variables formula gives

∫∫
Da

e−(x2+y2)dx dy =
∫ 2π

0

∫ a

0
e−r2

r dr dθ =
∫ 2π

0

(
−1

2
e−r2

)∣∣∣∣
a

0

dθ

= −1

2

∫ 2π

0
(e−a2 − 1) dθ = π(1 − e−a2

).

2The method that follows is admittedly not straightforward but requires a trick. The trick is to start with
the desired formula and square both sides. You will then observe that the left-hand side resembles an
iterated integral. There are several other ways to evaluate the Gaussian integral, but all of them require
some nonobvious method. For the use of complex variables to evaluate it, see, for example, J. Marsden
and M. Hoffman, Basic Complex Analysis, 3rd ed., W. H. Freeman, New York, 1998.
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If we let a → ∞ in this expression, we give meaning to the improper integral and get∫∫
R2

e−(x2+y2)dx dy = π.

Assuming (as shown in the Internet supplement) that we can also evaluate this improper
integral as the limit of the integrals over the rectangles Ra = [−a, a] × [−a, a] as
a → ∞, we get

lim
a→∞

∫∫
Ra

e−(x2+y2)dx dy = π.

By reduction to iterated integrals, we can write this as

lim
a→∞

[∫ a

−a
e−x2

dx

∫ a

−a
e−y2

dy

]
=

[
lim

a→∞

∫ a

−a
e−x2

dx

]2

= π.

That is,
[∫ ∞

−∞
e−x2

dx

]2

= π.

Thus, taking square roots, we arrive at the desired result.
Here is a variant of the Gaussian integral. Evaluate

∫ ∞

−∞
e−2x2

dx.

To do this, use the change of variables formula y = √
2x to reduce the problem to the

Gaussian integral just computed:

∫ ∞

−∞
e−2x2

dx = lim
a→∞

∫ a

−a
e−2x2

dx = lim
a→∞

∫ √
2a

−√
2a

e−y2 dy√
2

= 1√
2

∫ ∞

−∞
e−y2

dy = 1√
2

√
π =

√
π

2
.

▲

Change of Variables Formula for Triple Integrals
To state this formula, we first define the Jacobian of a transformation from R3 to R3—it
is a simple extension of the two-variable case.

Definition Let T : W ⊂ R3 → R3 be a C1 function defined by the equations
x = x(u, v, w), y = y(u, v, w), z = z(u, v, w). Then the Jacobian of T , which
is denoted ∂(x , y, z)/∂(u, v, w), is the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w
∂y

∂u

∂y

∂v

∂y

∂w
∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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The absolute value of this determinant is equal to the volume of the parallelepiped
determined by the three vectors

Tu = ∂x

∂u
i + ∂y

∂u
j + ∂z

∂u
k,

Tv = ∂x

∂v
i + ∂y

∂v
j + ∂z

∂v
k,

Tw = ∂x

∂w
i + ∂y

∂w
j + ∂z

∂w
k.

Just as in the two-variable case, the Jacobian measures how the transformation T distorts
the volume of its domain. Hence, for volume (triple) integrals, the change of variables
formula takes the following form:

Change of Variables Formula: Triple Integrals
∫∫∫

W
f (x , y, z) dx dy dz

=
∫∫∫

W ∗
f (x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣ ∂(x , y, z)

∂(u, v, w)

∣∣∣∣ du dv dw , (8)

where W ∗ is an elementary region in uvw space corresponding to W in xyz space,
under a mapping T : (u, v, w) �→ (x(u, v, w), y(u, v, w), z(u, v, w)), provided
T is of class C1 and is one-to-one, except possibly on a set that is the union of
graphs of functions of two variables.

Cylindrical Coordinates
Let us apply formula (8) to cylindrical and then to spherical coordinates. First, we com-
pute the Jacobian for the map defining the change to cylindrical coordinates. Because

x = r cos θ , y = r sin θ , z = z,

we have

∂(x , y, z)

∂(r, θ , z)
=

∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣ = r.

Thus, we obtain the formula

Change of Variables---Cylindrical Coordinates
∫∫∫

W
f (x , y, z) dx dy dz =

∫∫∫
W ∗

f (r cos θ , r sin θ , z) r dr dθ dz. (9)
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Spherical Coordinates
Next we consider the spherical coordinate system. Recall that it is given by

x = ρ sin φ cos θ , y = ρ sin φ sin θ , z = ρ cos φ.

Therefore, we have

∂(x , y, z)

∂(ρ , θ , φ)
=

∣∣∣∣∣∣
sin φ cos θ −ρ sin φ sin θ ρ cos φ cos θ

sin φ sin θ ρ sin φ cos θ ρ cos φ sin θ

cos φ 0 −ρ sin φ

∣∣∣∣∣∣ .

Expanding along the last row, we get

∂(x , y, z)

∂(ρ , θ , φ)
= cos φ

∣∣∣∣−ρ sin φ sin θ ρ cos φ cos θ

ρ sin φ cos θ ρ cos φ sin θ

∣∣∣∣
−ρ sin φ

∣∣∣∣sin φ cos θ −ρ sin φ sin θ

sin φ sin θ ρ sin φ cos θ

∣∣∣∣
= −ρ2 cos2 φ sin φ sin2 θ − ρ2 cos2 φ sin φ cos2 θ

−ρ2 sin3 φ cos2 θ − ρ2 sin3 φ sin2 θ

= −ρ2 cos2 φ sin φ − ρ2 sin3 φ = −ρ2 sin φ.

Thus, we arrive at the formula:

Change of Variables---Spherical Coordinates
∫∫∫

W
f (x , y, z) dx dy dz

=
∫∫∫

W ∗
f (ρ sin φ cos θ , ρ sin φ sin θ , ρ cos φ)ρ2 sin φ dρ dθ dφ. (10)

To prove formula (10), we must show that the transformation S on the set W ∗ is one-
to-one except on a set that is the union of finitely many graphs of continuous functions.
We shall leave this verification as Exercise 34.

example 6 Evaluate
∫∫∫

W
exp (x2 + y2 + z2)3/2 dV ,

where W is the unit ball in R3.
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s o l u t i o n First note that we cannot easily integrate this function using iterated integrals (try it!).
Hence (employing the strategy in the quote that opened this chapter), let us try a change
of variables. The transformation into spherical coordinates seems appropriate, because
then the entire quantity x2 + y2 + z2 can be replaced by one variable, namely, ρ2. If W ∗

is the region such that

0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π,

we can apply formula (10) and write

∫∫∫
W

exp (x2 + y2 + z2)3/2 dV =
∫∫∫

W ∗
ρ2eρ3

sin φ dρ dθ dφ.

This integral equals the iterated integral

∫ 1

0

∫ π

0

∫ 2π

0
eρ3

ρ2 sin φ dθ dφ dρ = 2π

∫ 1

0

∫ π

0
eρ3

ρ2 sin φ dφ dρ

= −2π

∫ 1

0
ρ2eρ3

[cos φ]π0 dρ

= 4π

∫ 1

0
eρ3

ρ2 dρ = 4

3
π

∫ 1

0
eρ3

(3ρ2) dρ

=
[

4

3
πeρ3

]1

0

= 4

3
π(e − 1).

▲

example 7 Let W be the ball of radius R and center (0, 0, 0) in R3. Find the volume of W .

solut ion The volume of W is
∫∫∫

W dx dy dz. This integral may be evaluated by reducing it to
iterated integrals or by regarding W as a volume of revolution, but let us evaluate it here
by using spherical coordinates. We get

∫∫∫
W

dx dy dz =
∫ π

0

∫ 2π

0

∫ R

0
ρ2 sin φ dρ dθ dφ = R3

3

∫ π

0

∫ 2π

0
sin φ dθ dφ

= 2π R3

3

∫ π

0
sin φ dφ = 2π R3

3
{−[cos(π ) − cos(0)]} = 4π R3

3
,

which is the standard formula for the volume of a solid sphere. ▲

exercises

1. Suggest a substitution/transformation that will simplify
the following integrands, and find their Jacobians.

(a)

∫∫
R

(3x + 2y) sin(x − y) dA

(b)

∫∫
R

e(−4x+7y) cos(7x − 2y) dA

2. Suggest a substitution/transformation that will simplify
the following integrands, and find their Jacobians.

(a)

∫∫
R

(5x + y)3(x + 9y)4 dA

(b)

∫∫
R

x sin(6x + 7y) − 3y sin(6x + 7y) dA
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3. Let D be the unit disk: x2 + y2 ≤ 1. Evaluate

∫∫
D

exp (x2 + y2) dx dy

by making a change of variables to polar coordinates.

4. Let D be the region 0 ≤ y ≤ x and 0 ≤ x ≤ 1. Evaluate
∫∫

D
(x + y) dx dy

by making the change of variables x = u + v,
y = u − v. Check your answer by evaluating the integral
directly by using an iterated integral.

5. Let T (u, v) = (x(u, v), y(u, v)) be the mapping defined
by T (u, v) = (4u, 2u + 3v). Let D∗ be the rectangle
[0, 1] × [1, 2]. Find D = T (D∗) and evaluate

(a)

∫∫
D

xy dx dy

(b)

∫∫
D

(x − y) dx dy

by making a change of variables to evaluate them as
integrals over D∗.

6. Repeat Exercise 5 for T (u, v) = (u, v(1 + u)).

7. Evaluate ∫∫
D

dx dy√
1 + x + 2y

,

where D = [0, 1] × [0, 1], by setting T (u, v) = (u, v/2)
and evaluating an integral over D∗, where T (D∗) = D.

8. Define T (u, v) = (u2 − v2, 2uv). Let D∗ be the set
of (u, v) with u2 + v2 ≤ 1, u ≥ 0, v ≥ 0. Find
T (D∗) = D. Evaluate

∫∫
D dx dy.

9. Let T (u, v) be as in Exercise 8. By making a change of
variables, “formally” evaluate the “improper” integral

∫∫
D

dx dy√
x2 + y2

.

[NOTE: This integral (and the one in the next exercise) is
improper, because the integrand 1/

√
x2 + y2 is neither

continuous nor bounded on the domain of integration.
(The theory of improper integrals is discussed in
Section 6.4.)]

10. Calculate

∫∫
R

1

x + y
dy dx, where R is the region

bounded by x = 0, y = 0, x + y = 1, x + y = 4, by
using the mapping T (u, v) = (u − uv, uv).

11. Evaluate

∫∫
D

(x2 + y2)3/2dx dy, where D is the disk

x2 + y2 ≤ 4.

12. Let D∗ be a v-simple region in the uv plane bounded by
v = g(u) and v = h(u) ≤ g(u) for a ≤ u ≤ b. Let
T : R2 → R2 be the transformation given by x = u and
y = ψ(u, v), where ψ is of class C1 and ∂ψ/∂v is never
zero. Assume that T (D∗) = D is a y-simple region;
show that if f : D → R is continuous, then

∫∫
D

f (x , y) dx dy =
∫∫

D∗
f (u, ψ(u, v))

∣∣∣∂ψ

∂v

∣∣∣ du dv.

13. Use double integrals to find the area inside the curve
r = 1 + sin θ .

14. (a) Express
∫ 1

0

∫ x2

0 xy dy dx as an integral over the
triangle D∗, which is the set of (u, v) where
0 ≤ u ≤ 1, 0 ≤ v ≤ u. (HINT: Find a one-to-one
mapping T of D∗ onto the given region of
integration.)

(b) Evaluate this integral directly and as an integral
over D∗.

15. Integrate zex2+y2
over the cylinder

x2 + y2 ≤ 4, 2 ≤ z ≤ 3.

16. Let D be the unit disk. Express∫∫
D

(1 + x2 + y2)3/2dx dy as an integral over

[0, 1] × [0, 2π ] and evaluate.

17. Using polar coordinates, find the area bounded by the
lemniscate (x2 + y2)2 = 2a2 (x2 − y2).

18. Redo Exercise 15 of Section 5.3 using a change of
variables and compare the effort involved in each
method.

19. Calculate

∫∫
R

(x + y)2ex−ydx dy, where R is the region

bounded by x + y = 1, x + y = 4, x − y = −1, and
x − y = 1.

20. Let T : R3 → R3 be defined by

T (u, v, w) = (u cos v cos w , u sin v cos w , u sin w).

(a) Show that T is onto the unit sphere; that is, every
(x , y, z) with x2 + y2 + z2 = 1 can be written as
(x , y, z) = T (u, v, w) for some (u, v, w).

(b) Show that T is not one-to-one.

21. Integrate x2 + y2 + z2 over the cylinder
x2 + y2 ≤ 2, −2 ≤ z ≤ 3.
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22. Evaluate
∫ ∞

0 e−4x2
dx.

23. Let B be the unit ball. Evaluate∫∫∫
B

dx dy dz√
2 + x2 + y2 + z2

by making the appropriate change of variables.

24. Evaluate

∫∫
A

[1/(x2 + y2)2] dx dy, where A is

determined by the conditions x2 + y2 ≤ 1 and
x + y ≥ 1.

25. Evaluate

∫∫∫
W

dx dy dz

(x2 + y2 + z2)3/2 , where W is the

solid bounded by the two spheres x2 + y2 + z2 = a2

and x2 + y2 + z2 = b2, where 0 < b < a.

26. Use spherical coordinates to evaluate:

∫ 3

0

∫ √
9−x2

0

∫ √
9−x2−y2

0

√
x2 + y2 + z2

1 + [x2 + y2 + z2]2 dz dy dx

27. Let D be a triangle in the (x , y) plane with vertices
(0, 0), ( 1

2 , 1
2 ), (1, 0). Evaluate:

∫∫

D

cos π

(
x − y

x + y

)
dx dy

by making the appropriate change of variables.

28. Evaluate

∫∫
D

x2dx dy, where D is determined by the

two conditions 0 ≤ x ≤ y and x2 + y2 ≤ 1.

29. Integrate
√

x2 + y2 + z2 e−(x2+y2+z2) over the region
described in Exercise 25.

30. Evaluate the following by using cylindrical coordinates.

(a)

∫∫∫
B

z dx dy dz, where B is the region within the

cylinder x2 + y2 = 1 above the xy plane and below
the cone z = (x2 + y2)1/2

(b)

∫∫∫
W

(x2 + y2 + z2)−1/2dx dy dz, where W is the

region determined by the conditions 1
2 ≤ z ≤ 1 and

x2 + y2 + z2 ≤ 1

31. Evaluate

∫∫
B

(x + y) dx dy, where B is the rectangle in

the xy plane with vertices at (0, 1), (1, 0), (3, 4), and
(4, 3).

32. Evaluate

∫∫
D

(x + y) dx dy, where D is the square with

vertices at (0, 0), (1, 2), (3, 1), and (2, −1).

33. Let E be the ellipsoid (x2/a2) + (y2/b2) + (z2/c2) ≤ 1,
where a, b, and c are positive.

(a) Find the volume of E .

(b) Evaluate∫∫∫
E

[(x2/a2) + ( y2/b2) + (z2/c2)] dx dy dz.

(HINT: Change variables and then use spherical
coordinates.)

34. Using spherical coordinates, compute the integral of
f (ρ , φ , θ ) = 1/ρ over the region in the first octant of
R3, which is bounded by the cones φ = π/4,
φ = arctan 2 and the sphere ρ = √

6.

35. The mapping T (u, v) = (u2 − v2, 2uv) transforms the
rectangle 1 ≤ u ≤ 2, 1 ≤ v ≤ 3 of the uv plane into a
region R of the xy plane.

(a) Show that T is one-to-one.

(b) Find the area of R using the change of variables
formula.

36. Let R denote the region inside x2 + y2 = 1, but outside
x2 + y2 = 2y with x ≥ 0, y ≥ 0.

(a) Sketch this region.

(b) Let u = x2 + y2, v = x2 + y2 − 2y. Sketch the
region D in the uv plane, which corresponds to
R under this change of coordinates.

(c) Compute

∫∫
R

xeydx dy using this change of

coordinates.

37. Let D be the region bounded by x3/2 + y3/2 = a3/2, for
x ≥ 0, y ≥ 0, and the coordinate axes x = 0, y = 0.

Express

∫∫
D

f (x , y) dx dy as an integral over the

triangle D∗, which is the set of points
0 ≤ u ≤ a, 0 ≤ v ≤ a − u. (Do not attempt to evaluate.)

38. Show that S(ρ , θ , φ) = (ρ sin φ cos θ , ρ sin φ sin θ ,
ρ cos φ), the spherical change-of-coordinate mapping, is
one-to-one except on a set that is a union of finitely
many graphs of continuous functions.
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6.3 Applications

In this section, we shall discuss average values, centers of mass, moments of inertia,
and the gravitational potential as applications.

Averages
If x1, . . . , xn are n numbers, their average is defined by

[xi ]av = x1 + · · · + xn

n
= 1

n

n∑
i=1

xi .

Notice that if all the xi happen to have a common value c, then their average, of course,
also equals c.

This concept leads us to define the average values of functions as follows.

Average Values The average value of a function of one variable on the interval
[a, b] is defined by

[ f ]av =

∫ b

a
f (x) dx

b − a
.

Likewise, for functions of two variables, the ratio of the integral to the area of D,

[ f ]av =

∫∫
D

f (x , y) dx dy
∫∫

D
dx dy

, (1)

is called the average value of f over D. Similarly, the average value of a function
f on a region W in 3-space is defined by

[ f ]av =

∫∫∫
W

f (x , y, z) dx dy dz
∫∫∫

W
dx dy dz

.

Again, notice that the denominator is chosen so that if f is a constant, say c, then
[ f ]av = c.

example 1 Find the average value of f (x , y) = x sin2(xy) on the region D = [0, π ] × [0, π ].

solut ion First, we compute∫∫
D

f (x , y) dx dy =
∫ π

0

∫ π

0
x sin2(xy) dx dy

=
∫ π

0

[∫ π

0

1 − cos(2xy)

2
x dy

]
dx

=
∫ π

0

[
y

2
− sin(2xy)

4x

]
x

∣∣∣∣
π

y=0

dx

=
∫ π

0

[
πx

2
− sin(2πx)

4

]
dx =

[
πx2

4
+ cos(2πx)

8π

] ∣∣∣∣
π

0

= π3

4
+ cos(2π2) − 1

8π
.
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Thus, the average value of f , by formula (1), is

π3/4 + [cos(2π2) − 1]/8π

π2
= π

4
+ cos(2π2) − 1

8π3
≈ 0.7839. ▲

example 2 The temperature at points in the cube W = [−1, 1] × [−1, 1] × [−1, 1] is proportional
to the square of the distance from the origin.

(a) What is the average temperature?

(b) At which points of the cube is the temperature equal to the average temperature?

solut ion (a) Let c be the constant of proportionality, so T = c(x2 + y2 + z2) and the average
temperature is [T ]av = 1

8

∫∫∫
W T dx dy dz, because the volume of the cube is 8. Thus,

[T ]av = c

8

∫ 1

−1

∫ 1

−1

∫ 1

−1
(x2 + y2 + z2) dx dy dz.

The triple integral is the sum of the integrals of x2, y2, and z2. Because x , y, and z enter
symmetrically into the description of the cube, the three integrals will be equal, so that

[T ]av = 3c

8

∫ 1

−1

∫ 1

−1

∫ 1

−1
z2dx dy dz = 3c

8

∫ 1

−1
z2

(∫ 1

−1

∫ 1

−1
dx dy

)
dz.

The inner integral is equal to the area of the square [−1, 1] × [−1, 1]. The area of that
square is 4, and so

[T ]av = 3c

8

∫ 1

−1
4z2dz = 3c

2

(
z3

3

) ∣∣∣∣
1

−1

= c.

(b) The temperature is equal to the average temperature at all points satisfying
c(x2 + y2 + z2) = c—that is, at all points lying on the sphere x2 + y2 + z2 = 1. ▲

Centers of Mass
If masses m1, . . . , mn are placed at points x1, . . . , xn on the x axis, their center of mass
is defined to be

x =
∑

mi xi∑
mi

. (2)

This definition arises from the following observation: If one is balancing masses on a
lever (Figure 6.3.1), the balance point x occurs where the total moment (mass times
distance from the balance point) is zero; that is, where

∑
mi (xi − x) = 0. A physical

principle, going back first to Archimedes and then in this generality to Newton, states
that this condition means there is no tendency for the lever to rotate.

figure 6.3.1 The lever is
balanced if � (xi − x ) mi = 0.

m3

x
x1

x2
x3

m2m1
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For a continuous mass density δ(x) along the lever (measured in, say, grams/cm),
the analogue of formula (2) is

x =

∫
xδ(x) dx

∫
δ(x) dx

. (3)

For two-dimensional plates, this generalizes to:

The Center of Mass of Two-Dimensional Plates

x =

∫∫
D

xδ(x , y) dx dy
∫∫

D
δ(x , y) dx dy

and y =

∫∫
D

yδ(x , y) dx dy
∫∫

D
δ(x , y) dx dy

, (4)

where again δ(x , y) is the mass density (see Figure 6.3.2).

Center of mass Plate

figure 6.3.2 The plate
balances when supported
at its center of mass.

example 3 Find the center of mass of the rectangle [0, 1] × [0, 1] if the mass density is ex+y .

solut ion First we compute the total mass:

∫∫
D

ex+ydx dy =
∫ 1

0

∫ 1

0
ex+ydx dy =

∫ 1

0

(
ex+y

∣∣1

x=0

)
dy =

∫ 1

0
(e1+y − ey) dy

= (e1+y − ey)
∣∣1

y=0
= e2 − e − (e − 1) = e2 − 2e + 1.

The numerator in formula (4) for x is

∫ 1

0

∫ 1

0
xex+ydx dy =

∫ 1

0
(xex+y − ex+y)

∣∣1

x=0
dy =

∫ 1

0
[e1+y − e1+y − (0ey − ey)] dy

=
∫ 1

0
eydy = ey

∣∣∣1

y=0
= e − 1,

so that

x = e − 1

e2 − 2e + 1
= e − 1

(e − 1)2
= 1

e − 1
≈ 0.582.

The roles of x and y may be interchanged in all these calculations, so that y = 1/(e−1) ≈
0.582 as well. ▲

For a region W in space with mass density δ(x , y, z), we know that

volume =
∫∫∫

W
dx dy dz, (5)

mass =
∫∫∫

W
δ(x , y, z) dx dy dz. (6)

If we denote the coordinates of the center of mass by (x , y, z), then the generalization
of the formulas in the preceding box are as follows.
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Coordinates for the Center of Mass of Three-Dimensional
Regions

x =

∫∫∫
W

xδ(x , y, z) dx dy dz

mass

y =

∫∫∫
W

yδ(x , y, z) dx dy dz

mass
(7)

z =

∫∫∫
W

zδ(x , y, z) dx dy dz

mass

example 4 The cube [1, 2] × [1, 2] × [1, 2] has mass density given by δ(x , y, z) = (1 + x)ez y.
Find the total mass of the box.

solut ion The mass of the box is, by formula (6),

∫ 2

1

∫ 2

1

∫ 2

1
(1 + x)ez y dx dy dz =

∫ 2

1

∫ 2

1

[(
x + x2

2

)
ez y

]x=2

x=1

dy dz

=
∫ 2

1

∫ 2

1

5

2
ez y dy dz =

∫ 2

1

15

4
ezdz =

[
15

4
ez

]z=2

z=1

= 15

4
(e2 − e). ▲

If a region and its mass density are reflection-symmetric across a plane, then the
center of mass lies on that plane. For example, in formula (7) for x , if the region and
mass density are symmetric in the yz plane, then the integrand is odd in x , and so x = 0.
This kind of use of symmetry is illustrated in the next example.

example 5 Find the center of mass of the hemispherical region W defined by the inequalities
x2 + y2 + z2 ≤ 1, z ≥ 0. (Assume that the density is unity.)

solut ion By symmetry, the center of mass must lie on the z axis, and so x = y = 0. To find z,
we must compute, by formula (7), the numerator I = ∫∫∫

W z dx dy dz. The hemisphere
is an elementary region, and thus the integral becomes

I =
∫ 1

0

∫ √
1−z2

−
√

1−z2

∫ √
1−y2−z2

−
√

1−y2−z2

z dx dy dz.

Because z is a constant for the x and y integrations, we can remove it from the first two
integral signs, to obtain

I =
∫ 1

0
z

⎛
⎝

∫ √
1−z2

−
√

1−z2

∫ √
1−y2−z2

−
√

1−y2−z2

dx dy

⎞
⎠ dz.

Instead of calculating the inner two integrals explicitly, we observe that they equal the
double integral

∫∫
D dx dy over the disk x2 + y2 ≤ 1 − z2, considered as an x-simple
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region in the plane. The area of this disk is π(1 − z2), and so

I = π

∫ 1

0
z(1 − z2) dz = π

∫ 1

0
(z − z3) dz = π

[
z2

2
− z4

4

]1

0

= π

4
.

The volume of the hemisphere is 2
3π , and so z = (π/4)/( 2

3π ) = 3
8 . ▲

Historical Note

It is common knowledge that Archimedes observed the principle of the lever.
Perhaps less known is that he was also responsible for discovering the concepts
of center of mass and center of gravity. Only two of his works on mechanics have
been handed down to us: On Floating Bodies and On the Equilibrium and
Centers of Mass of Plane Figures. Both were translated into Latin by Niccolo
Tartaglia, circa 1543.

In Equilibrium. . . , Archimedes began the field of applied mathematics, doing
for mechanics what Euclid had accomplished for geometry. In this work he
describes the principles behind all the machines of antiquity, including the lever,
inclined plane, and pulley systems.

Surprisingly, Archimedes never carefully defined the center of mass; the first
proper definition was given by Pappus of Alexandria in 340 C.E. The concept of
equilibrium was to have a profound effect on the development of mechanical
engineering (through the introduction of gears), architecture, and in art,
permitting the construction of complex machines, large-scale buildings, and
sculptures. Figure 6.3.3 shows sketches by Leonardo DaVinci, illustrating
equilibrium positions of the human body.

Moments of Inertia
Another important concept in mechanics, one that is needed in studying the dynamics
of a rotating rigid body, is that of moment of inertia. If the solid W has uniform density

figure 6.3.3 Equilibrium positions
of the human body, to be
observed by the painter. The
center of mass should be
supported to maintain
equilibrium.
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δ, the moments of inertia Ix , Iy , and Iz about the x , y, and z axes, respectively, are
defined by:

Moments of Inertia About the Coordinate Axes

Ix =
∫∫∫

W
( y2 + z2) δ dxdy dz, Iy =

∫∫∫
W

(x2 + z2) δ dx dy dz,

Iz =
∫∫∫

W
(x2 + y2) δ dx dy dz.

(8)

The moment of inertia measures a body’s response to efforts to rotate it; for example,
as when one tries to rotate a merry-go-round. The moment of inertia is analogous to
the mass of a body, which measures its response to efforts to translate it. In contrast to
translational motion, however, the moments of inertia depend on the shape and not just
the total mass. It is harder to spin up a large plate than a compact ball of the same mass.

For example, Ix measures the body’s response to forces attempting to rotate it about
the x axis. The factor y2 + z2, which is the square of the distance to the x axis, weights
masses farther away from the rotation axis more heavily. This is in agreement with the
intuition just explained.

example 6 Compute the moment of inertia Iz for the solid above the xy plane bounded by the
paraboloid z = x2 + y2 and the cylinder x2 + y2 = a2, assuming a and the mass density
to be constants.

solut ion The paraboloid and cylinder intersect at the plane z = a2. Using cylindrical coordinates,
we find from equation (8),

Iz =
∫ a

0

∫ 2π

0

∫ r2

0
δr 2 · rdz dθ dr = δ

∫ a

0

∫ 2π

0

∫ r2

0
r 3dz dθ dr = πδa6

3
.

▲

(x1, y1, z1)

(x, y, z)

dM
r

W

figure 6.3.4 The gravitational
potential that produces a force
acting on a mass mat (x1, y1, z1)
arising from the mass dM = δ

(x, y, z) dx dy dz at (x, y, z) is
−[Gmδ (x, y, z) dx dy dz]/r.

Gravitational Fields of Solid Objects
Another interesting physical application of triple integration is the determination of the
gravitational fields of solid objects. Example 7, Section 2.6, showed that the gravitational
force field F(x , y, z) of a particle is the negative of the gradient of a function V (x , y, z)
called the gravitational potential. If there is a point mass M at (x , y, z), then the
gravitational potential acting on a mass m at (x1, y1, z1) due to this mass is −Gm M [(x−
x1)2 + ( y − y1)2 + (z − z1)2]−1/2, where G is the universal gravitational constant.

If our attracting object occupies a domain W with mass density δ(x , y, z), we
may think of it as made of infinitesimal box-shaped regions with masses d M =
δ(x , y, z) dx dy dz located at points (x , y, z). The total gravitational potential V for
W is then obtained by “summing” the potentials from the infinitesimal masses. Thus,
we arrive at the triple integral (see Figure 6.3.4):

V (x1, y1, z1) = −Gm

∫∫∫
W

δ(x , y, z) dx dy dz√
(x − x1)2 + ( y − y1)2 + (z − z1)2

. (9)
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Historical Note

The theory of gravitational force fields and gravitational potentials was
developed by Sir Isaac Newton (1642--1727). Newton withheld publication of his
gravitational theories for quite some time. The result that a spherical planet has
the same gravitational field as it would have if its mass were all concentrated at
the planet's center first appeared in his famous Philosophiae Naturalis Principia
Mathematica, the first edition of which appeared in 1687. Using multiple integrals
and spherical coordinates, we shall solve Newton's problem here; remarkably,
Newton's published solution used only Euclidean geometry.

example 7 Let W be a region of constant density and total mass M . Show that the gravitational
potential is given by

V (x1, y1, z1) =
[

1

r

]
av

GMm,

where [1/r ]av is the average over W of

f (x , y, z) = 1√
(x − x1)2 + ( y − y1)2 + (z − z1)2

.

solut ion According to formula (9),

−V (x1, y1, z1) = Gm

∫∫∫
W

δ dx dy dz√
(x − x1)2 + ( y − y1)2 + (z − z1)2

= Gmδ

∫∫∫
W

dx dy dz√
(x − x1)2 + ( y − y1)2 + (z − z1)2

= Gm[δ volume (W )]

∫∫∫
W

dx dy dz√
(x − x1)2 + ( y − y1)2 + (z − z1)2

volume (W )

= GmM

[
1

r

]
av

are required. ▲

z

(x1, y1, z1)

ρ1

ρ2

(0, 0, R)

y

x

figure 6.3.5 The gravitational
potential at (x1, y1, z1) is the
same as at (0, 0, R), where

R =
√

x2
1 + y2

1 + z2
1.

Let us now use formula (9) and spherical coordinates to find the gravitational poten-
tial V (x1, y1, z1) for a region W with constant density between the concentric spheres
ρ = ρ1 and ρ = ρ2, assuming the density is constant. Before evaluating the integral
in formula (9), we make some observations that will simplify the computation. Be-
cause G, m, and the density are constants, we may ignore them at first. Because the
attracting body, W , is symmetric with respect to rotations about the origin, the poten-
tial V (x1, y1, z1) should itself be symmetric—thus, V (x1, y1, z1) depends only on the
distance R =

√
x2

1 + y2
1 + z2

1 from the origin. Our computation will be simplest if we
look at the point (0, 0, R) on the z axis (see Figure 6.3.5). Thus, we need to evaluate the
integral

V (0, 0, R) = −
∫∫∫

W

dx dy dz√
x2 + y2 + (z − R)2

.
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In spherical coordinates, W is described by the inequalities ρ1 ≤ ρ ≤ ρ2, 0 ≤ θ ≤ 2π ,
and 0 ≤ φ ≤ π , and so

−V (0, 0, R) =
∫ ρ 2

ρ1

∫ π

0

∫ 2π

0

ρ2 sin φ dθ dφ dρ√
ρ2 sin2 φ(cos2 θ + sin2 θ ) + (ρ cos φ − R)2

.

Replacing cos2 θ + sin2 θ by 1, so that the integrand no longer involves θ , we may
integrate over θ to get

−V (0, 0, R) = 2π

∫ ρ 2

ρ1

∫ π

0

ρ2 sin φ dφ dρ√
ρ2 sin2 φ + (ρ cos φ − R)2

= 2π

∫ ρ 2

ρ1

ρ2

(∫ π

0

sin φ dφ√
ρ2 − 2Rρ cos φ + R2

)
dρ.

The inner integral over φ may be evaluated using the substitution u = −2Rρ cos φ.
We get

1

2Rρ

∫ 2Rρ

−2Rρ

(ρ2 + u + R2)−1/2 du = 2

2Rρ
(ρ2 + u + R2)1/2

∣∣∣∣
2Rρ

−2Rρ

= 1

Rρ

[
(ρ2 + 2Rρ + R2)1/2 − (ρ2 − 2Rρ + R2)1/2

]

= 1

Rρ

{
[(ρ + R)2]1/2 − [(ρ − R)2]1/2

}

= 1

Rρ
(ρ + R − |ρ − R|).

The expression ρ + R is always positive, but ρ − R may not be, so we must keep the
absolute value sign. Substituting into the formula for V , we get

−V (0, 0, R) = 2π

∫ ρ 2

ρ1

ρ2

Rρ
(ρ + R − |ρ − R|) dρ = 2π

R

∫ ρ 2

ρ1

ρ(ρ + R − |ρ − R|) dρ.

We consider two possibilities for R, corresponding to the gravitational potential for
objects outside and inside the hollow ball W .

Case 1. If R ≥ ρ2 [that is, if (x1, y1, z1) is outside W ], then |ρ − R| = R − ρ for all ρ

in the interval [ρ1, ρ2], so that

−V (0, 0, R) = 2π

R

∫ ρ 2

ρ1

ρ[ρ + R − (R − ρ)] dρ = 4π

R

∫ ρ 2

ρ1

ρ2 dρ = 1

R

4π

3

(
ρ3

2 − ρ3
1

)
.

The factor (4π/3)(ρ3
2 − ρ3

1 ) equals the volume of W . Putting back the constants G, m,
and the mass density, we find that the gravitational potential is −GmM/R, where M is
the mass of W . Thus, V is just as it would be if all the mass of W were concentrated at
the central point.
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Case 2. If R ≤ ρ1 [that is, if (x1, y1, z1) is inside the hole], then |ρ − R| = ρ − R for
ρ in [ρ1, ρ2], and so

−V (0, 0, R) = (Gm)
2π

R

∫ ρ 2

ρ1

ρ[ρ + R − (ρ − R)] dρ = (Gm)4π

∫ ρ 2

ρ1

ρ dρ

= (Gm)2π
(
ρ2

2 − ρ2
1

)
.

The result is independent of R, and so the potential V is constant inside the hole.
Because the gravitational force is minus the gradient of V , we conclude that there is no
gravitational force inside a uniform hollow planet!

We leave it to you to compute V (0, 0, R) for the case ρ1 < R < ρ2.
A similar argument shows that the gravitational potential outside any spherically

symmetric body of mass M (even if the density is variable) is V = G Mm/R, where R
is the distance to its center (which is its center of mass).

example 8 Find the gravitational potential acting on a unit mass of a spherical star with a mass
M = 3.02 × 1030 kg at a distance of 2.25 × 1011 m from its center (G = 6.67 ×
10−11 N · m2/kg2).

solut ion The negative potential is

−V = GM

R
= 6.67 × 10−11 × 3.02 × 1030

2.25 × 1011
= 8.95 × 108 m2/s2. ▲

exercises

1. Find the coordinates of the center of mass of an
isosceles triangle of uniform density bounded by the
x axis, y = ax , and y = −ax + 2a.

2. Assuming uniform density, find the coordinates of the
center of mass of the semicircle y = √

r2 − x2, with
y ≥ 0.

3. Find the average of f (x , y) = y sin xy over D =
[0, π ] × [0, π ].

4. Find the average of f (x , y) = ex+y over the triangle
with vertices (0, 0), (0, 1), and (1, 0).

5. Find the center of mass of the region between y = x2

and y = x if the density is x + y.

6. Find the center of mass of the region between y = 0 and
y = x2, where 0 ≤ x ≤ 1

2 .

7. A sculptured gold plate D is defined by 0 ≤ x ≤ 2π and
0 ≤ y ≤ π (centimeters) and has mass density

δ(x , y) = y2 sin24x + 2 (grams per square centimeter).
If gold sells for $7 per gram, how much is the gold in the
plate worth?

8. In Exercise 7, what is the average mass density in grams
per square centimeter?

9. (a) Find the mass of the box [0, 1
2 ] × [0, 1] × [0, 2],

assuming the density to be uniform.

(b) Same as part (a), but with a mass density
δ(x , y, z) = x2 + 3y2 + z + 1.

10. Find the mass of the solid bounded by the cylinder
x2 + y2 = 2x and the cone z2 = x2 + y2 if the density
is δ =

√
x2 + y2.

11. Find the mass of the solid ball of radius 5 with density
given by

δ(x , y, z) = 2x2 + 2y2 + 2z2 + 1

assuming the center of the ball is at the origin.
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12. A solid disk of radius 9 and height 2 is placed at the
origin, so that it can be expressed by x2 + y2 = 81 and
0 ≤ z ≤ 2. If the disk has a density given by

δ(x , y, z) = 2x2 + 2y2 + 2z2 + 1,

find its mass.

13. Find the center of mass of the region bounded by
x + y + z = 2, x = 0, y = 0, and z = 0, assuming the
density to be uniform.

14. Find the center of mass of the cylinder
x2 + y2 ≤ 1, 1 ≤ z ≤ 2 if the density is
δ = (x2 + y2)z2.

15. Find the average value of sin2 πz cos2 πx over the cube
[0, 2] × [0, 4] × [0, 6].

16. Find the average value of e−z over the ball
x2 + y2 + z2 ≤ 1.

17. A solid with constant density is bounded above by the
plane z = a and below by the cone described in
spherical coordinates by φ = k, where k is a constant
0 < k < π/2. Set up an integral for its moment of
inertia about the z axis.

18. Find the moment of inertia around the y axis for the ball
x2 + y2 + z2 ≤ R2 if the mass density is a constant δ.

19. Find the gravitational potential on a mass m of a
spherical planet with mass M = 3 × 1026 kg, at a
distance of 2 × 108 m from its center.

20. Find the gravitational force exerted on a 70-kg object at
the position in Exercise 19.

21. A body W in xyz coordinates is called symmetric with
respect to a given plane if for every particle on one side
of the plane there is a particle of equal mass located at
its mirror image through the plane.

(a) Discuss the planes of symmetry for an automobile
shell.

(b) Let the plane of symmetry be the xy plane, and
denote by W + and W − the portions of W above and
below the plane, respectively. By our assumption,
the mass density δ(x , y, z) satisfies δ(x , y, −z) =
δ(x , y, z). Justify the following steps:

z ·
∫∫∫

W
δ(x , y, z) dx dy dz =

∫∫∫
W

zδ(x , y, z) dx dy dz

=
∫∫∫

W +
zδ(x , y, z) dx dy dz +

∫∫∫
W −

zδ(x , y, z) dx dy dz

=
∫∫∫

W +
zδ(x , y, z) dx dy dz +

∫∫∫
W +

−wδ(u, v, −w) du dv dw

= 0.

(c) Explain why part (b) proves that if a body is
symmetrical with respect to a plane, then its center
of mass lies in that plane.

(d) Derive this law of mechanics: If a body is symmetric
with respect to two planes, then its center of mass
lies on their line of intersection.

22. A uniform rectangular steel plate of sides a and b rotates
about its center of mass with constant angular velocity ω.

(a) The kinetic energy equals 1
2 (mass)(velocity)2.

Argue that the kinetic energy of any element of
mass δ dx dy(δ = constant) is given by
δ(ω2/2)(x2 + y2) dx dy, provided the origin (0, 0) is
placed at the center of mass of the plate.

(b) Justify the formula for kinetic energy:

K.E. =
∫∫

plate
δ
ω2

2
(x2 + y2) dx dy.

(c) Evaluate the integral, assuming that the plate is
described by the inequalities −a/2 ≤ x ≤ a/2,
−b/2 ≤ y ≤ b/2.

23. As is well known, the density of a typical planet is not
constant throughout the planet. Assume that planet
C.M.W. has a radius of 5 × 108 cm and a mass density
(in grams per cubic centimeter)

ρ(x , y, z) =

⎧⎨
⎩

3 × 104

r
, r ≥ 104 cm,

3, r ≤ 104 cm,

where r =
√

x2 + y2 + z2. Find a formula for the
gravitational potential outside C.M.W.

24. Let D be a region in the part of the xy plane with x > 0.
Assume D has uniform density, area A(D), and center of
mass (x , y). Let W be the solid obtained by rotating D
about the y axis. Show that the volume of W is given by

vol(W ) = 2πx A(D).

25. Use the previous exercise to show that if a doughnut is
obtained by rotating the circle (x − a)2 + y2 = r2 about
the y axis, then the volume of the doughnut is 2π2ar2.
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6.4 Improper Integrals [Optional]

In this section, we study improper integrals—that is, integrals in which the function
may be unbounded or the region of integration is unbounded. We shall first recall the
situation for functions of one variable.

One-Variable Improper Integrals
In the study of integrals of functions of one variable, we encounter various types of
“improper” integrals; that is, integrals of unbounded functions defined on intervals or
integrals of functions over unbounded intervals. For example,

∫ 1

0

1√
x

dx and
∫ ∞

1

dx

x2

are improper integrals. They are evaluated using a limiting process; for instance,

∫ 1

0

1√
x

dx = lim
a→0

∫ 1

a

1√
x

dx = lim
a→0

(
2
√

x
∣∣1

a

)
= lim

a→0
(2 − 2

√
a) = 2

and

∫ ∞

1

dx

x2
= lim

b→∞

∫ b

1

dx

x2
= lim

b→∞

(
− 1

x

∣∣∣∣
b

1

)
= lim

b→∞

(
1 − 1

b

)
= 1.

If, in such a limiting process, the limit does not exist (or is infinite), we say that the
integral does not exist (or that the integral diverges).

Improper Integrals in the Plane
Next, we describe three types of improper integrals of two variables over a region D.
The first two types are described in the text below, and the third type (integrals over
unbounded regions) is left to the exercises. We will evaluate all integrals using a limiting
process, as in the one-variable case.

For simplicity of exposition, we first restrict ourselves to nonnegative functions f —
that is, f (x , y) ≥ 0 for all points (x , y) ∈ D—and to y-simple regions described as the
set of (x , y) such that

a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x),

as in Figure 6.4.1.

x

y

D

y = φ2(x)

y = φ1(x)

a b

figure 6.4.1 A y-simple domain.

In the first case we wish to consider, let’s assume that f : D → R is continuous except
for points on the boundary of D. Consider, for example,

f (x , y) = 1√
1 − x2 − y2

,

where D is the unit disk D = {(x , y)|x2 + y2 ≤ 1}. Clearly, f is not defined on the
boundary of D, where x2+y2 = 1; yet it will be of practical interest to be able to evaluate∫∫

D f (x , y) dA, because this integral represents the area of the upper hemisphere of the
unit sphere in 3-space.
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x

y

a a + η b − η b

D

1

y = φ (x)2

φ (x) + δ1

φ2 (x) − δ

y = φ (x)

Dη, δ

figure 6.4.2 A shrunken domain Dη,δ for
improper integrals.

Exhausting Regions
Our basic idea will be to integrate such an f over a smaller region D′, where we know
the integral exists, and then let D′ “tend” to D; that is, “exhaust” D and see if

∫∫
D f dA

tends to some limit. With this in mind, we pick a special kind of D′, as follows.
Let η > 0 be small enough so that a + η < b – η. Let δ > 0 be small enough so that

φ1(x) + δ < φ2(x) – δ for all x , a ≤ x ≤ b (see Figure 6.4.2). If φ2(x) = φ1(x) for
some x , no such δ will exist, but we shall worry about this minor issue when it arises in
our later examples. Then the region

Dη,δ = {(x , y)|a + η ≤ x ≤ b − η and φ1(x) + δ ≤ y ≤ φ2(x) − δ}

is a subset of D, and as (η, δ) → 0, Dη,δ tends to D.

Improper Integrals as Limits
Because f is continuous and bounded on Dη,δ , the integral

∫∫
Dη,δ f dA exists. We can

now ask what happens as the region Dη,δ expands to fill the region, D—that is, as
(η, δ) → (0, 0). Provided that

lim
(η,δ)→(0,0)

∫∫
Dη,δ

f dA

exists, we say that the integral of f over D is convergent or that f is integrable over
D, and we define

∫∫
D f dx dy to be equal to this limit.

example 1 Evaluate
∫∫

D

1
3
√

xy
dA,

where D is the unit square [0, 1] × [0, 1].



Marsden-3620111 VC September 27, 2011 10:20 341

6.4 Improper Integrals [Optional] 341

s o l u t i o n D is clearly a y-simple region. Choose η > 0 and δ > 0 so that Dη,δ ⊂ D, as in
Figure 6.4.3. Then, by Fubini’s theorem:

∫∫
Dη,δ

1
3
√

xy
dA =

∫ 1−η

η

∫ 1−δ

δ

1
3
√

xy
dy dx

=
∫ 1−η

η

1
3
√

x
dx

∫ 1−δ

δ

1
3
√

y
dy

= 3

2

(
(1 − η)2/3 − η2/3

)
· 3

2

(
(1 − δ)2/3 − δ2/3

)
.

Letting (η, δ) → (0, 0), we see that

lim
(η,δ)→(0,0)

∫∫
Dη,δ

1
3
√

xy
dy dx = 3

2

3

2
= 9

4
.

▲

δ

δ

η η

y

x
1

figure 6.4.3 The slightly shrunken
unit square.

Unfortunately, it may not always be possible to evaluate such limits so directly and
simply. This is often the case in the most interesting examples, as with the surface area of
the hemisphere, mentioned earlier. It’s as if the “real world” always presents the greatest
challenges to the mathematician! So let us expand a bit on our theoretical discussion.

Improper Integrals as Limits of Iterated Integrals
Suppose f is integrable over Dη,δ . We can then apply Fubini’s theorem to obtain

∫∫
Dη,δ

f dA =
∫ b−η

a+η

∫ φ 2(x)−δ

φ1(x)+δ

f (x , y) dy dx.

Hence, if f is integrable over D,

∫∫
D

f dA = lim
(η,δ)→(0,0)

∫ b−η

a+η

∫ φ2(x)−δ

φ1(x)+δ

f (x , y) dy dx. (1)

Now F(η, δ) = ∫∫
Dη,δ

f dA is a function of two variables, η and δ, because as we
change η and δ, we get another number. Now if f is integrable, then

lim
(η,δ)→0

F(η, δ) = L

exists. It follows that the iterated limits

lim
η→0

lim
δ→0

F(η, δ) and lim
δ→0

lim
η→0

F(η, δ)

also exist and are both equal to L , which in our case is
∫∫

D f dA. Thus, the iterated limit

lim
η→0

lim
δ→0

∫ b−η

a+η

∫ φ1(x)−δ

φ1(x)+δ

f (x , y) dy dx

also exists. Conversely, if the iterated limits exist, it does not generally follow that the
limit lim(η,δ)→(0,0) F(η, δ) exists.
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For example, if it were to turn out in some way that F(η, δ) = ηδ/(η2 + δ2), then
limη→0 limδ→0 F(η, δ) = limδ→0 limη→0 F(η, δ) = 0; yet lim(η,δ)→0 F(η, δ) does not
exist, because F(η, η) = 1/2 (see Section 2.2).

In view of this, consider expression (1) again. If f is integrable, then

∫∫
D

f (x , y) dA = lim
(η,δ)→(0,0)

∫ b−η

a+η

∫ φ2(x)−δ

φ1(x)+δ

f (x , y) dy dx

= lim
η→(0)

lim
δ→0

∫ b−η

a+η

∫ φ2(x)−δ

φ1(x)+δ

f (x , y) dy dx.

Now suppose that for each x ,

lim
δ→0

∫ φ2(x)−δ

φ1(x)+δ

f (x , y) dy

exists. Denote this by
∫ φ2(x)

φ1(x) f (x , y) dy. Suppose further that

lim
η→0

∫ b−η

a+η

∫ φ2(x)

φ1(x)
f (x , y) dy

also exists. We denote this limit by
∫ b

a

∫ φ2(x)
φ1(x) f (x , y) dy dx. Then if all limits exist, all

limits must be equal. Thus, if f is integrable and the iterated improper integral exists,
then necessarily

∫∫
D

f (x , y) dA =
∫ b

a

∫ φ2(x)

φ1(x)
f (x , y) dy dx.

However, is it possible that the existence of just the iterated integrals implies the inte-
grability of f ? We turn to this important question next.

Fubini’s Theorem for Improper Integrals
For integrals, something truly remarkable happens. Unlike the case for iterated limits (as
in the counterexample considered earlier), the existence of the iterated limits does imply
the integrability of f as long as f ≥ 0. Thus, if f ≥ 0 and if

∫ b
a

∫ φ2(x)
φ1(x) f (x , y) dy dx

exists as an iterated limit, then f is integrable and

∫∫
D

f (x , y) dA =
∫ b

a

∫ φ2(x)

φ1(x)
f (x , y) dy dx.

If D is an x-simple region with the x coordinate lying between two functions ψ1 and
ψ2, and if

∫ d

c

∫ ψ2( y)

ψ1( y)
f (x , y) dx dy

exists as an improper integral, it again follows that f is integrable and

∫∫
D

f (x , y) dA =
∫ d

c

∫ ψ2( y)

ψ1( y)
f (x , y) dx dy.
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All these results, which are the improper analogues of Theorems 4 and 4′ in Section 5.3,
are known as Fubini’s theorem for improper integrals, which we formally state.

Theorem 3 Fubini’s Theorem Let D be an elementary region in the plane
and f ≥ 0 a function continuous except for points possibly on the boundary of D.
If either of the integrals

∫∫
D

f (x , y) dA,

∫ b

a

∫ φ2(x)

φ1(x)
f (x , y) dy dx, for y-simple regions

∫ d

c

∫ ψ2(y)

ψ1( y)
f (x , y) dx dy for x-simple regions

exist as improper integrals, f is integrable and they are all equal.

The proof of this involves advanced concepts of analysis, so we omit it here. This
result can be quite useful in calculation, as the next example shows.

example 2 Let f (x , y) = 1/
√

1 − x2 − y2. Show that f is integrable and that
∫∫

D f (x , y) dA =
2π , half the surface area of the unit sphere.

solut ion For −1 < x < 1, we have

∫ √
1−x2

−
√

1−x2

dy√
1 − x2 − y2

= lim
δ→0

∫ √
1+x2−δ

−
√

1−x2+δ

dy√
1 − x2 − y2

= lim
δ→0

sin−1

(
y√

1 − x2

) ∣∣∣∣
√

1−x2−δ

−
√

1−x2+δ

= lim
δ→0

{
sin−1

(
1 − δ√

1 − x2

)
− sin−1

(
−1 + δ√

1 − x2

)}

= sin−1(1) − sin−1(−1) = π

2
− (−π )

2
= π.

Clearly,

lim
η→0

∫ 1−η

−1+η

∫ √
1−x2

−
√

1−x2

dy dx√
1 − x2 − y2

= lim
η→0

∫ 1−η

−1+η

πdx = lim
η→0

π(2 − 2η) = 2π.

Thus, f is integrable. To see why this theorem is so useful, try to show directly from
the definition that f is integrable. It is not easy to do so! ▲

example 3 Let f (x , y) = 1/(x − y) and let D be the set of (x , y) satisfying 0 ≤ x ≤ 1 and
0 ≤ y ≤ x . Show that f is not integrable over D.

solut ion Because the denominator of f is zero on the line y = x , f is unbounded on part of the
boundary of D. Let 0 < η < 1 and 0 < δ < η, and let Dη,δ be the set of (x , y) with
η ≤ x ≤ 1 − η and δ ≤ y ≤ x − δ (Figure 6.4.4).
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Here the region D is y-simple with φ1(x) = 0, φ2(x) = x , and φ1(0) = φ2(0). To ensure
that Dη,δ ⊂ D and is depicted in the figure, we must choose δ a bit more carefully. A
little geometry shows that we should choose 2δ ≤ η. Consider

∫∫
Dη,δ

f dA =
∫ 1−η

η

∫ x−δ

δ

1

x − y
dy dx

=
∫ 1−η

η

[−log (x − y)]|x−δ
y=δ dx

=
∫ 1−η

η

[−log (δ) + log (x − δ)] dx

= [− log δ]
∫ 1−η

η

dx +
∫ 1−η

η

log (x − δ) dx

= −(1 − 2η) log δ + [(x − δ) log (x − δ) − (x − δ)]|1−η
η .

In the last step, we used the fact that
∫

log u du = u log u −u. Continuing the preceding
set of qualities, we have∫∫

Dη,δ

f dA = −(1 − 2η) log δ + (1 − η − δ) log (1 − η − δ)

−1(1 − η − δ) − (η − δ) log (η − δ) + (η − δ).

As (η, δ) → (0, 0), the second term converges to 1 log 1 = 0, and the third and fifth
terms converge to −1 and 0, respectively. Let v = η−δ. Because v log v → 0 as v → 0
(a limit established by using L’Hôpital’s rule from calculus3), we see that the fourth term
goes to zero as (η, δ) → (0, 0). It is the first term that will give us trouble. Now:

−(1 − 2η) log δ = − log δ + 2η log δ, (2)

and it is not hard to see that this does not converge as (η, δ) → (0, 0). For example,
let η = 2δ; then expression (2) becomes − log δ + 4δ log δ. As before, 4δ log δ → 0
as δ → 0, but − log δ → +∞ as δ → 0, which shows that expression (2) does not
converge. Hence, lim(η,δ)→(0,0)

∫∫
Dη,δ

f dA does not exist and so f is not integrable. ▲

x

y

y = x

η 1

η

η,δD

δ

δ

1

figure 6.4.4 The shrunken
domain Dη,δ for a triangular
domain D.

Functions Unbounded at Isolated Points
We now consider nonnegative functions f that become “infinite” or are undefined at
isolated points in an x-simple or y-simple region D. For example, consider the function
f (x , y) = 1/

√
x2 + y2 on the unit disk D = {(x , y)|x2 + y2 ≤ 1}. Again, f ≥ 0, but

f is unbounded and is not defined at the origin.
Let (x0, y0) be a point of a general region D where a nonnegative function f is

undefined. Further, let Dδ = Dδ(x0, y0) be the disk of radius δ centered at (x0, y0)
and let D\Dδ denote the region D with Dδ removed. Assume that f is continuous at
every point of D except (x0, y0). Then

∫∫
D\Dδ

f dA is defined. We say that
∫∫

D f dA is
convergent, or that f is integrable over D if

lim
δ→0

∫∫
D\Dδ

f dA

exists.

3L’ Hôpital’s rule was discovered by Bernoulli and was reported in L’Hôpital’s textbook.
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example 4 Show that f (x , y) = 1/
√

x2 + y2 is integrable over the unit disk D and evaluate∫∫
D f dA.

solut ion Let Dδ be the disk of radius δ centered at the origin. Then f is continuous everywhere on
D except at (0, 0). Thus,

∫∫
D\Dδ

f dA exists. To evaluate this integral, we change variables
to polar coordinates, x = r cos θ , y = r sin θ . Then f (r cos θ , r sin θ ) = 1/r , and

∫∫
D\Dδ

f dA =
∫ 1

δ

∫ 2π

0

1

r
f dθ dr =

∫ 1

δ

∫ 2π

0
dθ dr = 2π(1 − δ).

Thus,
∫∫

D
f dA = lim

δ→0

∫∫
D\Dδ

f dA = 2π. ▲

More generally, we can, in an analogous manner, define the integral of nonnegative
functions f that are continuous except at a finite number of points in D. We can also
combine both types of improper integrals; that is, we may consider functions that are
continuous except at a finite number of points on D or at points on the boundary of D,
and define

∫∫
D f dA appropriately.

If f takes both positive and negative values, we can use a more advanced integration
theory, called the Lebesgue integral, to generalize the notion of convergent integral

∫∫
D

f dA. Using this theory, it is possible to show that if
∫∫

D f dA exists, it can then be
evaluated as an iterated integral. This latter fact is also known as Fubini’s theorem.

Unbounded Regions
As was mentioned previously, we will leave consideration of unbounded regions to the
exercise section. However, we must point out that we have already addressed the main
idea in Example 5 of Section 6.2 on the Gaussian integral. In that example, we integrated
exp(−x2 − y2) over all of R2 by integrating first over a disk of radius a and then letting
a → ∞.

exercises

In Exercises 1 to 4, evaluate the following integrals if they exist (discuss how you define the integral if it was not given in the
text).

1.
∫∫

D

1√
xy dA, where D = [0, 1] × [0, 1]

2.
∫∫

D

1√|x − y| dx dy, where D = {(x , y) | 0 ≤ x ≤ 1,

0 ≤ y ≤ 1, y ≤ x}

3.
∫∫

D
( y/x) dx dy, where D is bounded by x = 1, x = y,

and x = 2y

4.
∫ 1

0

∫ ev

0
log x dx dy

5. Let D = [0, 1] × [0, 1]. Let 0 < α < 1 and 0 < β < 1.
Evaluate:

∫∫
D

dx dy

xα yβ
.

6. Let D = [1, ∞) × [1, ∞]. Let 1 < γ and 1 < ρ.
Evaluate:

∫∫
D

dx dy

xγ yρ
.
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7. (a) Evaluate ∫∫
D

dA

(x2 + y2)2/3 ,

where D is the unit disk in R2.

(b) Determine the real numbers λ for which the integral∫∫
D

dA

(x2 + y2)λ

is convergent, where again D is the unit disk.

8. (a) Discuss how you would define
∫∫

D f dA if D is an
unbounded region—for example, the set of (x , y)
such that a ≤ x < ∞ and φ1(x) ≤ y ≤ φ2(x),
where φ1 ≤ φ2 are given (Figure 6.4.5).

(b) Evaluate
∫∫

D xye−(x2+y2)dx dy if x ≥ 0,
0 ≤ y ≤ 1.

x

y

a

D

y = φ2(x)

y = φ1(x)

figure 6.4.5 An unbounded region D.

9. Using Exercise 8, integrate e−xy for x ≥ 0, 1 ≤ y ≤ 2
in two ways. Assuming Fubini’s theorem can be used,
show that

∫ ∞

0

e−x − e−2x

x
dx = log 2.

10. Show that the integral

∫ 1

0

∫ a

0
(x/

√
a2 − y2) dy dx

exists, and compute its value.

11. Discuss whether the integral

∫∫
D

x + y

x2 + 2xy + y2 dx dy

exists where D = [0, 1] × [0, 1]. If it exists, compute its
value.

12. We can also consider improper integrals of functions
that fail to be continuous on entire curves lying in some

region D. For example, by breaking D = [0, 1] × [0, 1]
into two regions, define and then discuss the
convergence of the integral

∫∫
D

1√|x − y|dx dy.

13. Let W be the first octant of the ball x2 + y2 + z2 ≤ a2,
where x ≥ 0, y ≥ 0, z ≥ 0. Evaluate the improper
integral

∫∫∫
W

(x2 + y2 + z2)1/4√
z + (x2 + y2 + z2)2

dx dy dz

by changing variables.

14. Let f be a nonnegative function that may be unbounded
and discontinuous on the boundary of an elementary
region D. Let g be a similar function such that
f (x , y) ≤ g(x , y) whenever both are defined. Suppose∫∫

D g(x , y) dA exists. Argue informally that this
implies the existence of

∫∫
D f (x , y) dA.

15. Use Exercise 14 to show that
∫∫

D

sin2(x − y)√
1 − x2 − y2

dy dx

exists where D is the unit disk x2 + y2 ≤ 1.

16. Let f be as in Exercise 14 and let g be a function such
that 0 ≤ g(x , y) ≤ f (x , y) whenever both are defined.
Suppose that

∫∫
D g(x , y) dA does not exist. Argue

informally that
∫∫

D f (x , y) dA cannot exist.

17. Use Exercise 16 to show that

∫∫
D

ex2+y2

x − y
dy dx

does not exist, where D is the set of (x , y) with
0 ≤ x ≤ 1 and 0 ≤ y ≤ x .

18. Let D be the unbounded region defined as the set of
(x , y, z) with x2 + y2 + z2 ≥ 1. By making a change of
variables, evaluate the improper integral

∫∫∫
D

dx dy dz

(x2 + y2 + z2)2 .

19. Evaluate

∫ 1

0

∫ y

0

x

y
dx dy and

∫ 1

0

∫ 1

x

x

y
dy dx.

Does Fubini’s theorem apply?
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20. In Exercise 17 of Section 5.2 we showed that

∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2 dy dx 	=
∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2 dx dy.

Thus, Fubini’s theorem does not hold here, even though
the iterated improper integrals both exist. What went
wrong?

21. If 0 ≤ f (x , y) ≤ g(x , y) for all (x , y) ∈ D, and the
improper integral of g

∫∫

D

g(x , y) dx dy

exists, then
∫∫

D f (x , y) dx dy also exists. Use this fact
and exercises 5 and 6 to argue that if 0 < α, β < 1 and
1 < γ , ρ, then

∫∫

D

dx dy

xα yβ + xγ yρ

exists, where D = [0, ∞) × [0, ∞).
[HINT: Write D = D1 ∪ D2 and apply Exercise 14 to
each Di separately.]

review exercises for chapter 6

1. (a) Find a linear transformation taking the square
S = [0, 1] × [0, 1] to the parallelogram P with
vertices (0, 0), (2, 0), (1, 2), (3, 2).

(b) Write down a change of variables formula
appropriate to the transformation you found in
part (a).

2. (a) Find the image of the square [0, 1] × [0, 1] under the
transformation T (x , y) = (2x , x + 3y).

(b) Write down a change of variables formula
appropriate to the transformation and the region you
found in part (a).

3. Let B be the region in the first quadrant bounded by the
curves xy = 1, xy = 3, x2 − y2 = 1, and x2 − y2 = 4.
Evaluate

∫∫
B (x2 + y2) dx dy using the change of

variables u = x2 − y2, v = xy.

4. In parts (a) to (d), make the indicated change of
variables. (Do not evaluate.)

(a)

∫ 1

0

∫ 1

−1

∫ √
(1−y2)

−
√

(1−y2)
(x2 + y2)1/2dx dy dz,

cylindrical coordinates

(b)

∫ 1

−1

∫ √
(1−y2)

−
√

(1−y2)

∫ √
(4−x2−y2)

−
√

(4−x2−y2)
xyz dz dx dy,

cylindrical coordinates

(c)

∫ √
2

−√
2

∫ √
(2−y2)

−
√

(2−y2)

∫ √
(4−x2−y2)

√
(x2+y2)

z2dz dx dy,

spherical coordinates

(d)

∫ 1

0

∫ π/4

0

∫ 2π

0
ρ3 sin 2φ dθ dφ dρ, rectangular

coordinates

5. Find the volume inside the surfaces x2 + y2 = z and
x2 + y2 + z2 = 2.

6. Find the volume enclosed by the cone x2 + y2 = z2 and
the plane 2z − y − 2 = 0.

7. A cylindrical hole of diameter 1 is bored through a
sphere of radius 2. Assuming that the axis of the cylinder
passes through the center of the sphere, find the volume
of the solid that remains.

8. Let C1 and C2 be two cylinders of infinite extent, of
diameter 2, and with axes on the x and y axes,
respectively. Find the volume of their intersection,
C1 ∩ C2.

9. Find the volume bounded by x/a + y/b + z/c = 1 and
the coordinate planes.

10. Find the volume determined by z ≤ 6 − x2 − y2 and
z ≥

√
x2 + y2.

11. The tetrahedron defined by
x ≥ 0, y ≥ 0, z ≥ 0, x + y + z ≤ 1 is to be sliced into n
segments of equal volume by planes parallel to the plane
x + y + z = 1. Where should the slices be made?

12. Let E be the solid ellipsoid E = {(x , y, z) | (x2/a2)+
( y2/b2) + (z2/c2) ≤ 1}, where a > 0, b > 0,
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and c > 0. Evaluate∫∫∫
xyz dx dy dz

(a) over the whole ellipsoid; and

(b) over that part of it in the first quadrant:

x ≥ 0, y ≥ 0, and z ≥ 0,
x2

a2 + y2

b2 + z2

c2 ≤ 1.

13. Find the volume of the “ice cream cone” defined by the
inequalities x2 + y2 ≤ 1

5 z2, and 0 ≤ z ≤
5 +

√
5 − x2 − y2.

14. Let ρ , θ , φ be spherical coordinates in R3 and suppose
that a surface surrounding the origin is described by a
continuous positive function ρ = f (θ , φ). Show that the
volume enclosed by the surface is

V = 1

3

∫ 2π

0

∫ π

0
[ f (θ , φ)]3 sin φ dφ dθ.

15. Using an appropriate change of variables, evaluate
∫∫

B
exp [( y − x)/( y + x)] dx dy,

where B is the interior of the triangle with vertices at
(0, 0), (0, 1), and (1, 0).

16. Suppose the density of a solid of radius R is given by
(1 + d3)−1, where d is the distance to the center of the
sphere. Find the total mass of the sphere.

17. The density of the material of a spherical shell whose
inner radius is 1 m and whose outer radius is 2 m is
0.4d2 g/cm3, where d is the distance to the center of the
sphere in meters. Find the total mass of the shell.

18. If the shell in Exercise 17 were dropped into a large tank
of pure water, would it float? What if the shell leaked?
(Assume that the density of water is exactly 1 g/cm3.)

19. The temperature at points in the cube C = {(x , y, z) | −
1 ≤ x ≤ 1, −1 ≤ y ≤ 1, and −1 ≤ z ≤ 1} is 32d2,
where d is the distance to the origin.

(a) What is the average temperature?

(b) At what points of the cube is the temperature equal
to the average temperature?

20. Use cylindrical coordinates to find the center of mass of
the region defined by

y2 + z2 ≤ 1

4
, (x − 1)2 + y2 + z2 ≤ 1, x ≥ 1.

21. Find the center of mass of the solid hemisphere

V = {(x , y, z) | x2 + y2 + z2 ≤ a2 and z ≥ 0},

if the density is constant.

22. Evaluate
∫∫

B e−x2−y2
dx dy, where B consists of those

(x , y) satisfying x2 + y2 ≤ 1 and y ≤ 0.

23. Evaluate

∫∫∫
S

dx dy dz

(x2 + y2 + z2)3/2 ,

where S is the solid bounded by the spheres
x2 + y2 + z2 = a2 and x2 + y2 + z2 = b2, where
a > b > 0.

24. Evaluate

∫∫∫
D

(x2 + y2 + z2)xyz dx dy dz over each of

the following regions.

(a) The sphere D = {(x , y, z) | x2 + y2 + z2 ≤ R2}
(b) The hemisphere D = {(x , y, z) | x2+

y2 + z2 ≤ R2 and z ≥ 0}
(c) The octant D = {(x , y, z) | x ≥ 0, y ≥ 0, z ≥ 0,

and z2 + y2 + z2 ≤ R2}

25. Let C be the cone-shaped region
{(x , y, z) |

√
x2 + y2 ≤ z ≤ 1} in R3 and evaluate the

integral

∫∫∫
C

(1 +
√

x2 + y2) dx dy dz.

26. Find

∫∫∫
R3

f (x , y, z) dx dy dz, where

f (x , y, z) = exp [−(x2 + y2 + z2)3/2].

27. The flexural rigidity EI of a uniform beam is the product
of its Young’s modulus of elasticity E and the moment of
inertia I of the cross section of the beam with respect to
a horizontal line l passing through the center of gravity
of this cross section. Here

I =
∫∫

R
[d(x , y)]2dx dy,

where d(x , y) = the distance from (x , y) to l and R =
the cross section of the beam being considered.

(a) Assume that the cross section R is the rectangle
−1 ≤ x ≤ 1, −1 ≤ y ≤ 2, and l is the line y = 1/2.
Find I .

(b) Assume the cross section R is a circle of radius 4
and l is the x axis. Find I , using polar coordinates.
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28. Find,
∫∫∫

R3 f (x , y, z) dx dy dz, where

f (x , y, z) = 1

[1 + (x2 + y2 + z2)3/2]3/2 .

29. Suppose D is the unbounded region of R2 given by the
set of (x , y) with 0 ≤ x < ∞, 0 ≤ y ≤ x . Let
f (x , y) = x−3/2ey−x . Does the improper integral∫∫

D f (x , y) dx dy exist?

30. If the world were two-dimensional, the laws of physics
would predict that the gravitational potential of a mass
point is proportional to the logarithm of the distance
from the point. Using polar coordinates, write an integral
giving the gravitational potential of a disk of constant
density.

31. (a) Evaluate the improper integral

∫ ∞

0

∫ y

0
xe−y3

dx dy.

(b) Evaluate

∫∫
B

(x4 + 2x2 y2 + y4) dx dy,

where B is the portion of the disk of radius 2
[centered at (0, 0) in the first quadrant].

32. Let f be a nonnegative function on an x-simple or a
y-simple region D ⊂ R2 and that is continuous except
for points on the boundary of D and at most finitely
many points interior to D. Give a suitable definition of∫∫

D f dA.

33. Evaluate
∫∫

R2 f (x , y) dx dy, where f (x , y) =
1/(1 + x2 + y2)3/2. (HINT: You may assume that
changing variables and Fubini’s theorem are valid for
improper integrals.)
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7

Integrals Over Paths
and Surfaces

I hold in fact: (1) That small portions of space are of a nature analogous to little hills on a

surface which is on the average flat. (2) That this property of being curved or distorted is

continually passed on from one portion of space to another after the manner of a wave.

(3) That this variation of curvature of space is really what happens in that phenomenon

which we call the motion of matter whether ponderable or ethereal. (4) That in this physical

world nothing else takes place but this variation, subject, possibly, to the law of continuity.

---W. K. Clifford (1870)

Everyone who is seriously involved in the pursuit of science becomes convinced that a spirit

is manifest in the laws of the universe, one that is vastly superior to that of man.

---Albert Einstein

In Chapter 5 we studied integration over regions in R2 and R3. In this

chapter we study integration over paths and surfaces. This is basic to an

understanding of Chapter 8, in which we discuss the basic relation be-

tween vector differential calculus (Chapter 4) and vector integral calcu-

lus (this chapter), a relation that generalizes the fundamental theorem

of calculus to several variables. This generalization is summarized in the

theorems of Green, Gauss, and Stokes.

7.1 The Path Integral

This section introduces the concept of a path integral; this is one of the several ways in
which integrals of functions of one variable can be generalized to functions of several
variables. Besides those in Chapter 5, there are other generalizations, to be discussed in
later sections.

Suppose we are given a scalar function f : R3 → R, so that f sends points in R3 to
real numbers. It will be useful to define the integral of such a function f along a path

351
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c: I = [a, b] → R3, where c(t) = (x(t), y(t), z(t)). To relate this notion to something
tangible, suppose that the image of c represents a wire. We can let f (x , y, z) denote
the mass density at (x , y, z) and the integral of f will be the total mass of the wire.
By letting f (x , y, z) indicate temperature, we can also use the integral to determine
the average temperature along the wire. We first give the formal definition of the path
integral and then, after the following example, further motivate it.

Definition Path Integrals The path integral, or the integral of f (x , y, z)
along the path c, is defined when c: I = [a, b] → R3 is of class C1 and when
the composite function t �→ f (x(t), y(t), z(t)) is continuous on I . We define this
integral by the equation

∫
c

f ds =
∫ b

a
f (x(t), y(t), z(t))‖c′(t)‖ dt.

Sometimes
∫

c f ds is denoted

∫
c

f (x , y, z) ds

or
∫ b

a
f (c(t))‖c′(t)‖ dt.

If c(t) is only piecewise C1 or f (c(t)) is piecewise continuous, we define∫
c f ds by breaking [a, b] into pieces over which f (c(t))‖c′(t)‖ is continuous,

and summing the integrals over the pieces.

When f = 1, we recover the definition of the arc length of c. Also note that f need
only be defined on the image curve C of c and not necessarily on the whole space in
order for the preceding definition to make sense.

example 1 Let c be the helix c: [0, 2π ] → R3, t �→ (cos t , sin t , t) (see Figure 2.4.9), and let
f (x , y, z) = x2 + y2 + z2. Evaluate the integral

∫
c f (x , y, z) ds.

solut ion First we compute ‖c′(t)‖:

‖c′(t)‖ =
√[

d(cos t)

dt

]2

+
[

d(sin t)

dt

]2

+
[

dt

dt

]2

=
√

sin2 t + cos2 t + 1 =
√

2.

Next, we substitute for x , y, and z in terms of t to obtain

f (x , y, z) = x2 + y2 + z2 = cos2 t + sin2 t + t2 = 1 + t2

along c. Inserting this information into the definition of the path integral yields

∫
c

f (x , y, z) ds =
∫ 2π

0
(1 + t2)

√
2 dt =

√
2

[
t + t3

3

]2π

0

= 2
√

2π

3
(3 + 4π2).

▲
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figure 7.1.1 Breaking c into
smaller ci .

a = t0 tN  = bt1 t2 ti

c

c (t0)

c (t1)

c (ti)

c (ti + 1)

c(tN)

x

y

z

ti + 1

ci

To motivate the definition of the path integral, we shall consider “Riemann-like” sums
SN in the same general way we did to define arc length in Section 4.2. For simplicity,
let c be of class C1 on I . Subdivide the interval I = [a, b] by means of a partition

a = t0 < t1 < · · · < tN = b.

This leads to a decomposition of c into paths ci (Figure 7.1.1) defined on [ti , ti+1] for
0 ≤ i ≤ N − 1. Denote the arc length of ci by �si ; thus,

�si =
∫ ti+1

ti

‖c′(t)‖ dt.

When N is large, the arc length �si is small and f (x , y, z) is approximately constant
for points on ci . We consider the sums

SN =
N−1∑
i=0

f (xi , yi , zi ) �si ,

where (xi , yi , zi ) = c(t) for some t ∈ [ti , ti+1]. By the mean-value theorem we know
that �si = ‖c′(t∗

i )‖�ti , where ti ≤ t∗
i ≤ ti+1 and �ti = ti+1 − ti . From the theory of

Riemann sums, it can be shown that

limit
N→∞

SN = limit
N→∞

N−1∑
i=0

f (xi , yi , zi )‖c′(t∗
i )‖�ti =

∫
I

f (x(t), y(t), z(t))‖c′(t)‖ dt

=
∫

c
f (x , y, z) ds.

The Path Integral for Planar Curves
An important special case of the path integral occurs when the path c describes a plane
curve. Suppose that all points c(t) lie in the xy plane and f is a real-valued function of
two variables. The path integral of f along c is

∫
c

f (x , y) ds =
∫ b

a
f (x(t), y(t))

√
x ′(t)2 + y′(t)2 dt.
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f (x (t), y(t))

c(t) = (x (t), y(t))

y

x

z

figure 7.1.2 The path integral as the area of
a fence.

When f (x , y) ≥ 0, this integral has a geometric interpretation as the “area of a fence.”
We can construct a “fence” with base the image of c and with height f (x , y) at (x , y)
(Figure 7.1.2). If c moves only once along the image of c, the integral

∫
c f (x , y) ds

represents the area of a side of this fence. Readers should try to justify this interpretation
for themselves, using an argument like the one used to justify the arc-length formula.

example 2 Tom Sawyer’s aunt has asked him to whitewash both sides of the old fence shown in
Figure 7.1.3. Tom estimates that for each 25 ft2 of whitewashing he lets someone do for
him, the willing victim will pay 5 cents. How much can Tom hope to earn, assuming
his aunt will provide whitewash free of charge?

c: t     (30 cos3 t, 30 sin3 tt )

f (x , y) = 1 +

z

x

y
3

y

figure 7.1.3 Tom Sawyer’s fence.

solut ion From Figure 7.1.3, the base of the fence in the first quadrant is the path c: [0, π/2] →
R2, t �→ (30 cos3 t , 30 sin3 t), and the height of the fence at (x , y) is f (x , y) = 1+ y/3.
The area of one side of the half of the fence is equal to the integral

∫
c f (x , y) ds =∫

c(1 + y/3) ds. Because c′(t) = (−90 cos2 t sin t , 90 sin2 t cos t), we have ‖c′(t)‖ =
90 sin t cos t . Thus, the integral is

∫
c

(
1 + y

3

)
ds =

∫ π/2

0

(
1 + 30 sin3 t

3

)
90 sin t cos t dt

= 90
∫ π/2

0
(sin t + 10 sin4 t) cos t dt

= 90

[
sin2 t

2
+ 2 sin5 t

]π/2

0

= 90

(
1

2
+ 2

)
= 225,
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which is the area in the first quadrant. Hence, the area of one side of the fence is 450 ft2.
Because both sides are to be whitewashed, we must multiply by 2 to find the total area,
which is 900 ft2. Dividing by 25 and then multiplying by 5, we find that Tom could
realize as much as $1.80 for the job. ▲

This concludes our study of integration of scalar functions over paths. In the next
section we shall turn our attention to the integration of vector fields over paths, and we
shall see many further applications of the path integral in Chapter 8, when we study
vector analysis.

Supplement to Section 7.1: The Total Curvature of a Curve

Exercises 16, 17, and 20–23 of Section 4.2 described the notions of curvature κ and tor-
sion τ of a smooth curve C in space. If c: [a, b] → C ⊂R3 is a unit-speed parametrization
of C , so that ‖c′(t)‖ = 1, then the curvature κ( p) at p ∈ C is defined by κ( p) = ‖c′′(t)‖,
where p = c(t). A result of differential geometry is that two unit-speed curves with
the same curvature and torsion can be obtained from one another by a rigid rotation,
translation, or reflection.

The curvature κ: C → R is a real-valued function on the set C , so we define the
total curvature as its path integral over C :

∫
C κ ds. There are some surprising facts that

mathematicians have been able to prove about the total curvature. For one thing, if C is
a closed [that is, c(a) = c(b)] planar curve, then

∫
C

κ ds ≥ 2π

and equals 2π only when C is a circle. If C is a closed space curve with

∫
C

κ ds ≤ 4π,

then C is “unknotted”; that is, C can be continuously deformed (without ever intersecting
itself ) into a planar circle. Therefore, for knotted curves,

∫
C

κ ds > 4π.

See Figure 7.1.4.

figure 7.1.4 A knotted curve in R3.
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The formal statement of this fact is known as the Fary–Milnor theorem. Legend
has it that John Milnor, a contemporary of John Nash’s1 at Princeton University, was
asleep in a math class as the professor wrote three unsolved knot theory problems on the
blackboard. At the end of the class, Milnor (still an undergraduate) woke up and, thinking
the blackboard problems were assigned as homework, quickly wrote them down. The
following week he turned in the solution to all three problems—one of which was a proof
of the Fary–Milnor theorem! Some years later, he was appointed a professor at Princeton,
and in 1962 he was awarded (albeit for other work) a Fields medal, mathematics’ highest
honor, generally regarded as the mathematical Nobel Prize.

exercises

In Exercises 1 to 4, find an appropriate parametrization for the given piecewise-smooth curve in R2, with the implied
orientation.

1. The curve C , which goes along the circle of radius 3,
from the point (3, 0) to the point (−3, 0), and then in a
straight line along the x-axis back to (3, 0)

2. The curve C , which goes along y = x2 from the
point (0, 0) to the point (2, 4), then in a straight line
from (2, 4) to (0, 4), and then along the y-axis back
to (0, 0)

3. The curve C , which goes along y = sin x from the point
(0, 0) to the point (π, 0), and then along the x-axis back
to (0, 0)

4. The closed curve C described by the ellipse

(x − 2)2

4
+ (y − 3)2

9
= 1

oriented counterclockwise

In Exercises 5 to 8, find an appropriate parametrization for the given piecewise-smooth curve in R3.

5. The intersection of the plane z = 3 with the elliptical
cylinder

x2

9
+ y2

16
= 1

6. The triangle formed by traveling from the point (1, 2, 3)
to (0, −2, 1), to (6, 4, 2), and back to (1, 2, 3)

7. The intersection of the surfaces y = x and z = x3, from
the point (−3, −3, 9) to (2, 2, 4)

8. The intersection of the cylinder y2 + z2 = 1 and the
plane z = x

9. Let f (x , y, z) = y and c(t) = (0, 0, t), 0 ≤ t ≤ 1.
Prove that

∫
c f ds = 0.

10. Evaluate the following path integrals
∫

c f (x , y, z) ds,
where

(a) f (x , y, z) = x + y + z and
c: t �→ (sin t , cos t , t), t ∈ [0, 2π ]

(b) f (x , y, z) = cos z, c as in part (a)

11. Evaluate the following path integrals
∫

c f (x , y, z) ds,
where

(a) f (x , y, z) = exp
√

z, and
c: t �→ (1, 2, t2), t ∈ [0, 1]

(b) f (x , y, z) = yz, and c: t �→ (t , 3t , 2t),
t ∈ [1, 3]

12. Evaluate the integral of f (x , y, z) along the path c,
where

(a) f (x , y, z) = x cos z, c: t �→ t i + t2j, t ∈ [0, 1]

(b) f (x , y, z) = (x + y)/( y + z), and
c: t �→ (

t , 2
3 t3/2, t

)
, t ∈ [1, 2]

13. Let f : R3\{xz plane} → R be defined by
f (x , y, z) = 1/y3. Evaluate

∫
c f (x , y, z) ds, where

c: [1, e] → R3 is given by c(t) = (log t)i + tj + 2k.

1John Nash is the subject of Sylvia Nasar’s best-selling biography, A Beautiful Mind, a fictionalized version of which was made into a movie
in 2001.
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14. (a) Show that the path integral of f (x , y) along a path
given in polar coordinates by r = r (θ ),
θ1 ≤ θ ≤ θ2, is

∫ θ2

θ1

f (r cos θ , r sin θ )

√
r2 +

( dr

dθ

)2
dθ.

(b) Compute the arc length of the path
r = 1 + cos θ , 0 ≤ θ ≤ 2π .

15. Let f (x , y) = 2x − y, and consider the path
x = t4, y = t4, −1 ≤ t ≤ 1.

(a) Compute the integral of f along this path and
interpret the answer geometrically.

(b) Evaluate the arc-length function s(t) and redo
part (a) in terms of s (you may wish to consult
Exercise 2, Section 4.2).

Exercises 16 to 19 are concerned with the application of the path integral to the problem of defining the average value of a
scalar function along a path. Define the number

∫
c f (x , y, z) ds

l(c)

to be the average value of f along c. Here l(c) is the length of the path:

l(c) =
∫

c
‖c′(t)‖ dt.

(This is analogous to the average of a function over a region defined in Section 6.3.)

16. (a) Justify the formula [
∫

c f (x , y, z) ds]/ l(c) for the
average value of f along c using Riemann sums.

(b) Show that the average value of f along c in

Example 1 is (1 + 4
3 π2).

(c) In Exercise 10(a) and (b) above, find the average
value of f over the given curves.

17. Find the average y coordinate of the points on the
semicircle parametrized by c: [0, π ] → R3,
θ �→ (0, a sin θ , a cos θ ); a > 0.

18. Suppose the semicircle in Exercise 17 is made of a wire
with a uniform density of 2 grams per unit length.

(a) What is the total mass of the wire?

(b) Where is the center of mass of this configuration of
wire? (Consult Section 6.3.)

19. Let c be the path given by c(t) = (t2, t , 3) for t ∈ [0, 1].

(a) Find l(c), the length of the path.

(b) Find the average y coordinate along the path c.

20. Show that the path integral of a function f (x , y) over a
path C given by the graph of y = g(x), a ≤ x ≤ b is
given by:

∫
C

f ds =
∫ b

a
f (x , g(x))

√
1 + [g′(x)]2 dx

Conclude that if g : [a, b] → R is piecewise
continuously differentiable, then the length of the graph

of g on [a, b] is given by:

∫
C

f ds =
∫ b

a

√
1 + g′(x)2 dx.

21. If g: [a, b] → R is piecewise continuously
differentiable, let the length of the graph of g on [a, b]
be defined as the length of the path t �→ (t , g(t)) for
t ∈ [a, b]. Show that the length of the graph of g on
[a, b] is

∫ b

a

√
1 + [g′(x)]2 dx.

22. Use Exercise 21 to find the length of the graph of
y = log x from x = 1 to x = 2.

23. Use Exercise 20 to evaluate the path integral of
f (x , y) = y over the graph of the semicircle
y = √

1 − x2, −1 ≤ x ≤ 1.

24. Compute the path integral of f (x , y) = y2 over the
graph y = ex , 0 ≤ x ≤ 1.

25. Compute the path integral of f (x , y, z) = xyz over the
path c(t) = (cos t , sin t , t), 0 ≤ t ≤ π

2 .

26. Find the mass of a wire formed by the intersection of the
sphere x2 + y2 + z2 = 1 and the plane x + y + z = 0 if
the density at (x , y, z) is given by ρ(x , y, z) = x2 grams
per unit length of wire.
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27. Evaluate
∫

c f ds, where f (x , y, z) = z and
c(t) = (t cos t , t sin t , t) for 0 ≤ t ≤ t0.

28. Write the following limit as a path integral of
f (x , y, z) = xy over some path c on [0, 1] and evaluate:

limit
N→∞

N−1∑
i=1

t2
i

(
t2
i+1 − t2

i

)
,

where t1, . . . , tN is a partition of [0, 1].

29. Consider paths that connect the points A = (0, 1) and
B = (1, 0) in the xy plane, as in Figure 7.1.5.2

x

y

Circular path

Path

(0,1)

(1,0)

A

B

figure 7.1.5 A curve joining the points A and B .

Galileo contemplated the following question: Does a
bead falling under the influence of gravity from a point
A to a point B along a curve do so in the least possible
time if that curve is a circular arc? For any given path,
the time of transit T is a path integral

T =
∫

dt

v
,

where the bead’s velocity is v = √
2gy, where g is the

gravitational constant. In 1697, Johann Bernoulli
challenged the mathematical world to find the path in
which the bead would roll from A to B in the least time.
This solution would determine whether Galileo’s
considerations had been correct.

(a) Calculate T for the straight-line path y = 1 − x .

(b) Write a formula for T for Galileo’s circular path,
given by (x − 1)2 + ( y − 1)2 = 1.

Incidentally, Newton was the first to send his solution
[which turned out to be a cycloid—the same curve
(inverted) that we studied in Section 2.4, Example 4],
but he did so anonymously. Bernoulli was not fooled,
however. When he received the solution, he immediately
knew its author, exclaiming, “I know the Lion from his
paw.” While the solution of this problem is a cycloid, it
is known in the literature as the brachistrochrone. This
was the beginning of the important field called the
calculus of variations.

7.2 Line Integrals

We now consider the problem of integrating a vector field along a path. We will begin
by considering the notion of work to motivate the general definition.

Work Done by Force Fields
If F is a force field in space, then a test particle (for example, a small unit charge in an
electric force field or a unit mass in a gravitational field) will experience the force F.
Suppose the particle moves along the image of a path c while being acted upon by F. A
fundamental concept is the work done by F on the particle as it traces out the path c. If
c is a straight-line displacement given by the vector d and if F is a constant force, then
the work done by F in moving the particle along the path is the dot product F · d:

F · d = (magnitude of force) × (displacement in direction of force).

If the path is curved, we can imagine that it is made up of a succession of infinitesimal
straight-line displacements or that it is approximated by a finite number of straight-line
displacements. Then (as in our derivation of the formulas for the path integral in the
preceding section) we are led to the following formula for the work done by the force

2We thank Tanya Leise for suggesting this exercise.
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figure 7.2.1 For small
�t, �s = c(t+�t)−c(t) ≈ c′(t) �t.

a t t + Δt b

x

y

z

c

c(t)

c(t + Δt)

Δs = c(t + Δt) − c(t)

c′(t) Δt

c(a)

c(b)

field F on a particle moving along a path c: [a, b] → R3:

work done by F =
∫ b

a
F(c(t)) · c′(t) dt.

We can further justify this derivation as follows. As t ranges over a small interval t
to t + �t , the particle moves from c(t) to c(t + �t), a vector displacement of �s =
c(t + �t) − c(t) (see Figure 7.2.1).

From the definition of the derivative, we get the approximation �s ≈ c′(t)�t . The
work done in going from c(t) to c(t + �t) is therefore approximately

F(c(t)) · �s ≈ F(c(t)) · c′(t) �t.

If we subdivide the interval [a, b] into n equal parts a = t0 < t1 < · · · < tn = b, with
�t = ti+1 − ti , then the work done by F is approximately

n−1∑
i=0

F(c(ti )) · �s ≈
n−1∑
i=0

F(c(ti )) · c′(ti ) �t.

As n → ∞, this approximation becomes better and better, and so it is reasonable to
take as our definition of work to be the limit of the sum just given as n → ∞. This limit
is given by the integral

∫ b

a
F(c(t)) · c′(t) dt.

Definition of the Line Integral
The previous discussion of work motivates the following definition.

Definition Line Integrals Let F be a vector field on R3 that is continuous on
the C1 path c: [a, b] → R3. We define

∫
c F · ds, the line integral of F along c, by

the formula ∫
c

F · ds =
∫ b

a
F(c(t)) · c′(t) dt;

that is, we integrate the dot product of F with c′ over the interval [a, b].
As is the case with scalar functions, we can also define

∫
c F · ds if F(c(t)) · c′(t)

is only piecewise continuous.
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For paths c that satisfy c′(t) �= 0, there is another useful formula for the line integral:
namely, if T(t) = c′(t)/‖c′(t)‖ denotes the unit tangent vector, we have

∫
F · ds =

∫ b

a
F(c(t)) · c′(t) dt (by definition)

=
∫ b

a

[
F(c(t)) · c′(t)

‖c′(t)‖
]
‖c′(t)‖ dt (canceling ‖c′(t)‖) (1)

=
∫ b

a
[F(c(t)) · T(t)]‖c′(t)‖ dt.

This formula says that
∫

c F · ds is equal to something that looks like the path integral of
the tangential component F(c(t)) · T(t) of F along c. In fact, the last part of formula (1)
is analogous to the path integral of a scalar function f along c.3

To compute a line integral in any particular case, we can either use the original defi-
nition or integrate the tangential component of F along c, as prescribed by formula (1),
whichever is easier or more appropriate.

example 1 Let c(t) = (sin t , cos t , t) with 0 ≤ t ≤ 2π . Let the vector field F be defined by
F(x , y, z) = x i + yj + zk. Compute

∫
c F · ds.

solut ion Here, F(c(t)) = F(sin t , cos t , t) = (sin t)i + (cos t)j + tk, and c′(t) =(cos t)i −
(sin t)j + k. Therefore,

F(c(t)) · c′(t) = sin t cos t − cos t sin t + t = t ,

and so ∫
c

F · ds =
∫ 2π

0
t dt = 2π2.

▲

Another common way of writing line integrals is∫
c

F · ds =
∫

c
F1 dx + F2 dy + F3 dz,

where F1, F2, and F3 are the components of the vector field F. We call the expression
F1 dx + F2 dy + F3 dz a differential form.4 By definition, the integral of a differential
form along a path c, where c(t) = (x(t), y(t), z(t)), is

∫
c

F1 dx + F2 dy + F3 dz =
∫ b

a

(
F1

dx

dt
+ F2

dy

dt
+ F3

dz

dt

)
dt =

∫
c

F · ds.

Note that we may think of ds as the differential form ds = dx i + dyj + dzk. Thus,
the differential form F1 dx + F2 dy + F3 dz may be written as the dot product F · ds.

3If c does not intersect itself [that is, if c(t1) = c(t2) implies t1 = t2], then each point P on C (the image
curve of c) can be written uniquely as c(t) for some t . If we define f (P) = f (c(t)) = F(c) · T(t), f is
a function on C ; by definition, its path integral along c is given by formula (1) and there is no difficulty
in literally interpreting

∫
c

F · ds as a path integral. If c intersects itself, we cannot define f as a function
on C as before (why?); however, in this case it is still useful to think of the right side of formula (1) as
a path integral.
4See Section 8.5 for a brief discussion of the general theory of differential forms.
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example 2 Evaluate the line integral

∫
c

x2 dx + xy dy + dz,

where c: [0, 1] → R3 is given by c(t) = (t , t2, 1) = (x(t), y(t), z(t)).

solut ion We compute dx/dt = 1, dy/dt = 2t , dz/dt = 0; therefore,

∫
c

x2 dx + xy dy + dz =
∫ 1

0

(
[x(t)]2 dx

dt
+ [x(t)y(t)]

dy

dt

)
dt

=
∫ 1

0
(t2 + 2t4) dt =

[
1

3
t3 + 2

5
t5

]1

0

= 11

15
.

▲

example 3 Evaluate the line integral

∫
c

cos z dx + ex dy + ey dz,

where the path c is defined by c(t) = (1, t , et ) and 0 ≤ t ≤ 2.

solut ion We compute dx/dt = 0, dy/dt = 1, dz/dt = et , and so

∫
c

cos z dx + ex dy + ey dz =
∫ 2

0
(0 + e + e2t ) dt

=
[

et + 1

2
e2t

]2

0

= 2e + 1

2
e4 − 1

2
.

▲

example 4 Let c be the path

x = cos3 θ , y = sin3 θ , z = θ , 0 ≤ θ ≤ 7π

2

(see Figure 7.2.2). Evaluate the integral
∫

c(sin z dx + cos z dy − (xy)1/3 dz).

solut ion In this case, we have

dx

dθ
= −3 cos2 θ sin θ ,

dy

dθ
= 3 sin2 θ cos θ ,

dz

dθ
= 1,

so the integral is

∫
c

sin z dx + cos z dy − (xy)1/3 dz

=
∫ 7π/2

0
(−3 cos2 θ sin2 θ + 3 sin2 θ cos2 θ − cos θ sin θ ) dθ.

The first two terms cancel, and so we get

−
∫ 7π/2

0
cos θ sin θ dθ = −

[
1

2
sin2 θ

]7π/2

0

= −1

2
.
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x

y

z

figure 7.2.2 The image of the path
x = cos3

θ, y = sin3
θ, z = θ ; 0 ≤ θ ≤ 7π/2.

▲

example 5 Suppose F is the force vector field F(x , y, z) = x3i + yj + zk. Parametrize the circle
of radius a in the yz plane by letting c(θ ) have components

x = 0, y = a cos θ , z = a sin θ , 0 ≤ θ ≤ 2π.

Because F(c(θ )) · c′(θ ) = 0, the force field F is normal to the circle at every point on
the circle, so F will not do any work on a particle moving along the circle (Figure 7.2.3).

z

x

y

F

F

F

F

figure 7.2.3 A vector field F normal to a circle in the
yz plane.

We can verify by direct computation that the work done by F is zero:

W =
∫

c
F · ds =

∫
c

x3 dx + y dy + z dz

=
∫ 2π

0
(0 − a2 cos θ sin θ + a2 cos θ sin θ ) dθ = 0.

▲
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example 6 If we consider the field and curve of Example 4, we see that the work done by the
field is − 1

2 , a negative quantity. This means that the field impedes movement along the
path. ▲

Reparametrizations
The line integral

∫
c F · ds depends not only on the field F but also on the path

c: [a, b] → R3. In general, if c1 and c2 are two different paths in R3,
∫

c1
F · ds �=∫

c2
F · ds. On the other hand, we shall see that it is true that

∫
c1

F · ds = ± ∫
c2

F · ds for
every vector field F if c1 is what we call a reparametrization of c2; roughly speaking,
this means that c1 and c2 are different descriptions of the same geometric curve.

Definition Let h: I → I1 be a C1 real-valued function that is a one-to-one map
of an interval I = [a, b] onto another interval I1 = [a1, b1]. Let c: I1 → R3 be a
piecewise C1 path. Then we call the composition

p = c ◦ h: I → R3

a reparametrization of c.

This means that p(t) = c(h(t)), and so h changes the variable; alternatively, we
can think of h as changing the speed at which a point moves along the path. Indeed,
observe that p′(t) = c′(h(t))h′(t), so that the velocity vector for p equals that for c but
is multiplied by the scalar factor h′(t).

It is implicit in the definition that h must carry endpoints to endpoints; that is, either
h(a) = a1 and h(b) = b1, or h(a) = b1 and h(b) = a1. We thus distinguish two types
of reparametrizations. If c ◦ h is a reparametrization of c, then either

(c ◦ h)(a) = c(a1) and (c ◦ h)(b) = c(b1)

or

(c ◦ h)(a) = c(b1) and (c ◦ h)(b) = c(a1).

In the first case, the reparametrization is said to be orientation-preserving, and a particle
tracing the path c ◦ h moves in the same direction as a particle tracing c. In the second
case, the reparametrization is described as orientation-reversing, and a particle tracing
the path c◦h moves in the opposite direction to that of a particle tracing c (Figure 7.2.4).

For example, if C is the image of a path c, as shown in Figure 7.2.5—that is, C =
c([a1, b1])—and if h is orientation-preserving, then c ◦ h(t) will go from c(a1) to c(b1)
as t goes from a to b; and if h is orientation-reversing, c ◦ h(t) will go from c(b1) to
c(a1) as t goes from a to b.

example 7 Let c: [a, b] → R3 be a piecewise C1 path. Then:

(a) The path cop: [a, b] → R3, t �→ c(a + b − t), is a reparametrization of c
corresponding to the map h: [a, b] → [a, b], t �→ a + b − t ; we call cop the
opposite path to c. This reparametrization is orientation-reversing.

(b) The path p: [0, 1] → R3, t �→ c(a + (b − a)t), is an orientation-preserving
reparametrization of c corresponding to a change of coordinates
h: [0, 1] → [a, b], t �→ a + (b − a)t . ▲
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figure 7.2.4 Illustrating (a) an
orientation-preserving
reparametrization, and (b) an
orientation-reversing
reparametrization.
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figure 7.2.5 The path p = c ◦ h is
a reparametrization of c.
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Theorem 1 Change of Parametrization for Line Integrals Let F be a
vector field continuous on the C1 path c: [a1, b1] → R3, and let p: [a, b] → R3

be a reparametrization of c. If p is orientation-preserving, then∫
p

F · ds =
∫

c
F · ds,

and if p is orientation-reversing, then∫
p

F · ds = −
∫

c
F · ds.
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proof By hypothesis, we have a map h such that p = c ◦ h. By the chain rule,

p′(t) = c′(h(t))h′(t),

and so
∫

p
F · ds =

∫ b

a
[F(c(h(t))) · c′(h(t))]h′(t) dt.

Changing variables with s = h(t), this becomes

∫ h(b)

h(a)
F(c(s)) · c′(s) ds

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ b1

a1

F(c(s)) · c′(s) ds =
∫

c
F · ds if p is orientation-

preserving∫ a1

b1

F(c(s)) · c′(s) ds = −
∫

c
F · ds if p is orientation-

reversing. ■

Theorem 1 also holds for piecewise C1 paths, as may be seen by breaking up the
intervals into segments on which the paths are of class C1 and summing the integrals
over the separate intervals.

Thus, if it is convenient to reparametrize a path when evaluating an integral, Theo-
rem 1 assures us that the value of the integral will not be affected, except possibly for
the sign, depending on the orientation.

example 8 Let F(x , y, z) = yzi + xzj + xyk and c: [−5, 10] → R3 be defined by t �→ (t , t2, t3).
Evaluate

∫
c F · ds and

∫
cop

F · ds.

solut ion For the path c, we have dx/dt = 1, dy/dt = 2t , dz/dt = 3t2, and F(c(t)) = t5i+t4j+t3k.
Therefore,

∫
c

F · ds =
∫ 10

−5

(
F1

dx

dt
+ F2

dy

dt
+ F3

dz

dt

)
dt

=
∫ 10

−5
(t5 + 2t5 + 3t5) dt = [t6]10

−5 = 984,375.

On the other hand, for

cop: [−5, 10] → R3, t �→ c(5 − t) = (5 − t , (5 − t)2, (5 − t)3),

we have dx/dt = −1, dy/dt = −10 + 2t = −2(5 − t), dz/dt = −75 + 30t − 3t2 =
−3(5 − t)2, and F(cop(t)) = (5 − t)5i + (5 − t)4j + (5 − t)3k. Therefore,

∫
cop

F · ds =
∫ 10

−5
[−(5 − t)5 − 2(5 − t)5 − 3(5 − t)5] dt = [(5 − t)6]10

−5 = −984, 375.
▲

We are interested in reparametrizations, because if the image of a particular c can be
represented in many ways, we want to be sure that path and line integrals depend only
on the image curve and not on the particular parametrization. For example, for some
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problems the unit circle may be conveniently represented by the map p given by

x(t) = cos 2t , y(t) = sin 2t , 0 ≤ t ≤ π.

Theorem 1 guarantees that any integral computed for this representation will be the
same as when we represent the circle by the map c given by

x(t) = cos t , y(t) = sin t , 0 ≤ t ≤ 2π,

because p = c ◦ h, where h(t) = 2t , and thus p is an orientation-preserving repara-
metrization of c. However, notice that the map γ given by

γ (t) = (cos t , sin t), 0 ≤ t ≤ 4π

is not a reparametrization of c. Although it traces out the same image (the circle), it
does so twice. (Why does this imply that γ is not a reparametrization of c?)

The line integral is an oriented integral, in that a change of sign occurs (as we have
seen in Theorem 1) if the orientation of the curve is reversed. The path integral does not
have this property. This follows from the fact that changing t to −t (reversing orientation)
just changes the sign of c′(t), not its length. This is one of the differences between line
and path integrals. The following theorem, which is proved by the same method as in
Theorem 1, shows that path integrals are unchanged under reparametrizations—even
orientation-reversing ones.

Theorem 2 Change of Parametrization for Path Integrals Let c be
piecewise C1, let f be a continuous (real-valued) function on the image of c, and
let p be any reparametrization of c. Then

∫
c

f (x , y, z) ds =
∫

p
f (x , y, z) ds. (2)

Line Integrals of Gradient Fields
We next consider a useful technique for evaluating certain types of line integrals. Recall
that a vector field F is a gradient vector field if F = ∇ f for some real-valued function
f . Thus,

F = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k.

Suppose g and G are real-valued continuous functions defined on a closed interval
[a, b], that G is differentiable on (a, b), and that G ′ = g. Then by the fundamental
theorem of calculus

∫ b

a
g(x) dx = G(b) − G(a).

Thus, the value of the integral of g depends only on the value of G at the endpoints
of the interval [a, b]. Because ∇ f represents the derivative of f , we can ask whether
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∫
c ∇ f · ds is completely determined by the value of f at the endpoints c(a) and c(b).

The answer is contained in the following generalization of the fundamental theorem of
calculus.

Theorem 3 Line Integrals of Gradient Vector Fields Suppose f : R3 → R

is of class C1 and that c: [a, b] → R3 is a piecewise C1 path. Then

∫
c
∇ f · ds = f (c(b)) − f (c(a)).

proof Apply the chain rule to the composite function

F : t �→ f (c(t))

to obtain

F ′(t) = ( f ◦ c)′(t) = ∇ f (c(t)) · c′(t).

The function F is a real-valued function of the variable t , and so, by the fundamental
theorem of single-variable calculus,

∫ b

a
F ′(t) dt = F(b) − F(a) = f (c(b)) − f (c(a)).

Therefore,

∫
c
∇ f · ds =

∫ b

a
∇ f (c(t)) · c′(t) dt =

∫ b

a
F ′(t) dt = F(b) − F(a)

= f (c(b)) − f (c(a)). ■

example 9 Let c be the path c(t) = (t4/4, sin3(tπ/2), 0), t ∈ [0, 1]. Evaluate
∫

c
y dx + x dy

(
which means

∫
c y dx + x dy + 0 dz

)
.

solut ion We recognize y dx + x dy, or, equivalently, the vector field yi + xj + 0k, as the gradient
of the function f (x , y, z) = xy. Thus,

∫
c

y dx + x dy = f (c(1)) − f (c(0)) = 1

4
· 1 − 0 = 1

4
.

▲

Obviously, if we can recognize the integrand as a gradient, then evaluation of the
integral becomes much easier. For example, try to work out the integral in Example 9
directly. In one-variable calculus, every integral is, in principle, obtainable by finding an
antiderivative. For vector fields, however, this is not always true, because a given vector
field need not be a gradient. This point will be examined in detail in Section 8.3, where
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figure 7.2.6 A simple curve that
has no self-intersections is shown
on the left. On the right is a curve
with a self-intersection, so it is not
simple. a b

c

c(a)

c(b)
ba

c

c(a)

c(b)

Simple curve Not a simple curve

we derive a test to determine when a vector field F is a gradient; that is, when F = ∇ f
for some f .

Line Integrals Over Geometric Curves
We have seen how to define path integrals (integrals of scalar functions) and line integrals
(integrals of vector functions) over parametrized curves. We have also seen that our work
is simplified if we make a judicious choice of parametrization. Because these integrals
are independent of the parametrization (except possibly for the sign), it seems natural
to express the theory in a way that is independent of the parametrization, and that is
thereby more “geometric.” We do this briefly and somewhat informally in the following
discussion.

Q

P

Q

P

figure 7.2.7 There
are two possible
senses of direction
on a curve joining
P and Q.

Definition We define a simple curve C to be the image of a piecewise C1 map
c: I → R3 that is one-to-one on an interval I ; c is called a parametrization of
C . Thus, a simple curve is one that does not intersect itself (Figure 7.2.6). If
I = [a, b], we call c(a) and c(b) endpoints of the curve.

Each simple curve C has two orientations or directions associated with it. If P
and Q are the endpoints of the curve, then we can consider C as directed either
from P to Q or from Q to P. The simple curve C together with a sense of direction
is called an oriented simple curve or directed simple curve (Figure 7.2.7).

Definition Simple Closed Curves By a simple closed curve we mean the
image of a piecewise C1 map c: [a, b] → R3 that is one-to-one on [a, b) and
satisfies c(a) = c(b) (Figure 7.2.8). If c satisfies the condition c(a) = c(b), but
is not necessarily one-to-one on [a, b), we call its image a closed curve. Simple
closed curves have two orientations, corresponding to the two possible directions
of motion along the curve (Figure 7.2.9).

If C is an oriented simple curve or an oriented simple closed curve, we can unam-
biguously define line integrals along them.

figure 7.2.8 A simple closed
curve (left) and a closed curve
that is not simple (right).

a b

c

c(a) = c(b)

a b

c

c(a) = c(b)
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CC
figure 7.2.9 Two possible orientations
for a simple closed curve C.

Line Integrals and Path Integrals Over Oriented Simple Curves
and Simple Closed Curves C:

∫
C

F · ds =
∫

c
F · ds and

∫
C

f ds =
∫

c
f ds, (3)

where c is any orientation-preserving parametrization of C .

These integrals do not depend on the choice of c as long as c is one-to-one (except
possibly at the endpoints) by virtue of Theorems 1 and 2.5 The point we want to make
here is that, although a curve must be parametrized to make integration along it tractable,
it is not necessary to include the parametrization in our notation for the integral.

example 10 If I = [a, b] is a closed interval on the x axis, then I , as a curve, has two orientations:
one corresponding to motion from a to b (left to right) and the other corresponding to
motion from b to a (right to left). If f is a real-valued function continuous on I , then
denoting I with the first orientation by I + and I with the second orientation by I −, we
have

∫
I +

f (x) dx =
∫ b

a
f (x) dx = −

∫ a

b
f (x) dx = −

∫
I −

f (x) dx.
▲

A given simple closed curve can be parametrized in many different ways. Fig-
ure 7.2.10 shows C represented as the image of a map p, with p(t) progressing in
a prescribed direction around an oriented curve C as t ranges from a to b. Note that
p′(t) points in this direction also. The speed with which we traverse C may vary from
parametrization to parametrization, but as long as the orientation is preserved, the inte-
gral will not, according to Theorems 1 and 2.

The following precaution should be noted in regard to these remarks. It is possible
to have two mappings c and p with the same image, and inducing the same orientation
on the image, such that

∫
c

F · ds �=
∫

p
F · ds.

5We have not proved that any two one-to-one paths c and p with the same image must be reparametriza-
tions of each other, but this technical point will be omitted.
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p(a) = p(b)

a   t0 t1 t2 t3

p p(t1)

C

p(t2)

p(t3)

p(t0) p′(t0)

b

figure 7.2.10 As t goes from a to b,
p(t) moves around the curve C in
some fixed direction.

For an example, let c(t) = (cos t , sin t , 0) and p(t) = (cos 2t , sin 2t , 0), 0 ≤ t ≤ 2π ,
with F(x , y, z) = ( y, 0, 0). Then F1(x , y, z) = y, F2(x , y, z) = 0, and F3(x , y, z) = 0,
so ∫

c
F · ds =

∫ 2π

0
F1(c(t))

dx

dt
dt = −

∫ 2π

0
sin2 t dt = −π.

But
∫

p F · ds = −2
∫ 2π

0 sin2 2t dt = −2π . Clearly, c and p have the same image,
namely, the unit circle in the xy plane. Moreover, they traverse the unit circle in the same
direction; yet

∫
c F · ds �= ∫

p F · ds. The reason for this is that c is one-to-one, but p is
not (p traverses the unit circle twice in a counterclockwise direction); therefore, p is not
a parametrization of the unit circle as a simple closed curve.

As a consequence of Theorem 1 and generalizing the notation in Example 10, we
introduce the following convention:

Line Integrals Over Curves with Opposite Orientations Let C− be
the same curve as C , but with the opposite orientation. Then

∫
C

F · ds = −
∫

C−
F · ds.

C1

C2

C3

figure 7.2.11 A curve can
be made up of several
components.

We also have:

Line Integrals Over Curves Consisting of Several Components Let
C be an oriented curve that is made up of several oriented component curves
Ci , i = 1, . . . , k, as in Figure 7.2.11. Then we shall write C = C1 +C2 +· · ·+Ck .
Because we can parametrize C by parametrizing the pieces C1, . . . , Ck separately,
we can prove that

∫
C

F · ds =
∫

C1

F · ds +
∫

C2

F · ds + · · · +
∫

Ck

F · ds. (4)

One reason for writing a curve as a sum of components is that it may be easier to
parametrize the components Ci individually than it is to parametrize C as a whole. If
that is the case, formula (4) provides a convenient way of evaluating

∫
C F · ds.
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The d r Notation for Line Integrals
Sometimes one writes, as we occasionally do later, the line integral using the notation

∫
C

F · dr.

The reason is that we think of describing a C1 path c in terms of a moving position
vector based at the origin and ending at the point c(t) at time t. Position vectors are
often denoted by r= x i + yj + zk, and so the curve is described using the notation
r(t) = x(t)i + y(t)j + z(t)k in place of c(t). By definition, the line integral is given by

∫ b

a
F(r(t)) · dr

dt
dt.

Formally canceling the dt’s, and using the parametrization independence to replace the
limits of integration with the geometric curve C , we arrive at the notation

∫
C F · dr.

example 11 Consider C , the perimeter of the unit square in R2, oriented in the counterclockwise
sense (see Figure 7.2.12). Evaluate the line integral∫

C
x2 dx + xy dy.

x

y

C3
(0, 1)

(0, 0) (1, 0)

(1, 1)

C2

C1

C4
figure 7.2.12 The perimeter of the unit square,
parametrized in four pieces.

solut ion We evaluate the integral using a convenient parametrization of C that induces the given
orientation. For example:

c: [0, 4] → R2, t �→

⎧⎪⎪⎨
⎪⎪⎩

(t , 0) 0 ≤ t ≤ 1
(1, t − 1) 1 ≤ t ≤ 2
(3 − t , 1) 2 ≤ t ≤ 3
(0, 4 − t) 3 ≤ t ≤ 4.

Then ∫
C

x2 dx + xy dy =
∫ 1

0
(t2 + 0) dt +

∫ 2

1
[0 + (t − 1)] dt

+
∫ 3

2
[−(3 − t)2 + 0] dt +

∫ 4

3
(0 + 0) dt

= 1

3
+ 1

2
+

(
−1

3

)
+ 0 = 1

2
.
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Now let us reevaluate this line integral, using formula (4) and parametrizing the Ci

separately. Notice that C = C1 + C2 + C3 + C4, where Ci are the oriented curves
pictured in Figure 7.2.12. These can be parametrized as follows:

C1: c1(t) = (t , 0), 0 ≤ t ≤ 1
C2: c2(t) = (1, t), 0 ≤ t ≤ 1
C3: c3(t) = (1 − t , 1), 0 ≤ t ≤ 1
C4: c4(t) = (0, 1 − t), 0 ≤ t ≤ 1,

and so ∫
C1

x2 dx + xy dy =
∫ 1

0
t2 dt = 1

3∫
C2

x2 dx + xy dy =
∫ 1

0
t dt = 1

2∫
C3

x2 dx + xy dy =
∫ 1

0
−(1 − t)2 dt = −1

3∫
C4

x2 dx + xy dy =
∫ 1

0
0 dt = 0.

Thus, again, ∫
C

x2 dx + xy dy = 1

3
+ 1

2
− 1

3
+ 0 = 1

2
.

▲

example 12 An interesting application of the line integral is the mathematical formulation of Ampère’s
law, which relates electric currents to their magnetic effects.6 Suppose H denotes a mag-
netic field in R3, and let C be a closed oriented curve in R3. In appropriate physical
units, Ampère’s law states that

∫
C

H · ds = I ,

where I is the net current that passes through any surface bounded by C (see
Figure 7.2.13).

C

H

Current I

figure 7.2.13 The magnetic field H
surrounding a wire carrying a current I
satisfies Ampére’s law:

∫
C

H · ds = I .

▲

6The discovery that electric currents produce magnetic effects was made by Haas Christian Oersted
circa 1820. See any elementary physics text for discussions of the physical basis of these ideas.
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Finally, let us mention that the line integral has another important physical meaning,
specifically, the interpretation of

∫
C V · ds as circulation, where V is the velocity field

of a fluid, as we shall discuss in Section 8.2. Thus, a wide variety of physical concepts,
from the notion of work to electromagnetic fields and the motions of fluids, can be
analyzed with the help of line integrals.

exercises

1. Evaluate the line integral

∫
C

F · ds,

where F(x , y) = y2i − xyj and C is the part of the circle
x2 + y2 = 1 that starts at (1, 0) and ends at (0, 1),
oriented counterclockwise.

2. Repeat Problem 1 for F = y2i + 2xyj, where C is the
entire unit circle x2 + y2 = 1.

3. Let F(x , y, z) = x i + yj + zk. Evaluate the integral of F
along each of the following paths:

(a) c(t) = (t , t , t), 0 ≤ t ≤ 1

(b) c(t) = (cos t , sin t , 0), 0 ≤ t ≤ 2π

(c) c(t) = (sin t , 0, cos t), 0 ≤ t ≤ 2π

(d) c(t) = (t2, 3t , 2t3), −1 ≤ t ≤ 2

4. Evaluate each of the following line integrals:

(a)
∫

c x dy − y dx, c(t) = (cos t , sin t),
0 ≤ t ≤ 2π

(b)
∫

c x dx + y dy, c(t) = (cos π t , sin π t),
0 ≤ t ≤ 2

(c)
∫

c yz dx + xz dy + xy dz, where c consists of
straight-line segments joining (1, 0, 0) to (0, 1, 0) to
(0, 0, 1)

(d)
∫

c x2 dx − xy dy + dz, where c is the parabola
z = x2, y = 0 from (−1, 0, 1) to (1, 0, 1).

5. Consider the force field F(x , y, z) = x i + yj + zk.
Compute the work done in moving a particle along the
parabola y = x2, z = 0, from x = −1 to x = 2.

6. Let c be a smooth path.

(a) Suppose F is perpendicular to c′(t) at the point c(t).
Show that

∫
c

F · ds = 0.

(b) If F is parallel to c′(t) at c(t), show that

∫
c

F · ds =
∫

c
‖F‖ ds.

[By parallel to c′(t) we mean that
F(c(t)) = λ(t)c′(t), where λ(t) > 0.]

7. Suppose the path c has length l, and ‖F‖ ≤ M . Prove
that ∣∣∣

∫
c

F · ds
∣∣∣ ≤ Ml.

8. Evaluate
∫

c F · ds, where F(x , y, z) = yi + 2xj + yk
and the path c is defined by c(t) = t i + t2j + t3k,
0 ≤ t ≤ 1.

9. Evaluate ∫
c

y dx + (3y3 − x) dy + z dz

for each of the paths c(t) = (t , tn , 0), 0 ≤ t ≤ 1, where
n = 1, 2, 3, . . . .

10. This exercise refers to Example 12. Let L be a very long
wire, a planar section of which (with the plane
perpendicular to the wire) is shown in Figure 7.2.14.

r

x

y

C

(x, y)

H

T

figure 7.2.14 A planar section of a long wire
and a curve C about the wire.
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Suppose this plane is the xy plane. Experiments show
that H is tangent to every circle in the xy plane whose
center is the axis of L , and that the magnitude of H is
constant on every such circle C . Thus, H = HT, where
T is a unit tangent vector to C and H is some scalar.
Using this information, show that H = I/2πr , where r
is the radius of circle C and I is the current flowing in
the wire.

11. The image of the path t �→ (cos3 t , sin3 t), 0 ≤ t ≤ 2π

in the plane is shown in Figure 7.2.15. Evaluate the
integral of the vector field F(x , y) = x i + yj around this
curve.

(0, 1) = c π
2( )

3

( )1
2

,
2

1
22

(0, −1) = c π
2( )

(−1, 0) = c(π) (1, 0) = c(0) = c(2π)
x

y

figure 7.2.15 The hypocycloid c(t) = ( cos3 t, sin3 t)
(Exercise 11).

12. Suppose c1 and c2 are two paths with the same endpoints
and F is a vector field. Show that

∫
c1

F · ds = ∫
c2

F · ds
is equivalent to

∫
c F · ds = 0, where C is the closed

curve obtained by first moving along c1 and then moving
along c2 in the opposite direction.

13. Let c(t) be a path and T the unit tangent vector. What is∫
c T · ds?

14. Let F = (z3 + 2xy)i + x2j + 3xz2k. Show that the
integral of F around the circumference of the unit square
with vertices (±1, ±1) is zero.

15. Using the path in Exercise 11, observe that a C1 map
c: [a, b] → R3 can have an image that does not “look
smooth.” Do you think this could happen if c′(t) were
always nonzero?

16. What is the value of the integral of a gradient field
around a closed curve C?

17. Evaluate the line integral∫
C

2xyz dx + x2z dy + x2 y dz,

where C is an oriented simple curve connecting (1, 1, 1)
to (1, 2, 4).

18. Suppose ∇ f (x , y, z) = 2xyzex2
i + zex2

j + yex2
k. If

f (0, 0, 0) = 5, find f (1, 1, 2).

19. Consider the gravitational force field (with
G = m = M = 1) defined [for (x , y, z) �= (0, 0, 0)] by

F(x , y, z) = − 1

(x2 + y2 + z2)3/2 (x i + yj + zk).

Show that the work done by the gravitational force as a
particle moves from (x1, y1, z1) to (x2, y2, z2) along any
path depends only on the radii R1 =

√
x2

1 + y2
1 + z2

1
and R2 =

√
x2

2 + y2
2 + z2

2.

20. A cyclist rides up a mountain along the path shown in
Figure 7.2.16. She makes one complete revolution
around the mountain in reaching the top, while her
vertical rate of climb is constant. Throughout the trip she
exerts a force described by the vector field

F(x , y, z) = yi + xj + k.

What is the work done by the cyclist in traveling from
A to B? What is unrealistic about this model of a cyclist?

x2 + y2 + z 

A

B

z

x

y

figure 7.2.16 How much work is done in
cycling up this mountain?

21. Let c: [a, b] → R3 be a path such that c′(t) �= 0. Recall
from Section 4.1 that when this condition holds, c is said
to be regular. Let the function f be defined by the
formula f (x) = ∫ x

a ‖c′(t)‖ dt.

(a) What is d f/dx?

(b) Using the answer to part (a), prove that
f : [a, b] → [0, L], where L is the length of c, has a
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differentiable inverse g: [0, L] → [a, b] satisfying
f ◦ g(s) = s, g ◦ f (x) = x . (You may use the
one-variable inverse function theorem stated at the
beginning of Section 3.5.)

(c) Compute dg/ds.

(d) Recall that a path s �→ b(s) is said to be of unit
speed, or parametrized by arc length, if ‖b′(s)‖ = 1.
Show that the reparametrization of c given by
b(s) = c ◦ g(s) is of unit speed. Conclude that any
regular path can be reparametrized by arc length.
(Thus, for example, the Frenet formulas in Exercise
23 of Section 4.2 can be applied to the
reparametrization b.)

22. Along a “thermodynamic path” C in (V , T , P) space,

(i) The heat gained is
∫

C �V dV + KV dT , where
�V , KV are functions of (V , T , P), depending on
the particular physical system.

(ii) The work done is
∫

C P dV .

For a van der Waals gas, we have

P(V , T ) = RT

V − b
− a

V 2 , J�V = RT

V − b
,

and KV = constant,

where R, b, a, and J are known constants. Initially, the
gas is at a temperature T0 and volume V0.

(a) An adiabatic process is a thermodynamic motion
(V (t), T (t), P(t)) for which

dT

dV
= dT/dt

dV/dt
= −�V

KV
.

If the van der Waals gas undergoes an adiabatic
process in which the volume doubles to 2V0,
compute
(1) the heat gained;
(2) the work done; and
(3) the final volume, temperature, and pressure.

(b) After the process indicated in part (a), the gas is
cooled (or heated) at constant volume until the
original temperature T0 is achieved. Compute
(1) the heat gained;
(2) the work done; and
(3) the final volume, temperature, and pressure.

(c) After the process indicated in part (b), the gas is
compressed until the gas returns to its original
volume V0. The temperature is held constant
throughout the process. Compute
(1) the heat gained;
(2) the work done; and
(3) the final volume, temperature, and pressure.

(d) For the cyclic process described in parts (a), (b), (c),
compute
(1) the total heat gained; and
(2) the total work done.

7.3 Parametrized Surfaces

In Sections 7.1 and 7.2, we studied integrals of scalar and vector functions along curves.
Now we turn to integrals over surfaces and begin by studying the geometry of surfaces
themselves.

Graphs Are Too Restrictive
We are already used to one kind of surface, namely, the graph of a function f (x , y).
Graphs were extensively studied in Chapter 2, and we know how to compute their
tangent planes. However, it would be unduly limiting to restrict ourselves to this case.
For example, many surfaces arise as level surfaces of functions. Suppose our surface
S is the set of points (x , y, z), where x − z + z3 = 0. Here S is a sheet that (relative
to the xy plane) doubles back on itself (see Figure 7.3.1). Obviously, we want to call
S a surface, because it is just a plane with a wrinkle. However, S is not the graph
of some function z = f (x , y), because this means that for each (x0, y0) ∈ R2 there
must be one z0 with (x0, y0, z0) ∈ S. As Figure 7.3.1 illustrates, this condition is
violated.

Another example is the torus, or surface of a doughnut, which is depicted in Fig-
ure 7.3.2. Anyone would call a torus a surface; yet, by the same reasoning as before, a
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y

(x0, y0, 0)

x

z

figure 7.3.1 A surface that is not
the graph of a function z = f (x, y).

z

y

x

figure 7.3.2 The torus is not the graph of a function
of the form z = f (x, y).

torus cannot be the graph of a differentiable function of two variables. These observa-
tions encourage us to extend our definition of a surface.

The motivation for the extended definition that follows is partly that a surface can
be thought of as being obtained from the plane by “rolling,” “bending,” and “pushing.”
For example, to get a torus, we take a portion of the plane and roll it (see Figure 7.3.3),
then take the two “ends” and bring them together until they meet (Figure 7.3.4).

Parametrized Surfaces as Mappings
In our study of differential calculus we dealt with mappings f : A ⊂ Rn → Rm . Taking
n = 2 and m = 3 corresponds to the case of a two-dimensional surface in 3-space. With
surfaces, just as with curves, we want to distinguish a map (a parametrization) from its
image (a geometric object). This leads us to the following definition.

figure 7.3.3 The first step in
obtaining a torus from a
rectangle is to make a cylinder.

figure 7.3.4 Bend the cylinder
and glue the ends to get a torus.

Ends glued
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figure 7.3.5 � “twists” and
“bends” D onto the surface
S = �(D).

S = Φ (D(( )

Φ

z

y

x

v

u
S Φ (D( )

D

Definition Parametrized Surfaces A parametrization of a surface is a func-
tion �: D ⊂ R2 → R3, where D is some domain in R2. The surface S corre-
sponding to the function � is its image: S = �(D). We can write

�(u, v) = (x(u, v), y(u, v), z(u, v)).

If � is differentiable or is of class C1 [which is the same as saying that x(u, v),
y(u, v), and z(u, v) are differentiable or C1 functions of (u, v)], we call S a
differentiable or a C1 surface.

We can think of � as twisting or bending the region D in the plane to yield the
surface S (see Figure 7.3.5). Thus, each point (u, v) in D becomes a label for a point
(x(u, v), y(u, v), z(u, v)) on S.

Of course, surfaces need not bend or twist at all. In fact, planes are flat, as shown in
our first, and simplest, example.

example 1 In Section 1.3 we studied the equation of a plane P. We did so in terms of graphs and
level sets. Now we examine the same notion using a parametrization.

Let P be a plane that is parallel to two vectors α and β and that passes through the
tip of another vector γ , as in Figure 7.3.6.

γγ

b

a

x

y

z

(x0, y0, z0)

figure 7.3.6 Describing a plane parametrically.
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Our goal in this example is to find a parametrization of this plane. Notice that the vector
α × β = N, which we also write as Ai + Bj + Ck, is normal to P . If the tip of γ is the
point (x0, y0, z0), then the equation of P as a level set (as discussed in Section 1.3) is
given by:

A(x − x0) + B( y − y0) + C(z − z0) = 0.

However, the set of all points on the plane P can also be described by the set of all
vectors that are γ plus a linear combination of α and β. Using our preferred choice of
real parameters u and v, we arrive at the parametric equation of the plane P:

�(u, v) = αu + βv + γ . ▲

Tangent Vectors to Parametrized Surfaces
Suppose that � is a parametrized surface that is differentiable at (u0, v0) ∈ R2. Fixing
u at u0, we get a map R → R3 given by t �→ �(u0, t), whose image is a curve on the
surface (Figure 7.3.7). From Chapters 2 and 4 we know that the vector tangent to this
curve at the point �(u0, v0), which we denote by Tv , is given by

Tv = ∂�

∂v
= ∂x

∂v
(u0, v0)i + ∂y

∂v
(u0, v0)j + ∂z

∂v
(u0, v0)k.

Similarly, if we fix v and consider the curve t �→ �(t , v0), we obtain the tangent vector
to this curve at �(u0, v0), given by

Tu = ∂�

∂u
= ∂x

∂u
(u0, v0)i + ∂y

∂u
(u0, v0)j + ∂z

∂u
(u0, v0)k.

Regular Surfaces
Because the vectors Tu and Tv are tangent to two curves on the surface at a given point,
the vector Tu × Tv ought to be normal to the surface at the same point.

We say that the surface S is regular or smooth7 at �(u0, v0), provided that
Tu × Tv �= 0 at (u0, v0). The surface is called regular if it is regular at all points
�(u0, v0) ∈ S. The nonzero vector Tu× Tv is normal to S (recall that the vector product

figure 7.3.7 The tangent vectors
Tu and Tv that are tangent to the
curve on a surface S, and hence
tangent to S.

(u0, v0) Tv

u = constaant
v = constant

z

y

x

v

u

D
S = Φ (D)

Φ (u0, v0)Φ

Tu

7Strictly speaking, regularity depends on the parametrization � and not just on its image S. Therefore,
this terminology is somewhat imprecise; however, it is descriptive and should not cause confusion. (See
Exercise 19.)
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of Tu and Tv is perpendicular to the plane spanned by Tu and Tv); the fact that it is
nonzero ensures that there will be a tangent plane. Intuitively, a smooth surface has no
“corners.”8

x

y

z

figure 7.3.8 The surface
z =

√
x2 + y2 is a cone. It is not

regular at its tip.

example 2 Consider the surface given by the equations

x = u cos v, y = u sin v, z = u, u ≥ 0.

Is this surface differentiable? Is it regular?

solut ion These equations describe the surface z = √
x2 + y2 (square the equations for x , y, and

z to check this), which is shown in Figure 7.3.8. This surface is a cone with a “point” at
(0, 0, 0); it is a differentiable surface because each component function is differentiable
as a function of u and v. However, the surface is not regular at (0, 0, 0). To see this,
compute Tu and Tv at (0, 0) ∈ R2:

Tu = ∂�

∂u
= ∂x

∂u
(0, 0)i + ∂y

∂u
(0, 0)j + ∂z

∂u
(0, 0)k = (cos 0)i + (sin 0)j + k = i + k,

and similarly,

Tv = ∂�

∂v
= 0(−sin 0)i + 0(cos 0)j + 0k = 0.

Thus, Tu × Tv = 0, and so, by definition, the surface is not regular at (0, 0, 0). ▲

Tangent Plane to a Parametrized Surface
We can use the fact that n = Tu × Tv is normal to the surface to both formally define
the tangent plane and to compute it.

Definition The Tangent Plane to a Surface If a parametrized surface
�: D ⊂ R2 → R3 is regular at �(u0, v0)—that is, if Tu ×Tv �= 0 at (u0, v0)—we
define the tangent plane of the surface at �(u0, v0) to be the plane determined by
the vectors Tu and Tv . Thus, n = Tu × Tv is a normal vector, and an equation of
the tangent plane at (x0, y0, z0) on the surface is given by

(x − x0, y − y0, z − z0) · n = 0, (1)

where n is evaluated at (u0, v0); that is, the tangent plane is the set of (x , y, z)
satisfying (1). If n = (n1, n2, n3) = n1i + n2j + n3k, then formula (1) becomes

n1(x − x0) + n2( y − y0) + n3(z − z0) = 0. (1′)

8In Section 3.5 we showed that level surfaces f (x , y, z) = 0 were in fact graphs of functions of two
variables in some neighborhood of a point (x0, y0, z0) satisfying ∇ f (x0, y0, z0) �= 0. This united two
concepts of a surface—graphs and level sets. Again, using the implicit function theorem, it is likewise
possible to show that the image of a parametrized surface � in the neighborhood of a point (u0, v0)
where Tu× Tv �= 0 is also the graph of a function of two variables. Thus, all definitions of a surface
are consistent. (See Exercise 20.)
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example 3 Let �: R2 → R3 be given by

x = u cos v, y = u sin v, z = u2 + v2.

Where does a tangent plane exist? Find the tangent plane at �(1, 0).

solut ion We compute

Tu = (cos v)i + (sin v)j + 2uk and Tv = −u(sin v)i + u(cos v)j + 2vk,

so the tangent plane at the point �(u0, v0) is the set of vectors through �(u0, v0)
perpendicular to

(Tu × Tv)(u0, v0) = (−2u2
0 cos v0 + 2v0 sin v0, −2u2

0 sin v0 − 2v0 cos v0, u0

)
if this vector is nonzero. Because Tu × Tv is equal to 0 at (u0, v0) = (0, 0), we cannot
find a tangent plane at �(0, 0) = (0, 0, 0). However, we can find an equation of the
tangent plane at all the other points, where Tu × Tv �= 0. At the point �(1, 0) = (1, 0, 1),

n = (Tu × Tv)(1, 0) = (−2, 0, 1) = −2i + k.

Because we have the vector n normal to the surface and a point (1, 0, 1) on the surface,
we can use formula (1′) to obtain an equation of the tangent plane:

−2(x − 1) + (z − 1) = 0; that is, z = 2x − 1. ▲

example 4 Suppose a surface S is the graph of a differentiable function g: R2 → R. Write S in para-
metric form and show that the surface is smooth at all points (u0, v0, g(u0, v0)) ∈ R3.

solut ion Write S in parametric form as follows:

x = u, y = v, z = g(u, v),

which is the same as z = g(x , y). Then at the point (u0, v0),

Tu = i + ∂g

∂u
(u0, v0)k and Tv = j + ∂g

∂v
(u0, v0)k,

and for (u0, v0) ∈ R2,

n = Tu × Tv = −∂g

∂u
(u0, v0)i − ∂g

∂v
(u0, v0)j + k �= 0. (2)

This is nonzero because the coefficient of k is 1; consequently, the parametrization
(u, v) �→ (u, v, g(u, v)) is regular at all points. Moreover, the tangent plane at the point
(x0, y0, z0) = (u0, v0, g(u0, v0)) is given, by formula (1), as

(x − x0, y − y0, z − z0) ·
(
−∂g

∂u
, −∂g

∂v
, 1

)
= 0,

where the partial derivatives are evaluated at (u0, v0). Remembering that x = u and
y = v, we can write this as

z − z0 =
(

∂g

∂x

)
(x − x0) +

(
∂g

∂y

)
( y − y0), (3)

where ∂g/∂x and ∂g/∂y are evaluated at (x0, y0). ▲

This example also shows that the definition of the tangent plane for parametrized
surfaces agrees with the one for surfaces obtained as graphs, because equation (3) is
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the same formula we derived (in Chapter 2) for the plane tangent to S at the point
(x0, y0, z0) ∈ S.

It is also useful to consider piecewise smooth surfaces, that is, surfaces composed of
a certain number of images of smooth parametrized surfaces. For example, the surface
of a cube in R3 is such a surface. These surfaces are considered in Section 7.4.

example 5 Find a parametrization for the hyperboloid of one sheet:

x2 + y2 − z2 = 1.

solut ion Because x and y appear in the combination x2 + y2, the surface is invariant under
rotation about the z axis, and so it is natural to write

x = r cos θ , y = r sin θ.

Then x2 + y2 − z2 = 1 becomes r 2 − z2 = 1. This we can conveniently parametrize by9

r = cosh u, z = sinh u.

Thus, a parametrization is

x = (cosh u)(cos θ ), y = (cosh u)(sin θ ), z = sinh u,

where 0 ≤ θ < 2π, −∞ < u < ∞. ▲

exercises

In Exercises 1 to 3, find an equation for the plane tangent to the given surface at the specified point.

1. x = 2u, y = u2 + v, z = v2, at (0, 1, 1)

2. x = u2 − v2, y = u + v, z = u2 + 4v,
at (− 1

4 , 1
2 , 2)

3. x = u2, y = u sin ev , z = 1
3 u cos ev ,

at (13, −2, 1)

4. At what points are the surfaces in Exercises 1 and 2
regular?

In Exercises 5 and 6, find all points (u0, v0), where S = �(u0, v0) is not smooth (regular).

5. �(u, v) = (u2 − v2, u2 + v2, v)

6. �(u, v) = (u − v, u + v, 2uv)

7. Match the following parameterizations to the surfaces
shown in the figures.

(a) �(u, v) = ((2
√

1 + u2) cos v, (2
√

1 + u2) sin v, u)

(b) �(u, v) = (3 cos u sin v, 2 sin u sin v, cos v)

(c) �(u, v) = (u, v, u2)

(d) �(u, v) = (u cos v, u sin v, u)

9Recall from one-variable calculus that cosh u = (eu + e−u)/2 and sinh u = (eu − e−u)/2. We easily verify from these definitions that
cosh2 u − sinh2 u = 1.
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(i) (ii)

y

z

x

y

z

x

y

z

x

y

z

x

(iii) (iv)

8. Match the following parametrizations to the surfaces
shown in the figures.

(a) �(u, v) = (u cos v, u sin v, 4 − u cos v − u sin v);
u ∈ [0, 1], v ∈ [0, 2π ]

(b) �(u, v) = (u cos v, u sin v, 4 − u2)

(c) �(u, v) = (u, v, 1
3 (12 − 8u − 3v))

(d) �(u, v) = ((u2 + 6u + 11) cos v,
u, (u2 + 6u + 11) sin v)

(i) (ii)

y

z

x

y

z

x

y

z

x

y

z

x

(iii) (iv)

9. Find an expression for a unit vector normal to the surface

x = cos v sin u, y = sin v sin u, z = cos u

at the image of a point (u, v) for u in [0, π ] and v in
[0, 2π ]. Identify this surface.

10. Repeat Exercise 9 for the surface

x = 3 cos θ sin φ , y = 2 sin θ sin φ , z = cos φ

for θ in [0, 2π ] and φ in [0, π ].

11. Repeat Exercise 9 for the surface

x = sin v, y = u, z = cos v

for 0 ≤ v ≤ 2π and −1 ≤ u ≤ 3.

12. Repeat Exercise 9 for the surface

x = (2−cos v) cos u, y = (2−cos v) sin u, z = sin v

for −π ≤ u ≤ π, −π ≤ v ≤ π . Is this surface regular?

13. (a) Develop a formula for the plane tangent to the
surface x = h( y, z).

(b) Obtain a similar formula for y = k(x , z).

14. Find the equation of the plane tangent to the surface
x = u2, y = v2, z = u2 + v2 at the point u = 1, v = 1.

15. Find a parametrization of the surface z = 3x2 + 8xy and
use it to find the tangent plane at x = 1, y = 0, z = 3.
Compare your answer with that using graphs.

16. Find a parametrization of the surface
x3 + 3xy + z2 = 2, z > 0, and use it to find the tangent
plane at the point x = 1, y = 1/3, z = 0. Compare your
answer with that using level sets.

17. Consider the surface in R3 parametrized by

�(r, θ ) = (r cos θ , r sin θ , θ ), 0 ≤ r ≤ 1
and 0 ≤ θ ≤ 4π.

(a) Sketch and describe the surface.

(b) Find an expression for a unit normal to the surface.

(c) Find an equation for the plane tangent to the surface
at the point (x0, y0, z0).

(d) If (x0, y0, z0) is a point on the surface, show that the
horizontal line segment of unit length from the z
axis through (x0, y0, z0) is contained in the surface
and in the plane tangent to the surface at
(x0, y0, z0).
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18. Given a sphere of radius 2 centered at the origin, find the
equation for the plane that is tangent to it at the point
(1, 1,

√
2) by considering the sphere as:

(a) a surface parametrized by
�(θ , φ) = (2 cos θ sin φ , 2 sin θ sin φ , 2 cos φ);

(b) a level surface of f (x , y, z) = x2 + y2 + z2; and

(c) the graph of g(x , y) =
√

4 − x2 − y2.

19. (a) Find a parametrization for the hyperboloid
x2 + y2 − z2 = 25.

(b) Find an expression for a unit normal to this surface.

(c) Find an equation for the plane tangent to the surface
at (x0, y0, 0), where x2

0 + y2
0 = 25.

(d) Show that the lines (x0, y0, 0) + t (−y0, x0, 5) and
(x0, y0, 0) + t ( y0, −x0, 5) lie in the surface and in
the tangent plane found in part (c).

20. A parametrized surface is described by a differentiable
function �: R2 → R3. According to Chapter 2, the
derivative should give a linear approximation that yields
a representation of the tangent plane. This exercise
demonstrates that this is indeed the case.

(a) Assuming Tu × Tv �= 0, show that the range of the
linear transformation D�(u0, v0) is the plane
spanned by Tu and Tv. [Here Tu and Tv are
evaluated at (u0, v0).]

(b) Show that w ⊥ (Tu × Tv) if and only if w is in the
range of D�(u0, v0).

(c) Show that the tangent plane as defined in this
section is the same as the “parametrized plane”

(u, v) �→ �(u0, v0) + D�(u0, v0)
[

u − u0

v − v0

]
.

21. Consider the surfaces �1(u, v) = (u, v, 0) and
�2(u, v) = (u3, v3, 0).

(a) Show that the image of �1 and of �2 is the xy plane.

(b) Show that �1 describes a regular surface, yet �2

does not. Conclude that the notion of regularity of a
surface S depends on the existence of at least one
regular parametrization for S.

(c) Prove that the tangent plane of S is well defined
independently of the regular (one-to-one)

parametrization (you will need to use the inverse
function theorem from Section 3.5).

(d) After these remarks, do you think you can find a
regular parametrization of the cone of Figure 7.3.7?

22. The image of the parametrization

�(u, v) = (x(u, v), y(u, v), z(u, v))

= (a sin u cos v, b sin u sin v, c cos u)

with b < a, 0 ≤ u ≤ π , 0 ≤ v ≤ 2π parametrizes an
ellipsoid.

(a) Show that all points in the image of � satisfy:

x2

a2 + y2

b2 + z2

c2 = 1

(the Cartesian equation of an ellipsoid).

(b) Show that the image surface is regular at all points.

23. The image of the parametrization

�(u, v) = (x(u, v), y(u, v), z(u, v))

= ((R + r cos u) cos v, (R + r cos u) sin v, r sin u)

with 0 ≤ u, v ≤ 2π , 0 < r < 1 parametrizes a torus (or
doughnut) S.

(a) Show that all points in the image (x , y, z) satisfy:

(
√

x2 + y2 − R)2 + z2 = r2.

(b) Show that the image surface is regular at all points.

24. Let � be a regular surface at (u0,v0); that is, � is of
class C1 and Tu ×Tv �=0 at (u0,v0).

(a) Use the implicit function theorem (Section 3.5) to
show that the image of � near (u0, v0) is the graph
of a C1 function of two variables. If the z
component of Tu × Tv is nonzero, we can write it
as z = f (x , y).

(c) Show that the tangent plane at �(u0, v0) defined by
the plane spanned by Tu and Tv coincides with the
tangent plane of the graph of z = f (x , y) at this
point.

7.4 Area of a Surface

Before proceeding to general surface integrals, let us first consider the problem of
computing the area of a surface, just as we considered the problem of finding the arc
length of a curve before discussing path integrals.



Marsden-3620111 VC September 27, 2011 10:26 384

384 Integrals Over Paths and Surfaces

Definition of Surface Area
In Section 7.3 we defined a parametrized surface S to be the image of a function
�: D ⊂ R2 → R3, written as �(u, v) = (x(u, v), y(u, v), z(u, v)). The map � was
called the parametrization of S and S was said to be regular at �(u, v) ∈ S provided
that Tu × Tv �= 0, where

Tu = ∂x

∂u
(u, v)i + ∂y

∂u
(u, v)j + ∂z

∂u
(u, v)k

and

Tv = ∂x

∂v
(u, v)i + ∂y

∂v
(u, v)j + ∂z

∂v
(u, v)k.

Recall that a regular surface (loosely speaking) is one that has no corners or breaks.
In the rest of this chapter and in the next one, we shall consider only piecewise regular

surfaces that are unions of images of parametrized surfaces �i : Di → R3 for which:

(i) Di is an elementary region in the plane;

(ii) �i is of class C1 and one-to-one, except possibly on the boundary of Di ; and

(iii) Si , the image of �i , is regular, except possibly at a finite number of points.

Definition Area of a Parametrized Surface We define the surface area10

A(S ) of a parametrized surface by

A(S ) =
∫∫

D
‖Tu × Tv‖ du dv, (1)

where ‖Tu × Tv‖ is the norm of Tu × Tv . If S is a union of surfaces Si , its area is
the sum of the areas of the Si .

As you can easily verify, we have

‖Tu × Tv‖ =
√[

∂(x , y)

∂(u, v)

]2

+
[
∂( y, z)

∂(u, v)

]2

+
[

∂(x , z)

∂(u, v)

]2

, (2)

where

∂(x , y)

∂(u, v)
=

∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
,

and so on. Thus, formula (1) becomes

A(S ) =
∫∫

D

√[
∂(x , y)

∂(u, v)

]2

+
[
∂( y, z)

∂(u, v)

]2

+
[

∂(x , z)

∂(u, v)

]2

du dv. (3)

10As we have not yet discussed the independence of parametrization, it may seem that A(S ) depends
on the parametrization �. We shall discuss independence of parametrization in Section 7.6; the use of
this notation here should not cause confusion.



Marsden-3620111 VC September 27, 2011 10:26 385

7.4 Area of a Surface 385

vn

vj

v0

u0 ui un

u i

u

v j,( )

Δu

Δv

( xij, yij, zij )

Pij

(Rij)Φ

Φ

x

y

z

Rij

v

T v jvΔ

u
Δ

T
u

i

figure 7.4.1 ‖Tui
× Tv j

‖ � u�v is equal to the area of a parallelogram that approximates the
area of a patch on a surface S = �(D).

Justification of the Area Formula
We can justify the definition of surface area by analyzing the integral∫∫

D ‖Tu × Tv‖ du dv in terms of Riemann sums. For simplicity, suppose D is a rect-
angle; consider the nth regular partition of D, and let Rij be the i j th rectangle in the
partition, with vertices (ui , v j ), (ui+1, v j ), (ui , v j+1), and (ui+1, v j+1), 0 ≤ i ≤ n − 1,
0 ≤ j ≤ n − 1. Denote the values of Tu and Tv at (ui , v j ) by Tui and Tv j . We can think
of the vectors �uTui and �vTv j as tangent to the surface at �(ui , v j ) = (xij, yij, zij),
where �u = ui+1 − ui , �v = v j+1 − v j . Then these vectors form a parallelogram Pij

that lies in the plane tangent to the surface at (xij, yij, zij) (see Figure 7.4.1). We thus
have a “patchwork cover” of the surface by the Pij. For n large, the area of Pij is a good
approximation to the area of �(Rij). Because the area of the parallelogram spanned by
two vectors v1 and v2 is ‖v1 × v2‖ (see Chapter 1), we see that

A( Pij) = ‖�uTui × �vTv j ‖ = ‖Tui × Tv j ‖�u �v.

Therefore, the area of the patchwork cover is

An =
n−1∑
i=0

n−1∑
j=0

A( Pij) =
n−1∑
i=0

n−1∑
j=0

‖Tui × Tv j ‖ �u �v.

As n → ∞, the sums An converge to the integral
∫∫

D
‖Tu × Tv‖ du dv.

Because An should approximate the surface area better and better as n → ∞, we are
led to formula (1) as a reasonable definition of A(S).

example 1 Let D be the region determined by 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1 and let the function
�: D → R3, defined by

x = r cos θ , y = r sin θ , z = r,

be a parametrization of a cone S (see Figure 7.3.8). Find its surface area.
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s o l u t i o n In formula (3),

∂(x , y)

∂(r, θ )
=

∣∣∣cos θ −r sin θ

sin θ r cos θ

∣∣∣ = r,

∂( y, z)

∂(r, θ )
=

∣∣∣sin θ r cos θ

1 0

∣∣∣ = −r cos θ ,

and

∂(x , z)

∂(r, θ )
=

∣∣∣cos θ −r sin θ

1 0

∣∣∣ = r sin θ ,

so the area integrand is

‖Tr × Tθ‖ =
√

r 2 + r 2 cos2 θ + r 2 sin2 θ = r
√

2.

Clearly, ‖Tr ×Tθ‖ vanishes for r = 0, but �(0, θ ) = (0, 0, 0) for any θ . Thus, (0, 0, 0)
is the only point where the surface is not regular. We have

∫∫
D

‖Tr × Tθ‖ dr dθ =
∫ 2π

0

∫ 1

0

√
2r dr dθ =

∫ 2π

0

1

2

√
2 dθ =

√
2π.

To confirm that this is the area of �(D), we must verify that � is one-to-one (for
points not on the boundary of D). Let D0 be the set of (r, θ ) with 0 < r < 1 and
0 < θ < 2π . Hence, D0 is D without its boundary. To see that �: D0 → R3 is
one-to-one, assume that �(r, θ ) = �(r ′, θ ′) for (r, θ ) and (r ′, θ ′) ∈ D0. Then

r cos θ = r ′ cos θ ′, r sin θ = r ′ sin θ ′, r = r ′.

From these equations it follows that cos θ = cos θ ′ and sin θ = sin θ ′. Thus, either
θ = θ ′ or θ = θ ′ + 2πn. But the second case is impossible for n a nonzero integer,
because both θ and θ ′ belong to the open interval (0, 2π) and thus cannot be more than
2π radians apart. This proves that off the boundary, � is one-to-one. (Is �: D → R3

one-to-one?) In future examples, we shall not usually verify that the parametrization is
one-to-one when it is intuitively clear. ▲

example 2 A helicoid is defined by �: D → R3, where

x = r cos θ , y = r sin θ , z = θ

and D is the region where 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 1 (Figure 7.4.2). Find its area.

(1, 0, 0)

z

y

x

π
2

π

2π

3π
2

figure 7.4.2 The helicoid x = r cos θ, y = r sin θ, z = θ .
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s o l u t i o n We compute ∂(x , y)/∂(r, θ ) = r as in Example 1, and

∂( y, z)

∂(r, θ )
=

∣∣∣sin θ r cos θ

0 1

∣∣∣ = sin θ ,

∂(x , z)

∂(r, θ )
=

∣∣∣cos θ −r sin θ

0 1

∣∣∣ = cos θ.

The area integrand is therefore
√

r 2 + 1, which never vanishes, so the surface is regular.
The area of the helicoid is

∫∫
D

‖Tr × Tθ‖ dr dθ =
∫ 2π

0

∫ 1

0

√
r 2 + 1 dr dθ = 2π

∫ 1

0

√
r 2 + 1 dr.

After a little computation (using the table of integrals), we find that this integral is
equal to

π [
√

2 + log (1 +
√

2)]. ▲

Surface Area of a Graph
A surface S given in the form z = g(x , y), where (x , y) ∈ D, admits the parametri-
zation

x = u, y = v, z = g(u, v)

for (u, v) ∈ D. When g is of class C1, this parametrization is smooth, and the formula
for surface area reduces to

A(S ) =
∫∫

D

⎛
⎝

√(
∂g

∂x

)2

+
(

∂g

∂y

)2

+ 1

⎞
⎠ dA, (4)

after applying the formulas

Tu = i + ∂g

∂u
k, Tv = j + ∂g

∂v
k,

and

Tu × Tv = −∂g

∂u
i − ∂g

∂v
j + k = −∂g

∂x
i − ∂g

∂y
j + k,

as noted in Example 4 of Section 7.3.

Surfaces of Revolution
In most books on one-variable calculus, it is shown that the lateral surface area generated
by revolving the graph of a function y = f (x) about the x axis is given by

A = 2π

∫ b

a
(| f (x)|√1 + [ f ′(x)]2) dx. (5)
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If the graph is revolved about the y axis, the surface area is

A = 2π

∫ b

a
(|x |√1 + [ f ′(x)]2) dx. (6)

We shall derive formula (5) by using the methods just developed; we can obtain formula
(6) in a similar fashion (Exercise 10).

To derive formula (5) from formula (3), we must give a parametrization of S. Define
the parametrization by

x = u, y = f (u) cos v, z = f (u) sin v

over the region D given by

a ≤ u ≤ b, 0 ≤ v ≤ 2π.

This is indeed a parametrization of S, because for fixed u, the point

(u, f (u) cos v, f (u) sin v)

traces out a circle of radius | f (u)| with the center (u, 0, 0) (Figure 7.4.3).
We calculate

∂(x , y)

∂(u, v)
= − f (u) sin v,

∂( y, z)

∂(u, v)
= f (u) f ′(u),

∂(x , z)

∂(u, v)
= f (u) cos v,

and so by formula (3)

A(S ) =
∫∫

D

√[
∂(x , y)

∂(u, v)

]2

+
[
∂( y, z)

∂(u, v)

]2

+
[

∂(x , z)

∂(u, v)

]2

du dv

=
∫∫

D

√
[ f (u)]2 sin2 v + [ f (u)]2[ f ′(u)]2 + [ f (u)]2 cos2 v du dv

=
∫∫

D
| f (u)|√1 + [ f ′(u)]2 du dv

=
∫ b

a

∫ 2π

0
| f (u)|√1 + [ f ′(u)]2 dv du

= 2π

∫ b

a
| f (u)|√1 + [ f ′(u)]2 du,

which is formula (5).

| f (x)|

y

x
a x b

Circumference = 2π | f (x)|

figure 7.4.3 The curve y = f (x) rotated
about the x axis.
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If S is the surface of revolution, then 2π | f (x)| is the circumference of the vertical
cross section to S at the point x (Figure 7.4.3). Observe that we can write

2π

∫ b

a
| f (x)|√1 + [ f ′(x)]2 dx =

∫
c

2π | f (x)| ds,

where the expression on the right is the path integral of 2π | f (x)| along the path given
by c: [a, b] → R2, t �→ (t , f (t)). Therefore, the lateral surface of a solid of revolution
is obtained by integrating the cross-sectional circumference along the path that is the
graph of the given function.

Historical Note

The most famous mathematician in ancient times was Archimedes. In addition to
being an extraordinarily gifted mathematician, he was also an engineering
genius on a scale never before seen and was greatly admired by his
contemporaries and by later writers for his insights into mechanics. It was these
talents that helped the people of the city of Syracuse in 214 B.C. to defend their
city against the onslaught of the Roman legions under their commander
Marcellus.

When the Romans besieged the city, they encountered an enemy whom
Archimedes had supplied---totally unexpectedly---with powerful weapons,
including artillery and burning mirrors, which, as legend has it, incinerated the
Roman fleet.

The siege of Syracuse lasted two years, and the city finally fell as a result of
acts of treason. In the aftermath of the assault, the old scientist was slain by a
Roman soldier, even though the commander had asked his men to spare
Archimedes' life. As the story goes, Archimedes was sitting in front of his house
studying some geometric figures he had drawn in the sand. When a Roman
soldier approached, Archimedes shouted out, “Don’t disturb my figures!” The
ruffian, feeling insulted, slew Archimedes.

To honor this great man, Marcellus erected a tomb for Archimedes on which,
according to Archimedes’ own wishes, were depicted a cone, a sphere, and a
cylinder (Figure 7.4.4).

Archimedes was incredibly proud of his calculation of the volume and surface
area of the sphere, which justifiably were seen as truly outstanding
accomplishments for their time. As in his works on centers of gravity, for which he
provided no clear definition, Archimedes was able to compute the surface area
of the sphere without having a clear definition of precisely what it was. However,
as with many mathematical works, one knows the answer long before a proof or
even the correct definition can be found.

The problem of properly defining surface areas is a difficult one. To
Archimedes’ credit, a careful theory of surface areas was not achieved until the

1 : 2 : 3 = : :

figure 7.4.4 Archimedes’ theorem: The ratios of the volumes of a cone, a
half ball, and a cylinder, all of the same height and radius, are 1:2:3.
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twentieth century, after a long development that began in the seventeenth
century with the discovery of calculus.

Christiaan Huygens (1629--1695) was the first person since Archimedes to give
results on the areas of special surfaces beyond the sphere, and he obtained the
areas of portions of surfaces of revolution, such as the paraboloid and
hyperboloid.

The brilliant and prolific mathematician Leonhard Euler (1707--1783) presented
the first fundamental work on the theory of surfaces in 1760 with Recherches sur la
courbure des surfaces. However, it was in 1728, in a paper on shortest paths on
surfaces, that Euler defined a surface as a graph z = f (x,y). Euler was interested
in studying the curvature of surfaces, and in 1771 he introduced the notion of the
parametric surfaces that are described in this section.

After the rapid development of calculus in the early eighteenth century,
formulas for the lengths of curves and areas of surfaces were developed.
Although we do not know when all the area formulas presented in this section first
appeared, they were certainly common by the end of the eighteenth century.
The underlying concepts of the length of a curve and the area of a surface were
understood intuitively before this time, and the use of formulas from calculus to
compute areas was considered a great achievement.

Augustin-Louis Cauchy (1789--1857) was the first to take the step of defining the
quantities of length and surface areas by integrals as we have done in this book.
The question of defining surface area independent of integrals was taken up
somewhat later, but this posed many difficult problems that were not properly
resolved until this century.

The Spheres of Archimedes can be seen throughout nature, from the shapes of
stars and planets to that of soap bubbles. Figure 7.4.5 shows a boy blowing a
soap bubble.

Bubble blowing is an old pastime. There is even an Etruscan Vase in the Louvre
on which children are portrayed blowing bubbles. Have you ever wondered why
soap bubbles are round and not cubical? Analogously, why are the planets and
sun round? What really determines shape and form in our universe?

figure 7.4.5 A boy blowing a soap bubble. Painting by
the French artist Jean Baptiste Siméon Chardin
(1699–1779), The Metropolitan Museum of Art, New York.
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Answers to these questions involve central concepts in our book, namely,
problems of maxima and minima, and in the case of soap bubbles problems of
area and volume. Soap bubbles are round because nature is economical. The
spherical shape is the shape of the unique surface of least possible area
containing a fixed volume (which in the case of a bubble is air).

Mathematical problems of this kind belong to a subject called The Calculus of
Variations, a subject almost as old as The Calculus itself.

For more information, consult our Internet supplement or the book The
Parsimonious Universe by Hildebrandt and Tromba (Springer-Verlag, 1995).

exercises

1. Find the surface area of the unit sphere S represented
parametrically by �: D → S ⊂ R3, where D is the
rectangle 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π and � is given by the
equations

x = cos θ sin φ , y = sin θ sin φ , z = cos φ.

Note that we can represent the entire sphere
parametrically, but we cannot represent it in the form
z = f (x , y).

2. In Exercise 1, what happens if we allow φ to vary from
−π/2 to π/2? From 0 to 2π? Why do we obtain
different answers?

3. Find the area of the helicoid in Example 2 if the domain
D is 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 3π .

4. The torus T can be represented parametrically by the
function �: D → R3, where � is given by the
coordinate functions x = (R + cos φ) cos θ ,
y = (R + cos φ) sin θ , z = sin φ; D is the rectangle
[0, 2π ] × [0, 2π ], that is, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ 2π ; and
R > 1 is fixed (see Figure 7.4.6). Show that
A(T ) = (2π )2 R, first by using formula (3) and then by
using formula (6).

R

x

z

y
(0, R, 0)

figure 7.4.6 A cross section of a torus.

5. Let �(u, v) = (eu cos v, eu sin v, v) be a mapping from
D = [0, 1] × [0, π ] in the uv plane onto a surface S in
xyz space.

(a) Find Tu × Tv .

(b) Find the equation for the tangent plane to S when
(u, v) = (0, π

2 ).

(c) Find the area of �(D).

6. Find the area of the surface defined by z = xy and
x2 + y2 ≤ 2.

7. Use a surface integral to find the area of the triangle T in
R3 with vertices at (1, 1, 0), (2, 1, 2), and (2, 3, 3).
Verify your answer by finding the lengths of the sides
and using classical geometry.
[HINT: Write the triangle as the graph z = g(x , y) over a
triangle T ∗ in the xy plane.]

8. Use a surface integral to find the area of the quadrilateral
D in R3 with vertices at (−1, 1, 2), (1, 1, 2), (0, 3, 5),
and (5, 3, 5). Verify your answer by finding the lengths
of the sides and using classical geometry. [HINT: See the
hint in the previous problem.]

9. Let �(u, v) = (u − v, u + v, uv) and let D be the unit
disc in the uv plane. Find the area of �(D).

10. Find the area of the portion of the unit sphere that is cut
out by the cone z ≥

√
x2 + y2 (see Exercise 1).

11. Show that the surface x = 1/
√

y2 + z2, where
1 ≤ x < ∞, can be filled but not painted!

12. Find a parametrization of the surface x2 − y2 = 1,
where x > 0, −1 ≤ y ≤ 1 and 0 ≤ z ≤ 1. Use your
answer to express the area of the surface as an integral.

13. Represent the ellipsoid E :

x2

a2 + y2

b2 + z2

c2 = 1
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parametrically and write out the integral for its surface
area A(E). (Do not evaluate the integral.)

14. Let the curve y = f (x), a ≤ x ≤ b, be rotated about the
y axis. Show that the area of the surface swept out is
given by equation (6); that is,

A = 2π

∫ b

a
|x |

√
1 + [ f ′(x)]2 dx.

Interpret the formula geometrically using arc length and
slant height.

15. Find the area of the surface obtained by rotating the
curve y = x2, 0 ≤ x ≤ 1, about the y axis.

16. Use formula (4) to compute the surface area of the cone
in Example 1.

17. Find the area of the surface defined by
x + y + z = 1, x2 + 2y2 ≤ 1.

18. Show that for the vectors Tu and Tv , we have the
formula

‖Tu×Tv‖ =
√[

∂(x , y)

∂(u, v)

]2
+

[
∂( y, z)

∂(u, v)

]2
+

[
∂(x , z)

∂(u, v)

]2
.

19. Compute the area of the surface given by

x = r cos θ , y = 2r cos θ , z = θ ,
0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

Sketch.

20. Prove Pappus’ theorem: Let c: [a, b] → R2 be a C1

path whose image lies in the right half plane and is a
simple closed curve. The area of the lateral surface
generated by rotating the image of c about the y axis is
equal to 2π x̄l(c), where x̄ is the average value of the x
coordinates of points on c and l(c) is the length of c.
(See Exercises 16 to 19, Section 7.1, for a discussion of
average values.)

21. The cylinder x2 + y2 = x divides the unit sphere S into
two regions S1 and S2, where S1 is inside the cylinder
and S2 outside. Find the ratio of areas A(S2)/A(S1).

22. Suppose a surface S that is the graph of a function
z = f (x , y), where (x , y) ∈ D ⊂ R2 can also be
described as the set of (x , y, z) ∈ R3 with
F(x , y, z) = 0 (a level surface). Derive a formula for
A(S ) that involves only F .

23. Calculate the area of the frustum shown in Figure 7.4.7
using (a) geometry alone and, second, (b) a surface-area
formula.

y

r1

s

b

r2

xa

y = mmx + q

figure 7.4.7 A line segment revolved
around the y axis becomes a frustum of a
cone.

24. A cylindrical hole of radius 1 is bored through a solid
ball of radius 2 to form a ring coupler, as shown in
Figure 7.4.8. Find the volume and outer surface area of
this coupler.

y

x

z

figure 7.4.8 Find the outer surface area
and volume of the shaded region.

25. Find the area of the graph of the function f (x , y) =
2
3 (x3/2 + y3/2) that lies over the domain [0, 1] × [0, 1].

26. Express the surface area of the following graphs over the
indicated region D as a double integral. Do not evaluate.

(a) (x + 2y)2; D = [−1, 2] × [0, 2]

(b) xy + x/( y + 1); D = [1, 4] × [1, 2]

(c) xy3ex2 y2
; D = unit circle centered at the origin

(d) y3 cos2 x ; D = triangle with vertices
(−1, 1), (0, 2), and (1, 1)

27. Show that the surface area of the upper hemisphere of
radius R, z =

√
R2 − x2 − y2, can be computed by

formula (4), evaluated as an improper integral.
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7.5 Integrals of Scalar Functions Over Surfaces

Now we are ready to define the integral of a scalar function f over a surface S.
This concept is a natural generalization of the area of a surface, which corresponds to
the integral over S of the scalar function f (x , y, z) = 1. This is quite analogous to
considering the path integral as a generalization of arc length. In the next section we
shall deal with the integral of a vector function F over a surface. These concepts will
play a crucial role in the vector analysis treated in the final chapter.

Let us start with a surface S parametrized by a mapping �: D → S ⊂ R3, where D
is an elementary region, which we write as �(u, v) = (x(u, v), y(u, v), z(u, v)).

Definition The Integral of a Scalar Function Over a Surface
If f (x , y, z) is a real-valued continuous function defined on a parametrized surface
S, we define the integral of f over S to be

∫∫
S

f (x , y, z) d S =
∫∫

S
f d S =

∫∫
D

f (�(u, v))‖Tu × Tv‖ du dv. (1)

Written out, equation (1) becomes
∫∫

S
f d S =

∫∫
D

f (x(u, v), y(u, v), z(u, v))

√[
∂(x , y)

∂(u, v)

]2

+
[
∂( y, z)

∂(u, v)

]2

+
[

∂(x , z)

∂(u, v)

]2

du dv. (2)

Thus, if f is identically 1, we recover the area formula (3) of Section 7.4. Like surface
area, the surface integral is independent of the particular parametrization used. This will
be discussed in Section 7.6.

We can gain some intuitive knowledge about this integral by considering it as a limit
of sums. Let D be a rectangle partitioned into n2 rectangles Rij with areas �u �v. Let
Sij = �(Rij) be the portion of the surface �(D) corresponding to Rij (see Figure 7.5.1),
and let A(Sij) be the area of this portion of the surface. For large n, f will be approxi-
mately constant on Sij, and we form the sum

Sn =
n−1∑
i=0

n−1∑
j=0

f (�(ui , v j )) A(Sij), (3)

figure 7.5.1 � takes a portion Rij

of D to a portion of S.

u

x

y

D
�

z

Rij

Sij

S

v
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where (ui , v j ) ∈ Rij. From Section 7.4 we have a formula for A(Sij):

A(Sij) =
∫∫

Rij

‖Tu × Tv‖ du dv,

which, by the mean-value theorem for integrals, equals ‖Tu∗
i
× Tv∗

j
‖ �u �v for some

point (u∗
i , v∗

j ) in Rij. Hence, our sum becomes

Sn =
n−1∑
i=0

n−1∑
j=0

f (�(ui , v j ))‖Tu∗
i
× Tv∗

j
‖�u �v,

which is an approximating sum for the last integral in formula (1). Therefore,

limit
n→∞

Sn =
∫∫

S
f d S.

Note that each term in the sum in formula (3) is the value of f at some point
�(ui , v j ) times the area of Sij. Compare this with the Riemann-sum interpretation of
the path integral in Section 7.1.

If S is a union of parametrized surfaces Si , i = 1, . . . , N , that do not intersect
except possibly along curves defining their boundaries, then the integral of f over S is
defined by

∫∫
S

f d S =
N∑

i=1

∫∫
Si

f d S,

as we should expect. For example, the integral over the surface of a cube may be
expressed as the sum of the integrals over the six sides.

example 1 Suppose a helicoid is described as in Example 2, Section 7.4, and let f be given by
f (x , y, z) = √

x2 + y2 + 1. Find
∫∫

S f d S.

solut ion As in Examples 1 and 2 of Section 7.4,

∂(x , y)

∂(r, θ )
= r,

∂( y, z)

∂(r, θ )
= sin θ ,

∂(x , z)

∂(r, θ )
= cos θ.

Also, f (r cos θ , r sin θ , θ ) = √
r 2 + 1. Therefore,

∫∫
S

f (x , y, z) d S =
∫∫

D
f (�(r, θ ))‖Tr × Tθ‖ dr dθ

=
∫ 2π

0

∫ 1

0

√
r 2 + 1

√
r 2 + 1 dr dθ =

∫ 2π

0

4

3
dθ = 8

3
π.

▲

Surface Integrals Over Graphs
Suppose S is the graph of a C1 function z = g(x , y). Recall from Section 7.4 that we
can parametrize S by

x = u, y = v, z = g(u, v),
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and that in this case

‖Tu × Tv‖ =
√

1 +
(

∂g

∂u

)2

+
(

∂g

∂v

)2

,

so

∫∫
S

f (x , y, z) d S =
∫∫

D
f (x , y, g(x , y))

√
1 +

(
∂g

∂x

)2

+
(

∂g

∂y

)2

dx dy. (4)

example 2 Let S be the surface defined by z = x2 + y, where D is the region 0 ≤ x ≤ 1,
−1 ≤ y ≤ 1. Evaluate

∫∫
S x d S.

solut ion If we let z = g(x , y) = x2 + y, formula (4) gives

∫∫
S

x d S =
∫∫

D
x

√
1 +

(
∂g

∂x

)2

+
(

∂g

∂y

)2

dx dy =
∫ 1

−1

∫ 1

0
x
√

1 + 4x2 + 1 dx dy

= 1

8

∫ 1

−1

[ ∫ 1

0
(2 + 4x2)1/2(8x dx)

]
dy = 2

3
· 1

8

∫ 1

−1
[(2 + 4x2)3/2]|10 dy

= 1

12

∫ 1

−1
(63/2 − 23/2) dy = 1

6
(63/2 − 23/2) =

√
6 −

√
2

3

=
√

2

(√
3 − 1

3

)
.

▲

example 3 Evaluate
∫∫

S z2 d S, where S is the unit sphere x2 + y2 + z2 = 1.

solut ion For this problem, it is convenient to use spherical coordinates and to represent the sphere
parametrically by the equations x = cos θ sin φ , y = sin θ sin φ , z = cos φ, over the
region D in the θφ plane given by the inequalities 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π . From
equation (1) we get

∫∫
S

z2 d S =
∫∫

D
(cos φ)2‖Tθ × Tφ‖ dθ dφ.

A little computation [use formula (2) of Section 7.4; see Exercise 12] shows that

‖Tθ × Tφ‖ = sin φ.

(Note that for 0 ≤ φ ≤ π, we have sin φ ≥ 0.) Thus,

∫∫
S

z2 d S =
∫ 2π

0

∫ π

0
cos2 φ sin φ dφ dθ

= 1

3

∫ 2π

0
[−cos3φ]π0 dθ = 2

3

∫ 2π

0
dθ = 4π

3
.

▲

This example also shows that on a sphere of radius R,

∫∫
S

f ds =
∫ 2π

0

∫ π

0
f (φ , θ )R2 sin φ dφ dθ ,
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or, for short, the area element on the sphere is given by

d S = R2 sin φ dφ dθ.

Integrals Over Graphs
We now develop another formula for surface integrals when the surface can be repre-
sented as a graph. To do so, we let S be the graph of z = g(x , y) and consider formula
(4). We claim that

∫∫
S

f (x , y, z) d S =
∫∫

D

f (x , y, g(x , y))

cos θ
dx dy, (5)

where θ is the angle the normal to the surface makes with the unit vector k at the point
(x , y, g(x , y)) (see Figure 7.5.2). Describing the surface by the equation φ(x , y, z) =
z − g(x , y) = 0, a normal vector N is ∇φ; that is,

N = −∂g

∂x
i − ∂g

∂y
j + k (6)

[see Example 4 of Section 7.3, or recall that the normal to a surface with equation
g(x , y, z) = constant is given by ∇g]. Thus,

cos θ = N · k

‖N‖ = 1√
(∂g/∂x)2 + (∂g/∂y)2 + 1

.

Substitution of this formula into equation (4) gives equation (5). Note that cos θ = n · k,
where n = N/‖N‖ is the unit normal. Thus, we can write

dS = dx dy

n · k
.

The result is, in fact, obvious geometrically, for if a small rectangle in the xy plane
has area �A, then the area of the portion above it on the surface is �S = �A/cos θ

(Figure 7.5.2). This intuitive approach can help us to remember formula (5) and to apply
it in problems.

y

x

z

k

q
n

D

z = g(x(( , y)

ΔS

ΔS cos q  = ΔA

ΔA

figure 7.5.2 The area of a patch of area
�S over a patch �A is �S = �A/cos θ ,
where θ is the angle the unit normal n
makes with k.
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example 4 Compute
∫∫

S x d S, where S is the triangle with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) (see
Figure 7.5.3).

y

x

z

D

S

(1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 
k

n

q
figure 7.5.3 In computing a specific surface
integral, we find a formula for the unit normal
n and computes the angle θ in preparation for
formula (5).

solut ion This surface is the plane described by the equation x + y + z = 1. Because the surface
is a plane, the angle θ is constant and a unit normal vector is n = (1/

√
3, 1/

√
3, 1/

√
3).

Thus, cos θ = n · k = 1/
√

3, and by equation (5),∫∫
S

x d S =
√

3
∫∫

D
x dx dy,

where D is the domain in the xy plane. But

√
3

∫∫
D

x dx dy =
√

3
∫ 1

0

∫ 1−x

0
x dy dx =

√
3

∫ 1

0
x(1 − x) dx =

√
3

6
.

▲

Integrals of functions over surfaces are useful for computing the mass of a surface
when the mass density function m is known. The total mass of a surface with mass
density (per unit area) m is given by

M(S ) =
∫∫

S
m(x , y, z) d S. (7)

example 5 Let �: D → R3 be the parametrization of the helicoid S = �(D) of Example 2
of Section 7.4. Recall that �(r, θ ) = (r cos θ , r sin θ , θ ), where 0 ≤ θ ≤ 2π , and
0 ≤ r ≤ 1. Suppose S has a mass density at (x , y, z) ∈ S equal to twice the distance of
(x , y, z) from the central axis (see Figure 7.4.2), that is, m(x , y, z) = 2

√
x2 + y2 = 2r ,

in the cylindrical coordinate system. Find the total mass of the surface.

solut ion Applying formula (7),

M(S ) =
∫∫

S
2
√

x2 + y2 d S =
∫∫

D
2r d S =

∫∫
D

2r‖Tr × Tθ‖ dr dθ.

From Example 2 of Section 7.4, we see that ‖Tr × Tθ‖ = √
1 + r 2. Thus,

M(S ) =
∫∫

D
2r

√
1 + r 2 dr dθ =

∫ 2π

0

∫ 1

0
2r

√
1 + r 2 dr dθ

=
∫ 2π

0

[
2

3
(1 + r 2)3/2

]1

0

dθ =
∫ 2π

0

2

3
(23/2 − 1) dθ = 4π

3
(23/2 − 1).

▲
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exercises

1. Evaluate the integral of the function f (x , y, z) = x + y
over the surface S given by:

�(u, v) = (2u cos v, 2u sin v, u), u ∈ [0, 4], v ∈ [0, π ]

2. Evaluate the integral of the function f (x , y, z) = z + 6
over the surface S given by:

�(u, v) = (u,
v

3
, v), u ∈ [0, 2], v ∈ [0, 3].

3. Evaluate the integral

∫∫
S
(3x − 2y + z) d S,

where S is the portion of the plane 2x + 3y + z = 6 that
lies in the first octant.

4. Evaluate the integral

∫∫
S
(x + z) d S,

where S is the part of the cylinder y2 + z2 = 4 with
x ∈ [0, 5].

5. Let S be the surface defined by

�(u, v) = (u + v, u − v, uv).

(a) Show that the image of S is in the graph of the
surface 4z = x2 − y2.

(b) Evaluate
∫∫

S x d S for all points on the graph S, over
x2 + y2 ≤ 1.

6. Evaluate the integral
∫∫

S
(x2z + y2z) d S,

where S is the part of the plane z = 4 + x + y that lies
inside the cylinder x2 + y2 = 4.

7. Compute
∫∫

S xy d S, where S is the surface of the
tetrahedron with sides z = 0, y = 0, x + z = 1, and
x = y.

8. Evaluate
∫∫

S xyz d S, where S is the triangle with
vertices (1, 0, 0), (0, 2, 0), and (0, 1, 1).

9. Evaluate
∫∫

S z d S, where S is the upper hemisphere of
radius a, that is, the set of (x , y, z) with
z =

√
a2 − x2 − y2.

10. Evaluate
∫∫

S(x + y + z) d S, where S is the boundary of
the unit ball B; that is, S is the set of (x , y, z) with
x2 + y2 + z2 = 1. (HINT: Use the symmetry of the
problem.)

11. (a) Compute the area of the portion of the cone
x2 + y2 = z2 with z ≥ 0 that is inside the sphere
x2 + y2 + z2 = 2Rz, where R is a positive constant.

(b) What is the area of that portion of the sphere that is
inside the cone?

12. Verify that in spherical coordinates, on a sphere of
radius R,

‖Tφ × Tθ‖ dφ dθ = R2 sin φ dφ dθ.

13. Evaluate
∫∫

S z d S, where S is the surface
z = x2 + y2, x2 + y2 ≤ 1.

14. Evaluate the surface integral
∫∫

S z2 d S, where S is the
boundary of the cube C = [−1, 1] × [−1, 1] × [−1, 1].
(HINT: Do each face separately and add the results.)

15. Find the mass of a spherical surface S of radius R such
that at each point (x , y, z) ∈ S the mass density is equal
to the distance of (x , y, z) to some fixed point
(x0, y0, z0) ∈ S.

16. A metallic surface S is in the shape of a hemisphere
z =

√
R2 − x2 − y2, where (x , y) satisfies

0 ≤ x2 + y2 ≤ R2. The mass density at (x , y, z) ∈ S is
given by m(x , y, z) = x2 + y2. Find the total mass of S.

17. Let S be the sphere of radius R.

(a) Argue by symmetry that
∫∫

S
x2 d S =

∫∫
S

y2 d S =
∫∫

S
z2 d S.

(b) Use this fact and some clever thinking to evaluate,
with very little computation, the integral

∫∫
S

x2 d S.

(c) Does this help in Exercise 16?

18. (a) Use Riemann sums to justify the formula

1

A(S )

∫∫
S

f (x , y, z) d S

for the average value of f over the surface S.
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(b) In Example 3 of this section, show that the average
of f (x , y, z) = z2 over the sphere is 1/3.

(c) Define the center of gravity ( x̄ , ȳ, z̄) of a surface S
to be such that x̄ , ȳ, and z̄ are the average values of
the x , y, and z coordinates on S. Show that the
center of gravity of the triangle in Example 4 of this
section is ( 1

3 , 1
3 , 1

3 ).

19. Find the average value of f (x , y, z) = x + z2 on the
truncated cone z2 = x2 + y2, with 1 ≤ z ≤ 4.

20. Evaluate the integral

∫∫
S
(1 − z) d S,

where S is the graph of z = 1 − x2 − y2, with
x2 + y2 ≤ 1.

21. Find the x , y, and z coordinates of the center of gravity
of the octant of the solid sphere of radius R and centered
at the origin determined by x ≥ 0, y ≥ 0, z ≥ 0. (HINT:
Write this octant as a parametrized surface—see
Example 3 of this section and Exercise 18.)

22. Find the z coordinate of the center of gravity (the average
z coordinate) of the surface of a hemisphere (z ≤ 0)
with radius r (see Exercise 18). Argue by symmetry that
the average x and y coordinates are both zero.

23. Let �: D ⊂ R2 → R3 be a parametrization of a surface
S defined by

x = x(u, v), y = y(u, v), z = z(u, v).

(a) Let

∂�

∂u
=

(
∂x

∂u
,
∂y

∂u
,

∂z

∂u

)
and

∂�

∂v
=

(
∂x

∂v
,
∂y

∂v
,

∂z

∂v

)
,

that is, ∂�/∂u = Tu and ∂�/∂v = Tv , and set

E =
∥∥∥∂�

∂u

∥∥∥2
, F = ∂�

∂u
· ∂�

∂v
, G =

∥∥∥∂�

∂v

∥∥∥2
.

Show that

√
EG − F2 = ‖Tu × Tv‖,

and that the surface area of S is

A(S ) =
∫ ∫

D

√
EG − F2 du dv.

In this notation, how can we express
∫∫

S f dS for a
general function of f ?

(b) What does the formula for A(S ) become if the
vectors ∂�/∂u and ∂�/∂v are orthogonal?

(c) Use parts (a) and (b) to compute the surface area of
a sphere of radius a.

24. Dirichlet’s functional for a parametrized surface
�: D → R3 is defined by11

J (�) = 1

2

∫∫
D

(∥∥∥∂�

∂u

∥∥∥2
+

∥∥∥∂�

∂v

∥∥∥2)
du dv.

Use Exercise 23 to argue that the area A(�) ≤ J (�)
and equality holds if

(a)
∥∥∥∂�

∂u

∥∥∥2
=

∥∥∥∂�

∂v

∥∥∥2
and (b)

∂�

∂u
· ∂�

∂v
= 0.

Compare these equations with Exercise 23 and the
remarks at the end of Section 7.4. A parametrization �

that satisfies conditions (a) and (b) is said to be
conformal.

25. Let D ⊂ R2 and �: D → R2 be a smooth function
�(u, v) = (x(u, v), y(u, v)) satisfying conditions (a)
and (b) of Exercise 16 and assume that

det

⎡
⎢⎢⎣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

⎤
⎥⎥⎦ > 0.

Show that x and y satisfy the Cauchy–Riemann
equations ∂x/∂u = ∂y/∂v, ∂x/∂v = −∂y/∂u.
Conclude that ∇2� = 0 (i.e., each component of � is
harmonic).

26. Let S be a sphere of radius r and p be a point inside or
outside the sphere (but not on it). Show that

∫∫
S

1

‖x − p‖ d S =
{

4πr if p is inside S
4πr2/d if p is outside S,

11Dirichlet’s functional played a major role in the mathematics of the nineteenth century. The mathematician Georg Friedrich Bernhard Riemann
(1826–1866) used it to develop his complex function theory and to give a proof of the famous Riemann mapping theorem. Today it is still used
extensively as a tool in the study of partial differential equations.
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where d is the distance from p to the center of the sphere
and the integration is over the sphere. [HINT: Assume p
is on the z-axis. Then change variables and evaluate.
Why is this assumption on p justified?]

27. Find the surface area of that part of the cylinder
x2 + z2 = a2 that is inside the cylinder x2 + y2 = 2ay
and also in the positive octant (x ≥ 0, y ≥ 0, z ≥ 0).
Assume a > 0.

28. Let a surface S be defined implicitly by F(x , y, z) = 0
for (x , y) in a domain D of R2. Show that

∫∫
S

∣∣∣∂ F

∂z

∣∣∣ d S

=
∫∫

D

√(
∂ F

∂x

)2
+

(
∂ F

∂y

)2
+

(
∂ F

∂z

)2
dx dy.

Compare with Exercise 22 of Section 7.4.

7.6 Surface Integrals of Vector Fields

The goal of this section is to develop the notion of the integral of a vector field over a
surface. Recall that the definition of the line integral of a vector field was motivated by
the fundamental physical notion of work. Similarly, there is a basic physical notion of
flux that motivates the definition of the surface integral of a vector field.

For example, if the vector field is the velocity field of a fluid (perhaps the velocity
field of a flowing river), and we put an imagined mathematical surface into the fluid,
we can ask: “What is the rate at which fluid is crossing the given surface (measured in,
say, cubic meters per second)?” The answer is given by the surface integral of the fluid
velocity vector field over the surface.

We shall come back to the physical interpretation shortly and reconcile it with the
formal definition that we give first.

Definition of the Surface Integral
We now define the integral of a vector field, denoted F, over a surface S. We first
give the definition and later in this section give its physical interpretation. This can
also be used as a motivation for the definition if you so desire. Also, we shall start
with a parametrized surface � and later study the question of independence of
parametrization.

Definition The Surface Integral of Vector Fields Let F be a vector field
defined on S, the image of a parametrized surface �. The surface integral of F
over �, denoted by

∫∫
�

F · dS,

is defined by (see Figure 7.6.1)

∫∫
�

F · dS =
∫∫

D
F · (Tu × Tv) du dv.
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figure 7.6.1 The geometric
significance of F · (Tu × Tv ).

Tu � TvF• (Tu � Tv )
||Tu � Tv ||

z

x

y

u

v

D
S

Φ (D(( ) = S

Tu Tv

F

example 1 Let D be the rectangle in the θφ plane defined by

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π,

and let the surface S be defined by the parametrization �: D → R3 given by

x = cos θ sin φ , y = sin θ sin φ , z = cos φ.

(Thus, θ and φ are the angles of spherical coordinates, and S is the unit sphere para-
metrized by �.) Let r be the position vector r(x , y, z) = x i + yj + zk. Compute∫∫

�
r · dS.

solut ion First we find

Tθ = (−sin φ sin θ )i + (sin φ cos θ )j
Tφ = (cos θ cos φ)i + (sin θ cos φ)j − (sin φ)k,

and hence

Tθ × Tφ = (−sin2φ cos θ )i − (sin2 φ sin θ )j − (sin φ cos φ)k.

Then we evaluate

r · (Tθ × Tφ) = (x i + yj + zk) · (Tθ × Tφ)
= [(cos θ sin φ)i + (sin θ sin φ)j + (cos φ)k]

· (−sin φ)[(sin φ cos θ )i + (sin φ sin θ )j + (cos φ)k]
= (−sin φ)(sin2 φ cos2 θ + sin2 φ sin2 θ + cos2 φ) = −sin φ.

Thus,
∫∫

�

r · dS =
∫∫

D
−sin φ dφ dθ =

∫ 2π

0
(−2) dθ = −4π. ▲

Orientation
An analogy can be drawn between the surface integral

∫∫
�

F · dS and the line integral∫
c F · ds. Recall that the line integral is an oriented integral. We needed the notion of

orientation of a curve to extend the definition of
∫

c F · ds to line integrals
∫

C F · ds over
oriented curves. We extend the definition of

∫∫
�

F · dS to oriented surfaces in a similar
fashion; that is, given a surface S parametrized by a mapping �, we want to define∫∫

S F · dS = ∫∫
�

F · dS and show that it is independent of the parametrization, except
possibly for the sign. To accomplish this, we need the notion of orientation of a surface.
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Definition Oriented Surfaces An oriented surface is a two-sided surface
with one side specified as the outside or positive side; we call the other side the
inside or negative side.12 At each point (x , y, z) ∈ S there are two unit normal
vectors n1 and n2, where n1 = −n2 (see Figure 7.6.2). Each of these two normals
can be associated with one side of the surface. Thus, to specify a side of a surface
S, at each point we choose a unit normal vector n that points away from the positive
side of S at that point.

n2

S

n1

figure 7.6.2 The two possible unit
normals to a surface at a point.

This definition assumes that our surface does have two sides. In fact, this is necessary,
because there are examples of surfaces with only one side! The first known example
of such a surface was the Möbius strip (named after the German mathematician and
astronomer A. F. Möbius, who, along with the mathematician J. B. Listing, discovered
it in 1858). Pictures of such a surface are given in Figures 7.6.3 and 7.6.4. At each point
of M there are two unit normals, n1 and n2. However, n1 does not determine a unique
side of M , and neither does n2. To see this intuitively, we can slide n2 around the closed
curve C (Figure 7.6.3). When n2 returns to a fixed point p on C it will coincide with
n1, showing that both n1 and n2 point away from the same side of M and, consequently,
that M has only one side.

Figure 7.6.4 is a Möbius strip as drawn by the well-known twentieth-century mathe-
matician and artist M. C. Escher. It depicts ants crawling along the Möbius band. After

n2

p
C

M 

n1

figure 7.6.3 The Möbius strip: Slide n2 around C
once; when n2 returns to its initial point, it will
coincide with n1 = −n2.

figure 7.6.4 Ants walking on a
Möbius strip.

12We use the term “side” in an intuitive sense. This concept can be developed rigorously, but this will
not be done here. Also, the choice of the side to be named the “outside” is often dictated by the surface
itself, as, for example, is the case with a sphere. In other cases, the naming is somewhat arbitrary (see
the piece of surface depicted in Figure 7.6.2, for instance).
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one trip around the band (without crossing an edge) they end up on the “opposite side”
of the surface.

Let �: D → R3 be a parametrization of an oriented surface S and suppose S is
regular at �(u0, v0), (u0, v0) ∈ D; thus, the vector (Tu0 × Tv0 )/‖Tu0 × Tv0‖ is defined.
If n(�(u0, v0)) denotes the unit normal to S at �(u0, v0), it follows that

(Tu0 × Tv0 )/‖Tu0 × Tv0‖ = ±n(�(u0, v0)).

The parametrization � is said to be orientation-preserving if we have the + sign;
that is, if (Tu ×Tv)/‖Tu ×Tv‖ = n(�(u, v)) at all (u, v) ∈ D for which S is smooth at
�(u, v). In other words, � is orientation-preserving if the vector Tu × Tv points to the
outside of the surface. If Tu×Tv points to the inside of the surface at all points (u, v) ∈ D
for which S is regular at �(u, v), then � is said to be orientation-reversing. Using the
preceding notation, this condition corresponds to the choice (Tu × Tv)/‖Tu × Tv‖ =
−n(�(u, v)).

It follows from this discussion that the Möbius band M cannot be parametrized
by a single parametrization for which n = Tu × Tv �= 0 and n is continuous over
the whole surface13 (if there were such a parameterization, then M would indeed have
two sides, one determined by n and one determined by −n). The sphere in Example
1 can be parametrized by a single parametrization, but not by one that is everywhere
one-to-one—see the discussion at the beginning of Section 7.4.

Thus, any one-to-one parametrized surface for which Tu × Tv never vanishes can
be considered as an oriented surface with a positive side determined by the direction of
Tu × Tv .

example 2 We can give the unit sphere x2 + y2 + z2 = 1 in R3 (Figure 7.6.5) an orientation by
selecting the unit vector n(x , y, z) = r, where r = x i + yj + zk, which points to the
outside of the surface. This choice corresponds to our intuitive notion of outside for the
sphere.

Now that the sphere S is an oriented surface, consider the parametrization � of S
given in Example 1. The cross product of the tangent vectors Tθ and Tφ—that is, a
normal to S is given by

(−sin φ)[(cos θ sin φ)i + (sin θ sin φ)j + (cos φ)k] = −r sin φ.

n

n

n

y

x

z

(1,1(  0,0 0, 0) 0))11, ,

(0, 1, 0)

figure 7.6.5 The unit sphere oriented by its
outward normal n.

13There is a single parametrization obtained by cutting a strip of paper, twisting it, and gluing the ends,
but it produces a discontinuous n on the surface.
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Because −sin φ ≤ 0 for 0 ≤ φ ≤ π , this normal vector points inward from the sphere.
Thus, the given parametrization � is orientation-reversing. By swapping the order of θ

and φ, we would get an orientation-preserving parametrization. ▲

Orientation and the Vector Surface Element
of a Sphere
Consider the sphere of radius R, namely, x2 + y2 + z2 = R2. It is standard practice
to orient the sphere with the outward unit normal. In terms of the position vector
r = x i + yj + zk, the outward unit normal is given by

n = r

R
.

The order of spherical coordinates that goes along with this orientation, as is evident
from Example 2, is given by the order (φ, θ ). The computation in Example 2 shows that
the surface-area element is then given by

dS = n · (Tφ × Tθ ) dφ dθ = rR sin φ dφ dθ = nR2 sin φ dφ dθ.

The Orientation of Graphs
The next example discusses the orientation conventions for graphs. We shall compute
the area element on graphs later in this section.

example 3 Let S be a surface described by z = g(x , y). As in equation (6), Section 7.5, there are
two unit normal vectors to S at (x0, y0, g(x0, y0)), namely, ±n, where

n =
−∂g

∂x
(x0, y0)i − ∂g

∂y
(x0, y0)j + k

√[
∂g

∂x
(x0, y0)

]2

+
[
∂g

∂y
(x0, y0)

]2

+ 1

.

We can orient all such surfaces by taking the positive side of S to be the side away from
which n points (Figure 7.6.6). Thus, the positive side of such a surface is determined
by the unit normal n with positive k component—that is, it is upward-pointing. If
we parametrize this surface by �(u, v) = (u, v, g(u, v)), then � will be orientation-
preserving.

y
x

z

deInsi

tsideOut

n

figure 7.6.6 n points away from the outside of the
surface.

▲
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Independence of Parametrization
We now state without proof a theorem showing that the integral over an oriented surface
is independent of the parametrization. The proof of this theorem is analogous to that
of Theorem 1 (Section 7.2); the heart of the proof is again the change of variables
formula—this time applied to double integrals.

Theorem 4 Independence of Surface Integrals on Parametrizations
Let S be an oriented surface and let �1 and �2 be two regular orientation-
preserving parametrizations, with F a continuous vector field defined on S. Then

∫∫
�1

F · dS =
∫∫

�2

F · dS.

If �1 is orientation-preserving and �2 orientation-reversing, then

∫∫
�1

F · dS = −
∫∫

�2

F · dS.

If f is a real-valued continuous function defined on S, and if �1 and �2 are
parametrizations of S, then

∫∫
�1

f d S =
∫∫

�2

f d S.

Note that if f = 1, we obtain

A(S ) =
∫∫

�1

d S =
∫∫

�2

d S,

thus showing that area is independent of parametrization.
We can therefore unambiguously use the notation

∫∫
S

F · dS =
∫∫

�

F · dS

(or a sum of such integrals, if S is a union of parametrized surfaces that intersect only
along their boundary curves) where � is an orientation-preserving parametrization.
Theorem 4 guarantees that the value of the integral does not depend on the selection
of �.

Relation with Scalar Integrals
Recall from formula (1) of Section 7.2 that a line integral

∫
c F · ds can be thought of

as the path integral of the tangential component of F along c (although for the case
in which c intersects itself, the integral obtained is technically not a path integral). A
similar situation holds for surface integrals, because we are assuming that the mappings
� defining the surface S are one-to-one, except perhaps on the boundary of D, which
can be ignored for the purposes of integration. Thus, in defining integrals over surfaces,
we assume in this book that the surfaces are nonintersecting.
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For an oriented smooth surface S and an orientation-preserving parametrization � of
S, we can express

∫∫
S F · dS as an integral of a real-valued function f over the surface.

Let n = (Tu × Tv)/‖Tu × Tv‖ be the unit normal pointing to the outside of S. Then
∫∫

S
F · dS =

∫∫
�

F · dS =
∫∫

D
F · (Tu × Tv) du dv

=
∫∫

D
F ·

(
Tu × Tv

‖Tu × Tv‖
)

‖Tu × Tv‖ du dv

=
∫∫

D
(F · n)‖Tu × Tv‖ du dv =

∫∫
S
(F · n) d S =

∫∫
S

f d S,

where f = F · n. We have thus proved the following theorem.

Theorem 5
∫∫

S F · dS, the surface integral of F over S, is equal to the integral
of the normal component of F over the surface. In short,

∫∫
S

F · dS =
∫∫

S
F · n d S.

The observation in Theorem 5 can often save computational effort, as Example 4
demonstrates.

The Physical Interpretation of Surface Integrals
The geometric and physical significance of the surface integral can be understood by
expressing it as a limit of Riemann sums. For simplicity, we assume D is a rectangle.
Fix a parametrization � of S that preserves orientation and partition the region D into
n2 pieces Dij, 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1. We let �u denote the length of the
horizontal side of Dij and �v denote the length of the vertical side of Dij. Let (u, v)
be a point in Dij, and (x , y, z) = �(u, v) the corresponding point on the surface. We
consider the parallelogram with sides �u Tu and �v Tv lying in the plane tangent to S
at (x , y, z) and the parallelepiped formed by F, �u Tu , and �v Tv . The volume of the
parallelepiped is the absolute value of the triple product

F · (�u Tu × �v Tv) = F · (Tu × Tv) �u �v.

The vector Tu ×Tv is normal to the surface at (x , y, z) and points away from the outside
of the surface. Thus, the number F · (Tu × Tv) is positive when the parallelepiped lies
on the outside of the surface (Figure 7.6.7).

In general, the parallelepiped lies on that side of the surface away from which F
is pointing. If we think of F as the velocity field of a fluid, F(x , y, z) is pointing in
the direction in which fluid is moving across the surface near (x , y, z). Moreover, the
number

|F · (Tu �u × Tv �v)|

measures the amount of fluid that passes through the tangent parallelogram per unit time.
Because the sign of F · (�u Tu ×�v Tv) is positive if the vector F is pointing outward at
(x , y, z) and negative if F is pointing inward,

∑
i, j F · (Tu×Tv) �u �v is an approximate

measure of the net quantity of fluid to flow outward across the surface per unit time.
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figure 7.6.7 F · (Tu × Tv ) > 0
when the parallelpiped formed
by �v Tv , �uTu, and F lies to the
“outside” of the surface S.

u

v

S

Φ

y
x

z

F

ΔuTu

Δv TvΔv

Δu

Dij

Tu

Tv

Tv

n F
F Tu figure 7.6.8 When F · (Tu × Tv ) > 0 (left),

F points outward; when F · (Tu × Tv ) < 0
(right), F points inward.

(Remember that “outward” or “inward” depends on our choice of parametrization.
Figure 7.6.8 illustrates F directed outward and inward, given Tu and Tv .) Hence, the
integral

∫∫
S F · dS is the net quantity of fluid to flow across the surface per unit time,

that is, the rate of fluid flow. This integral is also called the flux of F across the surface.
In the case where F represents an electric or a magnetic field,

∫∫
S F · dS is also

commonly known as the flux. The reader may be familiar with physical laws (such
as Faraday’s law) that relate flux of a vector field to a circulation (or current) in a
bounding loop. This is the historical and physical basis of Stokes’ theorem, which we
will discuss in Section 8.2. The corresponding principle in fluid mechanics is called
Kelvin’s circulation theorem.

Surface integrals also apply to the study of heat flow. Let T (x , y, z) be the temperature
at a point (x , y, z) ∈ W ⊂ R3, where W is some region and T is a C1 function. Then

∇T = ∂T

∂x
i + ∂T

∂y
j + ∂T

∂z
k

represents the temperature gradient, and heat “flows” with the vector field −k ∇T = F,
where k is a positive constant (see Section 8.5). Therefore,

∫∫
S F · dS is the total rate of

heat flow or flux across the surface S.

example 4 Suppose a temperature function is given in R3 by the formula T (x , y, z) = x2 + y2 + z2,
and let S be the unit sphere x2 + y2 + z2 = 1 oriented with the outward normal (see
Example 2). Find the heat flux across the surface S if k = 1.

solut ion We have

F = −∇T (x , y, z) = −2x i − 2yj − 2zk.
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On S, the vector n(x , y, z) = x i+ yj+ zk is the unit “outward” normal to S at (x , y, z),
and f (x , y, z) = F · n = −2x2 − 2y2 − 2z2 = −2 is the normal component of F. From
Theorem 5 we can see that the surface integral of F is equal to the integral of its normal
component f = F · n over S. Thus,

∫∫
S

F · dS =
∫∫

S
f d S = −2

∫∫
S

d S = −2A(S ) = −2(4π ) = −8π.

The flux of heat is directed toward the center of the sphere (why toward?). Clearly, our
observation that

∫∫
S F · dS = ∫∫

S f d S has saved us considerable computational time.
In this example, F(x , y, z) = −2x i−2yj−2zk could also represent an electric field,

in which case
∫∫

S F · dS = −8π would be the electric flux across S. ▲

example 5 Gauss’ Law There is an important physical law, due to the great mathematician and
physicist K. F. Gauss, that relates the flux of an electric field E over a “closed” surface
S (e.g., a sphere or an ellipsoid) to the net charge Q enclosed by the surface, namely (in
suitable units),

∫∫
S

E · dS = Q (1)

(see Figure 7.6.9). Gauss’ law will be discussed in detail in Chapter 8. This law is
analogous to Ampère’s law (see Example 12, Section 7.2).

Suppose that E = En; that is, E is a constant scalar multiple of the unit normal to
S. Then Gauss’ law, equation (1) in Example 5, becomes∫∫

S
E · dS =

∫∫
S

E d S = E

∫∫
S

d S = Q

because E = E · n. Thus,

E = Q

A(S )
. (2)

S = closed surface

E = electric field

E

figure 7.6.9 Gauss’ law:
∫∫

S
E · d S = Q,

where Q is the net charge inside S.

In the case where S is the sphere of radius R, equation (2) becomes

E = Q

4πR2
(3)

(see Figure 7.6.10).
Now suppose that E arises from an isolated point charge, Q. From symmetry it is

reasonable that E = En, where n is the unit normal to any sphere centered at Q. Hence,
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Q

E

figure 7.6.10 The field E due to a point charge Q is
E = Q n/4πR2.

equation (3) holds. Consider a second point charge, Q0, located at a distance R from
Q. The force F that acts on this second charge, Q0, is given by

F = EQ0 = E Q0n = QQ0

4πR2
n.

If F is the magnitude of F, we have

F = QQ0

4πR2
,

which is Coulomb’s law for the force between two point charges.14 ▲

Surface Integrals Over Graphs
Finally, let us derive the surface-integral formulas for vector fields F over surfaces S
that are graphs of functions. Consider the surface S described by z = g(x , y), where
(x , y) ∈ D, where S is oriented with the upward-pointing unit normal:

n =
−∂g

∂x
i − ∂g

∂y
j + k

√(
∂g

∂x

)2

+
(

∂g

∂y

)2

+ 1

.

We have seen that we can parametrize S by �: D → R3 given by �(x , y) =
(x , y, g(x , y)). In this case,

∫∫
S F · dS can be written in a particularly simple form.

We have

Tx = i + ∂g

∂x
k, Ty = j + ∂g

∂y
k.

Thus, Tx × Ty = −(∂g/∂x)i − (∂g/∂y)j + k. If F = F1i + F2j + F3k is a continuous
vector field, then we get

14Sometimes one sees the formula F = (1/4πε0)Q Q0/R2. The extra constant ε0 appears when MKS
units are used for measuring charge. We are using CGS, or Gaussian, units.



Marsden-3620111 VC September 27, 2011 10:26 410

410 Integrals Over Paths and Surfaces

The Surface Integral of a Vector Field Over a Graph S
∫∫

S
F · dS =

∫∫
D

F · (Tx × Ty) dx dy

(4)

=
∫∫

D

[
F1

(
−∂g

∂x

)
+ F2

(
−∂g

∂y

)
+ F3

]
dx dy.

example 6 The equations

z = 12, x2 + y2 ≤ 25

describe a disc of radius 5 lying in the plane z = 12. Suppose r is the vector field

r(x , y, z) = x i + yj + zk.

Compute
∫∫

S r · dS.

solut ion We shall do this in three ways. First, we have ∂z/∂x = ∂z/∂y = 0, because z = 12 is
constant on the disc, so

r(x , y, z) · (Tx × Ty) = r(x , y, z) · (i × j) = r(x , y, z) · k = z.

Using the original definition at the beginning of this section, the integral becomes∫∫
S

r · dS =
∫∫

D
z dx dy =

∫∫
D

12 dx dy = 12(area of D) = 300π.

A second solution: Because the disc is parallel to the xy plane, the outward unit normal
is k. Hence, n(x , y, z) = k and r · n = z. However, ‖Tx × Ty‖ = ‖k‖ = 1, and so we
know from the discussion preceding Theorem 5 that∫∫

S
r · dS =

∫∫
S

r · n d S =
∫∫

S
z d S =

∫∫
D

12 dx dy = 300π.

Third, we may solve this problem by using formula (4) directly, with g(x , y) = 12 and
D the disc x2 + y2 ≤ 25:∫∫

S
r · dS =

∫∫
D

(x · 0 + y · 0 + 12) dx dy = 12(area of D) = 300π. ▲

Summary: Formulas for Surface Integrals
1. Parametrized Surface: �(u, v)

a. Integral of a scalar function f :

∫∫
S

f d S =
∫∫

D
f (�(u, v))‖Tu × Tv‖ du dv

b. Scalar surface element:

d S = ‖Tu × Tv‖ du dv
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c. Integral of a vector field F:
∫∫

S
F · dS =

∫∫
D

F · (Tu × Tv) du dv

d. Vector surface element:

dS = (Tu × Tv) du dv = n d S

2. Graph: z = g(x , y)

a. Integral of a scalar function f :
∫∫

S
f d S =

∫∫
D

f (x , y, g(x , y))

cos θ
dx dy

b. Scalar surface element:

d S = dx dy

cos θ
=

√(
∂g

∂x

)2

+
(

∂g

∂y

)2

+ 1 dx dy,

where cos θ = n · k, and n is a unit normal vector to the surface.

c. Integral of a vector field F:
∫∫

S
F · dS =

∫∫
D

(
−F1

∂g

∂x
− F2

∂g

∂y
+ F3

)
dx dy

d. Vector surface element:

dS = n · d S =
(

−∂g

∂x
i − ∂g

∂y
j + k

)
dx dy

3. Sphere: x2 + y2 + z2 = R2

a. Scalar surface element:

d S = R2 sin φ dφ dθ

b. Vector surface element:

dS = (x i + yj + zk)R sin φ dφ dθ = rR sin φ dφ dθ = nR2 sin φ dφ dθ

exercises

1. Consider the closed surface S consisting of the graph
z = 1 − x2 − y2 with z ≥ 0, and also the unit disc in the
xy plane. Give this surface an outer normal. Compute:

∫∫
S

F · dS

where F(x , y, z) = (2x , 2y, z).

2. Evaluate the surface integral

∫∫
S

F · dS

where F(x , y, z) = x i + yj + z2k and S is the surface
parameterized by �(u, v) = (2 sin u, 3 cos u, v), with
0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.
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3. Let F(x , y, z) = (x , y, z). Evaluate∫∫
S

F · dS,

where S is:

(a) the upper hemisphere of radius 3, centered at the
origin.

(b) the entire sphere of radius 3, centered at the origin.

4. Let F(x , y, z) = 2x i − 2yj + z2k. Evaluate∫∫
S

F · dS,

where S is the cylinder x2 + y2 = 4 with z ∈ [0, 1].

5. Let the temperature of a point in R3 be given by
T (x , y, z) = 3x2 + 3z2. Compute the heat flux across
the surface x2 + z2 = 2, 0 ≤ y ≤ 2, if k = 1.

6. Compute the heat flux across the unit sphere S if
T (x , y, z) = x . Can you interpret your answer
physically?

7. Let S be the closed surface that consists of the
hemisphere x2 + y2 + z2 = 1, z ≥ 0, and its base
x2 + y2 ≤ 1, z = 0. Let E be the electric field defined
by E(x , y, z) = 2x i + 2yj + 2zk. Find the electric flux
across S. (HINT: Break S into two pieces S1 and S2 and
evaluate

∫∫
S1

E · dS and
∫∫

S2
E · dS separately.)

8. Let the velocity field of a fluid be described by F = √
yi

(measured in meters per second). Compute how many
cubic meters of fluid per second are crossing the surface
x2 + z2 = 1, 0 ≤ y ≤ 1, 0 ≤ x ≤ 1.

x 2 22+ y + z = 4R

x 2 22+ y = 4R

x2 2+ y

z

= R− R
2( )

y

x

x

y2R

2R

R

Restaurant

Side view

Top view

R

figure 7.6.11 Restaurant plans.

9. Evaluate
∫∫

S (∇ × F) · dS, where S is the surface
x2 + y2 + 3z2 = 1, z ≤ 0 and F is the vector field
F = yi − xj + zx3 y2k. (Let n, the unit normal, be
upward pointing.)

10. Evaluate
∫∫

S(∇ × F) · dS, where F = (x2 + y − 4)i +
3xyj + (2xz + z2)k and S is the surface x2 + y2 +
z2 = 16, z ≥ 0. (Let n, the unit normal, be upward
pointing.)

11. Calculate the integral
∫∫

S F · dS, where S is the entire
surface of the solid half ball x2 + y2 + z2 ≤ 1, z ≥ 0,
and F = (x + 3y5)i + ( y + 10xz)j + (z − xy)k. (Let S
be oriented by the outward-pointing normal.)

12.∗ A restaurant is being built on the side of a mountain.
The architect’s plans are shown in Figure 7.6.11.

(a) The vertical curved wall of the restaurant is to be
built of glass. What will be the surface area of this
wall?

(b) To be large enough to be profitable, the consulting
engineer informs the developer that the volume of
the interior must exceed πR4/2. For what R does
the proposed structure satisfy this requirement?

(c) During a typical summer day, the environs of the
restaurant are subject to a temperature field given by

T (x , y, z) = 3x2 + ( y − R)2 + 16z2.

A heat flux density V = −k ∇T (k is a constant
depending on the grade of insulation to be used)
through all sides of the restaurant (including the top
and the contact with the hill) produces a heat flux.

∗The solution to this problem may be somewhat time-consuming.
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What is this total heat flux? (Your answer will
depend on R and k.)

13. Find the flux of the vector field V(x , y, z) = 3xy2i +
3x2 yj + z3k out of the unit sphere.

14. Evaluate the surface integral
∫∫

S F · nd A, where

F(x , y, z) = i + j + z(x2 + y2)2k and S is the surface of
the cylinder x2 + y2 ≤ 1, 0 ≤ z ≤ 1.

15. Let S be the surface of the unit sphere. Let F be a vector
field and Fr its radial component. Prove that

∫∫
S

F · dS =
∫ 2π

θ=0

∫ π

φ=0
Fr sin φ dφ dθ.

What is the corresponding formula for real-valued
functions f ?

16. Prove the following mean-value theorem for surface
integrals: If F is a continuous vector field, then∫∫

S
F · n d S = [F(Q) · n(Q)]A(S )

for some point Q ∈ S, where A(S ) is the area of S.
[HINT: Prove it for real functions first, by reducing the
problem to one of a double integral: Show that if g ≥ 0,
then ∫∫

D
fg dA = f (Q)

∫∫
D

g dA

for some Q ∈ D (do it by considering
(
∫∫

D fg dA)/(
∫∫

D g dA) and using the intermediate-
value theorem).]

17. Work out a formula like that in Exercise 15 for
integration over the surface of a cylinder.

18. Let S be a surface in R3 that is actually a subset D of the
xy plane. Show that the integral of a scalar function
f (x , y, z) over S reduces to the double integral of
f (x , y, z) over D. What does the surface integral of a

vector field over S become? (Make sure your answer is
compatible with Example 6.)

19. Let the velocity field of a fluid be described by
F = i + xj + zk (measured in meters per second).
Compute how many cubic meters of fluid per second are
crossing the surface described by
x2 + y2 + z2 = 1, z ≥ 0.

20. (a) A uniform fluid that flows vertically downward
(heavy rain) is described by the vector field
F(x , y, z) = (0, 0, −1). Find the total flux through
the cone z = (x2 + y2)1/2, x2 + y2 ≤ 1.

(b) The rain is driven sideways by a strong wind so that
it falls at a 45◦ angle, and it is described by
F(x , y, z) = −(

√
2/2, 0,

√
2/2). Now what is the

flux through the cone?

21. For a > 0, b > 0, c > 0, let S be the upper half ellipsoid

S =
{

(x , y, z)

∣∣∣∣ x2

a2 + y2

b2 + z2

c2 = 1, z ≥ 0

}
,

with orientation determined by the upward normal.
Compute

∫∫
S F · dS where F(x , y, z) = (x3, 0, 0).

22. If S is the upper hemisphere {(x , y, z) | x2 + y2 +
z2 = 1, z ≥ 0} oriented by the normal pointing out of
the sphere, compute

∫∫
S F · dS for parts (a) and (b).

(a) F(x , y, z) = x i + yj

(b) F(x , y, z) = yi + xj

(c) For each of these vector fields, compute∫∫
S (∇ × F) · dS and

∫
C F · ds, where C is the unit

circle in the xy plane traversed in the
counterclockwise direction (as viewed from the
positive z axis). (Notice that C is the boundary of S.
The phenomenon illustrated here will be studied
more thoroughly in the next chapter, using Stokes’
theorem.)

7.7 Applications to Differential Geometry, Physics, and Forms of Life∗

In the first half of the nineteenth century, the great German mathematician Karl Friedrich
Gauss developed a theory of curved surfaces in R3. More than a century earlier, Isaac
Newton had defined a measure of the curvature of a space curve, and Gauss was able
to find extensions of this idea of curvature that would apply to surfaces. In so doing,
Gauss made several remarkable discoveries.

∗This section can be skipped on a first reading without loss of continuity.
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Curvature of Surfaces
For paths c: [a, b] → R3 that have unit speed—that is, ‖c′(t)‖ = 1—the curvature κ of
the image curve κ(c(t)) at the point c(t) is defined to be the length of the acceleration
vector. That is, ‖c′′(t)‖ = κ(c(t)). For paths c in space, the curvature is a true measure
of the curvature of the geometric image curve C. As we saw at the end of Section 7.1,
the “total curvature”

∫
κ ds over C has “topological” implications. The same, and even

more, will hold for Gauss’ definition of the total curvature of a surface. We begin with
some definitions.

Let �: D → R3 be a smooth parametrized surface. Then, as we know,

Tu = ∂�

∂u
and Tv = ∂�

∂v

are tangent vectors to the image surface S = �(D) at the point �(u, v). We will also
assume that there is a well-defined normal vector; that is, we assume the surface is
regular: Tu× Tv �= 0.

Let

E =
∥∥∥∥∂�

∂u

∥∥∥∥
2

, F = ∂�

∂u
· ∂�

∂v
, G =

∥∥∥∥∂�

∂v

∥∥∥∥
2

.

In Exercise 23 of Section 7.5, we saw that

‖Tu × Tv‖2 = EG − F2.

For notational reasons, we denote EG – F2 by W . Furthermore, we let

N = Tu × Tv

‖Tu × Tv‖ = Tu × Tv√
W

denote the unit normal vector to the image surface at p = �(u, v). Next we will define
two new measures of the curvature of a surface at p—the “Gauss curvature,” K ( p),
and the “mean curvature,” H ( p). Both of these curvatures have deep connections to the
curvature of space curves, which illuminate the meaning of their definitions, but we do
not explore these here.

To define these two curvatures, we first define three new functions �, m, n on S as
follows:

�( p) = N(u, v) · ∂2�

∂u2
= N(u, v) · �uu

m( p) = N(u, v) · ∂2�

∂u∂v
= N(u, v) · �uv (1)

n( p) = N(u, v) · ∂2�

∂v2
= N(u, v) · �vv.

The Gauss curvature K ( p) of S at p is given by

K ( p) = �n − m2

W
, (2)
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and the mean curvature H ( p) of S at p is defined by15

H ( p) = G� + En − 2Fm

2W
, (3)

where the right-hand sides of both expressions are calculated at the point p = �(u, v).

example 1 Planes Have Zero Curvature Let �(u, v) = αu + βv + γ , (u, v) ∈ R2, where
α, β, γ are vectors in R3. According to Example 1 of Section 7.3, this determines a
parametrized plane in R3. Show that at every point, both the Gauss and mean curvatures
are zero, and hence K and H vanish identically.

solut ion Because �uu = �uv = �vv ≡ 0, the functions �, m, n vanish everywhere, and so
do H and K . Thus, a plane has “zero” curvature. Hence, at least in this example,
we ought to be convinced that H and K actually do measure the flatness of the plane.
Conversely, we can show that if H and K vanish identically, then S is part of a plane (see
Exercise 12). ▲

example 2 Curvature of a Hemisphere Let

�(u, v) = (u, v, g(u, v)),

where g(u, v) = √
R2 − u2 − v2 is a parametrization of the “upper hemisphere” of

radius R. Show that the Gauss curvature at every point is 1/R2 and the mean curvature
is 1/R.

solut ion We must first calculate the following quantities:

Tu , Tv , Tu × Tv , �uu , �vv , �uv , E , G, F, �, m, n.

First of all, we have

�u = Tu = i − u√
R2 − u2 − v2

k

�v = Tv = j − v√
R2 − v2 − v2

k.

From formula (2) in Section 7.3, we have

Tu × Tv = −∂g

∂u
i − ∂g

∂v
j + k

= u√
R2 − u2 − v2

i + v√
R2 − u2 − v2

j + k.

Therefore,

E = ‖�u‖2 = 1 + u2

R2 − u2 − v2
= R2 − v2

R2 − u2 − v2

G = ‖�v‖2 = R2 − u2

R2 − u2 − v2

F = �u · �v = uv

R2 − u2 − v2
.

15Technically speaking, K ( p) and H ( p) could, in principle, depend on the parametrization � of S,
but we can show that they are, in fact, independent of �.
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From Exercise 23 of Section 7.5, we know that

‖Tu × Tv‖2 = EG − F2 = (R2 − v2)(R2 − u2) − u2v2

(R2 − u2 − v2)2

= R4 − R2u2 − R2v2

(R2 − u2 − v2)2
= R2

(R2 − u2 − v2)
= W.

Now a direct calculation shows that

�uu = R2 − v2

(R2 − u2 − v2)3/2
k

�vv = R2 − u2

(R2 − u2 − v2)3/2
k

�uv = uv

(R2 − u2 − v2)3/2
k.

Furthermore,

N = Tu × Tv

‖Tu × Tv‖ = Tu × Tv√
W

=
√

R2 − u2 − v2

R
·
(

u√
R2 − u2 − v2

i + v√
R2 − u2 − v2

j + k

)

= 1

R

(
ui + vj +

√
R2 − u2 − v2 k

)
.

Thus,

� = N · �uv = 1

R

(
R2 − v2

R2 − u2 − v2

)

n = N · �vv = 1

R

(
R2 − u2

R2 − u2 − v2

)

m = N · �uv = 1

R

(
uv

R2 − u2 − v2

)
.

Therefore,

�n − m2 = 1

R2

(
(R2 − v2)(R2 − u2) − u2v2

(R2 − u2 − v2)2

)

= 1

R2 − u2 − v2
.

Dividing this by W yields K = 1/R2. Thus, the Gauss curvature does not change from
point to point on the hemisphere; that is, it is constant. This conforms to our intuition
that the sphere is perfectly symmetrical and that its curvature is everywhere equal.
Hence, the mean curvature should also be constant. This is verified by the following
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calculation:

H = G� + En − 2Fm

2W

= 1

2W

{ (
R2 − u2

R2 − u2 − v2

)
1

R

(
R2 − v2

R2 − u2 − v2

)

+
(

R2 − v2

R2 − u2 − v2

)
1

R

(
R2 − u2

R2 − u2 − v2

)
− 2

u2v2

(R2 − u2 − v2)2

}

= 1

W

{
R

R2 − u2 − v2

}
= 1

R
.

▲

Surfaces of Constant Curvature
Surfaces of constant Gauss and mean curvature are of great interest to mathemati-
cians. It was known in the nineteenth century that the only closed and bounded smooth
surfaces with “no boundary” and with constant Gauss curvature were spheres. In the
twentieth century, the Russian mathematician Alexandrov showed that the only closed
and bounded smooth surfaces without a boundary that do not intersect themselves and
that have constant mean curvature must also be spheres. Mathematicians believed that
Alexandrov’s result held even if the surface was allowed to intersect itself, but no one
could find a proof. In 1984, Professor Henry Wente (Toledo, Ohio) startled the world
by finding a self-intersecting torus of constant mean curvature.

Surfaces of constant mean curvature are physically relevant and occur throughout
nature. Soap bubble formations have constant nonzero mean curvature (see Figure 7.7.1),
and soap film formations (containing no air) have constant mean curvature zero (see
Figures 7.7.2 and 7.7.3).

figure 7.7.1 Soap bubble
formation; H = constant.

figure 7.7.2 A helicoid, H = 0.

In the early nineteenth century, the French mathematician Delaunay discovered all
surfaces of revolution that have constant mean curvature: the cylinder, sphere, catenoid,
unduloid, and nodoid. The catenoid exists as a soap film surface spanning two circular
contours.

Optimal Shapes in Nature
Throughout the ages, people have speculated on why things are shaped the way they
are. Why are the earth and the stars “round” and not cubical? Why are life forms shaped
the way they are?

figure 7.7.3 A soap film, H = 0,
spanning two circular wires; this
one is the catenoid.
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figure 7.7.4 Surfaces of
revolution of constant mean
curvature as unicellulars.

In 1917, the British natural philosopher D’Arcy Thompson published a provocative
work entitled On Growth and Form, in which he investigated the forces behind the
creation of living forms in nature. He wrote:

In an organism, great or small, it is not merely the nature of the motions of the living
substance which we must interpret in terms of force (according to kinetics), but also the
conformation of the organism itself, whose permanence or equilibrium is explained by the
interaction or balance of forces, as described in statics.

Surprisingly, Thompson discovered all of Delaunay’s surfaces in the form of unicellular
organisms (see Figure 7.7.4). The constant mean curvature of these organisms can be
explained by minimum principles similar to those described in the Historical Note in
Section 3.3. In 1952, Watson and Crick determined that the structure of DNA is that of a
double helix, a discovery that set the stage for the genetic revolution. We know from soap
films, as in Figure 7.7.2, that nature likes helicoid forms, and nature tends to repeat pat-
terns. A better understanding of the scientific principles underlying life may ultimately
help mathematics play a more prominent role in this area of theoretical biology.

Curvature and Physics
The theory of curved surfaces, initiated by Gauss, has had a profound effect on physics.
Gauss realized that the Gauss curvature K of a surface depended only on the measure of
distance on the surface itself; that is, curvature was intrinsic to the surface. This is not
true of the mean curvature H . Thus, beings “living” on the surface would be able to tell
that the surface was curving, without any reference to an “external” world. Gauss himself
found this mathematical result to be so striking that he named it theorema egregium, or
“remarkable theorem.” Gauss’ theory was generalized by his student Bernhard Riemann
to n-dimensional surfaces for which one could describe a notion of curvature.

Recall that Newton created the idea of a gravitational force acting over vast galactic
distances, pulling galaxies together as well as pushing them apart (see Figure 7.7.5). In
the early 1900s, Albert Einstein used Riemann’s ideas to develop the general theory of
relativity, a theory of gravitation that eliminated the need to consider forces (as Newton
did) acting over great distances. Einstein’s theory explained the bending of light by the
sun, black holes, the expansion of the universe, the formation of galaxies, and the Big
Bang itself. For most applications, including the dynamics of our solar system, Newton’s
theory suffices and is commonly used today by NASA to plan space missions, as we saw
in Section 4.1. But for cosmological applications on the grand scale, Einstein’s theory
replaced that of Isaac Newton, published in his Principia in 1687.

As a testament to his genius, and despite the astounding success of this theory,
Newton was nevertheless disturbed by questions about how this gravitational force
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figure 7.7.5 The Andromeda
Galaxy. It will collide with the
Milky Way in roughly 2 billion
years.

acted. He could give no other explanation than to say, “I have not been able to deduce
from phenomena the reason for these properties of gravitation, and I do not invent
hypotheses; for anything which cannot be deduced from phenomena should be called
an hypothesis.” Moreover, in a letter to his friend, Richard Bentley, Newton wrote:

That gravity should be innate, inherent and essential to matter, so that one body may act
upon another at a distance, through which their action may be conveyed from one to
another, is to me so great an absurdity that I believe no man, who has in philosophical
matters a competent faculty of thinking, can ever fall into it.

Newton coined the term action at a distance (which means “force acting at a dis-
tance”) to describe the mysterious effect of gravitation over large distances. This effect
is as difficult to understand today as it was in Newton’s time.

Johann Bernoulli found it difficult to believe in the concept of a force that acts through
a vacuum of space over distances of even hundreds of millions of miles. He viewed
this force as a concept revolting to minds unaccustomed to accepting any principle in
physics, save those that are incontestable and evident. Additionally, Leibniz considered
gravitation to be an incorporeal and inexplicable power, philosophically void.

figure 7.7.6 Albert Einstein (1879–
1955) at his desk in the Patent
Office, Bern, 1905.

It was perhaps Albert Einstein’s greatest inspiration (see Figure 7.7.6) to replace
Newton’s model of gravitation with a model that would have thrilled the early Greeks—a
geometric model of gravitation. In Einstein’s theory, the concept of a force acting through
great distances has been replaced by the curvature of a space–time16 world. As the quote
at the beginning of the chapter illustrates, W. K. Clifford had a premonition of events to
come! In order to elucidate Einstein’s scheme, we shall present an oversimplified model
that conveys some of his basic ideas.

We represent space by a surface that we imagine as an originally flat trampoline (the
vacuum state), which is at some point strongly deformed by the weight of a gigantic
steel ball (the sun). A tiny steel ball rolling on the trampoline is our planet Earth (see
Figure 7.7.7)

If we roll the small steel ball across the flat trampoline, it will travel in a straight-line
path. However, if we now place the gigantic steel ball in the center, it will cause the

16Space–time is locally like R4 with three space coordinates and one time coordinate.
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(b) (c)(a)

figure 7.7.7 (a) A particle on a taut trampoline moves in a straight line. (b) A heavy steel ball
distorts the trampoline. (c) A particle on the distorted trampoline follows a curved path.

trampoline to bend, or “curve,” even “far away” from the large ball. If we then give
our little ball a push, it will no longer travel in a straight line but in a curved path. The
big ball affects the trajectory of the little ball by curving the space around it. With just
the right push, the little ball might even orbit the big one for a while. This trampoline
model explains how a large body could, by curving space, influence a small one over
great distance.

Einstein stated that space–time is curved by matter and energy. In this curved space–
time, even light rays are bent as they pass near massive objects like our sun. Thanks
to Gauss and Riemann, the curvature of space–time requires no external “universe” in
which it curves. Moreover, in Einstein’s curved world, light travels along shortest paths
in space–time called geodesics. It is normally impossible to observe light rays close to
the bright Sun, but a solar eclipse provides a marvelous opportunity for such measure-
ments. Two British expeditions to New Guinea (under Eddington and Cottingham) and
to Sobral in northern Brazil used the solar eclipse of May 29, 1919, to observe whether
light rays coming from stars and passing close to the Sun were bent. Both expeditions
were able to confirm Einstein’s prediction, and Eddington later wrote,

Oh leave the Wise our measures to collate;
One thing, at least, is certain: LIGHT has WEIGHT.
One thing is certain, and the rest debate:
Light-rays, when near the Sun, DO NOT GO STRAIGHT.

The equations that tell one how much space and time are curved by matter and energy
are known as Einstein’s field equations. A description of them is beyond the scope of
this book, but the mathematical kernel from which these equations arise is not; this
kernel is based on another remarkable result of the research of Gauss and Bonnet.

Gauss–Bonnet Theorem
In Example 2, we computed the Gauss curvature K of the sphere x2 + y2 + z2 = R2 of
radius R and found it to be the constant 1/R2. The Gauss curvature K is a scalar-valued
function over the surface, and as such we can integrate it over the surface. We wish to
consider a constant times this surface integral, namely,

1

2π

∫∫
S

K dA.

For the sphere of radius R, this quantity becomes

1

2π R2

∫∫
S

dA = 4π R2

2π R2
= 2.
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figure 7.7.8 A deformed sphere.
1/2π

∫∫
S

K dA = 2.

figure 7.7.9 Gluing a handle to
a sphere to obtain a torus.

=

Handle

+

Torus

=

What Gauss and Bonnet discovered was that if S is any “sphere-like” closed surface
(closed and bounded, but with no boundary, as in Figure 7.7.8), then

1

2π

∫∫
S

K dA = 2

still holds.17

Thus, the integral

1

2π

∫∫
S

K dA

always equals the integer 2, and is therefore a topological invariant of the surface. That
the integral of curvature should be an interesting quantity should be already clear from
the discussion at the end of Section 7.1.

Now consider a torus, or doughnut. The torus can be considered as coming from the
sphere by cutting out two discs and gluing in a handle (see Figure 7.7.9).

Moreover, we can continue this process adding 1, 2, 3, . . . , g handles to the sphere.
If g handles are attached, we call the resulting surface a surface of genus g, as in
Figure 7.7.10. Notice that the torus has genus 1.

If two surfaces have a different genus, they are topologically distinct, and thus can-
not be obtained from one another by bending or stretching. Interestingly, even two
surfaces with the same genus can sit in space in quite different and complex ways, as
in Figure 7.7.11. Astonishingly, even though the integral (or total curvature) given by

17Roughly speaking, this means that S can be obtained from the sphere by bending and stretching (like
with a balloon) but not tearing (the balloon bursts!).
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figure 7.7.10 A sphere with 0, 1,
2, 3 handles attached.

figure 7.7.11 Two manifestations
of a surface S in R3 of genus 2.

Simple double doughnut Baker’s pretzel

(1/2π )
∫∫

S K dA depends on the genus, it does not depend on how the surface sits in
space (and thus not on K ).

figure 7.7.12 David Hilbert
(1862–1943) was a leading
mathematician of his time.

Gauss and Bonnet proved that

1

2π

∫∫
S

K dA = 2 − 2g.

Thus, for the sphere (g = 0), it is always 2 (already verified); for the torus, it is always
0 (see Exercise 10).

There is something even more remarkable connected to the theorem of Gauss–
Bonnet, observed by the great German mathematician David Hilbert (Figure 7.7.12).

Hilbert observed that the Gauss–Bonnet theorem is, in effect, a two-dimensional
version of Einstein’s field equations. In the physics literature, this fact is known as
Hilbert’s action principle in general relativity.18 Not surprisingly, similar geometric
ideas are being employed by contemporary researchers in an effort to unify gravity and
quantum mechanics—to “quantize” gravity, so to speak.

18See C. Misner, K. Thorne, and A. Wheeler, Gravitation, Freeman, New York, 1972.
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exercises

1. The helicoid can be described by

�(u, v) = (u cos v, u sin v, bv), where b �= 0.

Show that H = 0 and that K = −b2/(b2 + u2)2. In
Figures 7.7.1 and 7.7.5, we see that the helicoid is
actually a soap film surface. Surfaces in which H = 0
are called minimal surfaces.

2. Consider the saddle surface z = xy. Show that

K = −1

(1 + x2 + y2)2 ,

and that

H = −xy

(1 + x2 + y2)3/2 .

3. Show that �(u, v) = (u, v, log cos v − log cos u) has
mean curvature zero (and is thus a minimal surface; see
Exercise 1).

4. Find the Gauss curvature of the elliptic paraboloid

z = x2

a2 + y2

b2 .

5. Find the Gauss curvature of the hyperbolic paraboloid

z = x2

a2 − y2

b2 .

6. Compute the Gauss curvature of the ellipsoid

x2

a2 + y2

a2 + z2

c2 = 1.

7. After finding K in Exercise 6, integrate K to show that:

1

2π

∫∫
S

K d A = 2.

8. Find the curvature K of:

(a) the cylinder �(u, v) = (2 cos v, 2 sin v, u)

(b) the surface �(u, v) = (u, v, u2)

9. Show that Enneper’s surface

�(u, v) =
(

u − u3

3
+ uv2, v − v3

3
+ u2v, u2 − v2

)

is a minimal surface (H = 0).

10. Consider the torus T given in Exercise 4, Section 7.4.
Compute its Gauss curvature and verify the theorem of
Gauss–Bonnet. [HINT: Show that
‖Tθ × Tφ‖2 = (R + cos φ)2 and
K = cos φ/(R + cos φ).]

11. Let �(u, v) = (u, h(u) cos v, h(u) sin v), h > 0, be a
surface of revolution. Show that
K = −h′′/h{1 + (h′)2}2.

12. A parametrization � of a surface S is said to be
conformal (see Section 7.4), provided that E = G, F =
0. Assume that � conformally parametrizes S.19 Show
that if H and K vanish identically, then S must be part
of a plane in R3.

review exercises for chapter 7

1. Integrate f (x , y, z) = xyz along the following paths:

(a) c(t) = (et cos t , et sin t , 3), 0 ≤ t ≤ 2π

(b) c(t) = (cos t , sin t , t), 0 ≤ t ≤ 2π

(c) c(t) = 3
2 t2i + 2t2j + tk, 0 ≤ t ≤ 1

(d) c(t) = t i + (1/
√

2)t2j + 1
3 t3k, 0 ≤ t ≤ 1

2. Compute the integral of f along the path c in each of the
following cases:

(a) f (x , y, z) = x + y + yz; c(t) = (sin t , cos t , t),
0 ≤ t ≤ 2π

(b) f (x , y, z) = x + cos2 z; c(t) = (sin t , cos t , t),
0 ≤ t ≤ 2π

19Gauss proved that conformal parametrization of a surface always exists. The result of this exercise remains valid even if � is not conformal,
but the proof is more difficult.
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(c) f (x , y, z) = x + y + z; c(t) = (t , t2, 2
3 t3),

0 ≤ t ≤ 1

3. Compute each of the following line integrals:

(a)
∫

C (sin πx) dy − (cos πy) dz, where C is the triangle
whose vertices are (1, 0, 0), (0, 1, 0), and (0, 0, 1),
in that order

(b)
∫

C (sin z) dx + (cos z) dy − (xy)1/3 dz, where C is
the path c(θ ) = (cos3 θ , sin3 θ , θ ), 0 ≤ θ ≤ 7π/2

4. If F(x) is orthogonal to c′(t) at each point on the curve
x = c(t), what can you say about

∫
c F · ds?

5. Find the work done by the force
F(x , y) = (x2 − y2)i + 2xyj in moving a particle
counterclockwise around the square with corners
(0, 0), (a, 0), (a, a), (0, a), a > 0.

6. A ring in the shape of the curve x2 + y2 = a2 is formed
of thin wire weighing |x | + |y| grams per unit length at
(x , y). Find the mass of the ring.

7. Find a parametrization for each of the following surfaces:

(a) x2 + y2 + z2 − 4x − 6y = 12

(b) 2x2 + y2 + z2 − 8x = 1

(c) 4x2 + 9y2 − 2z2 = 8

8. Find the area of the surface defined by
�: (u, v) �→ (x , y, z), where

x = h(u, v) = u + v, y = g(u, v) = u,
z = f (u, v) = v;

0 ≤ u ≤ 1, 0 ≤ v ≤ 1. Sketch.

9. Write a formula for the surface area of
�: (r, θ ) �→ (x , y, z), where

x = r cos θ , y = 2r sin θ , z = r ;

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π . Describe the surface.

10. Suppose z = f (x , y) and
(∂ f/∂x)2 + (∂ f/∂y)2 = c, c > 0. Show that the area of
the graph of f lying over a region D in the xy plane is√

1 + c times the area of D.

11. Compute the integral of f (x , y, z) = x2 + y2 + z2 over
the surface in Review Exercise 8.

12. Find
∫∫

S f d S in each of the following cases:

(a) f (x , y, z) = x ; S is the part of the plane
x + y + z = 1 in the positive octant defined by
x ≥ 0, y ≥ 0, z ≥ 0

(b) f (x , y, z) = x2; S is the part of the plane x = z
inside the cylinder x2 + y2 = 1

(c) f (x , y, z) = x ; S is the part of the cylinder
x2 + y2 = 2x with 0 ≤ z ≤

√
x2 + y2

13. Compute the integral of f (x , y, z) = xyz over the
rectangle with vertices (1, 0, 1), (2, 0, 0), (1, 1, 1), and
(2, 1, 0).

14. Compute the integral of x + y over the surface of the
unit sphere.

15. Compute the surface integral of x over the triangle with
vertices (1, 1, 1), (2, 1, 1), and (2, 0, 3).

16. A paraboloid of revolution S is parametrized by
�(u, v) = (u cos v, u sin v, u2), 0 ≤ u ≤ 2, 0 ≤ v ≤ 2π .

(a) Find an equation in x , y, and z describing the
surface.

(b) What are the geometric meanings of the parameters
u and v?

(c) Find a unit vector orthogonal to the surface at
�(u, v).

(d) Find the equation for the tangent plane at
�(u0, v0) = (1, 1, 2) and express your answer in the
following two ways:

(i) parametrized by u and v; and

(ii) in terms of x , y, and z.

(e) Find the area of S.

17. Let f (x , y, z) = xey cos π z.

(a) Compute F = ∇ f .

(b) Evaluate
∫

C F · ds, where
c(t) = (3 cos4 t , 5 sin7 t , 0), 0 ≤ t ≤ π .

18. Let F(x , y, z) = x i + yj + zk. Evaluate
∫∫

S F · dS,
where S is the upper hemisphere of the unit sphere
x2 + y2 + z2 = 1.

19. Let F(x , y, z) = x i + yj + zk. Evaluate
∫

c F · ds, where
c(t) = (et , t , t2), 0 ≤ t ≤ 1.

20. Let F = ∇ f for a given scalar function. Let c(t) be a
closed curve, that is, c(b) = c(a). Show that∫

c F · ds = 0.

21. Consider the surface �(u, v) = (u2 cos v, u2 sin v, u).
Compute the unit normal at u = 1, v = 0. Compute the
equation of the tangent plane at this point.
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22. Let S be the part of the cone z2 = x2 + y2 with z between
1 and 2 oriented by the normal pointing out of the cone.
Compute

∫∫
S F · dS, where F(x , y, z) = (x2, y2, z2).

23. Let F = x i + x2j + yzk represent the velocity field of a
fluid (velocity measured in meters per second). Compute
how many cubic meters of fluid per second are crossing
the xy plane through the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

24. Show that the surface area of the part of the sphere
x2 + y2 + z2 = 1 lying above the rectangle
[−a, a] × [−a, a], where 2a2 < 1, in the xy plane is

A = 2

∫ a

−a
sin−1

(
a√

1 − x2

)
dx.

25. Let S be a surface and C a closed curve bounding S.
Verify the equality∫∫

S
(∇ × F) · dS =

∫
C

F · ds

if F is a gradient field (use Review Exercise 20).

26. Calculate
∫∫

S F · dS, where F(x , y, z) = (x , y, −y) and
S is the cylindrical surface defined by x2 + y2 = 1,
0 ≤ z ≤ 1, with normal pointing out of the cylinder.

27. Let S be the portion of the cylinder x2 + y2 = 4 between
the planes z = 0 and z = x + 3. Compute the following:

(a)
∫∫

S x2 d S

(b)
∫∫

S y2 d S

(c)
∫∫

S z2 d S

28. Let � be the curve of intersection of the plane
z = ax + by, with the cylinder x2 + y2 = 1. Find all
values of the real numbers a and b such that a2 + b2 = 1
and

∫
�

y dx + (z − x) dy − y dz = 0.

29. A circular helix that lies on the cylinder x2 + y2 = R2

with pitch p may be described parametrically by

x = R cos θ , y = R sin θ , z = pθ , θ ≥ 0.

A particle slides under the action of gravity (which acts
parallel to the z axis) without friction along the helix. If
the particle starts out at the height z0 > 0, then when it
reaches the height z, 0 ≤ z < z0, along the helix, its
speed is given by

ds

dt
=

√
(z0 − z)2g,

where s is arc length along the helix, g is the constant of
gravity, and t is time.

(a) Find the length of the part of the helix between the
planes z = z0 and z = z1, 0 ≤ z1 < z0.

(b) Compute the time T0 it takes the particle to reach the
plane z = 0.
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8

The Integral Theorems
of Vector Analysis

From a long view of the history of mankind---seen from, say, ten thousand years from

now---there can be little doubt that the most significant event of the nineteenth century will

be judged as Maxwell's discovery of the laws of electrodynamics. The American Civil War

will pale into provincial insignificance in comparison with this important scientific event of

the same decade. ---Richard Feynman

The Special Theory of Relativity owes its origins to Maxwell's Equations. . .

---Albert Einstein

We are now prepared to tie together vector differential calculus and

vector integral calculus. This will be done by means of the important the-

orems of Green, Gauss, and Stokes. We shall also point out some of the

physical applications of these theorems to the study of gravitation, elec-

tricity, and magnetism.

The basic integral theorems in vector analysis had their origins in ap-

plications. For example, Green’s theorem, discovered about 1828, arose

in connection with potential theory (this includes gravitational and elec-

trical potentials). Gauss’ theorem—the divergence theorem—arose in

connection with the study of capillarity (this theorem should be jointly

credited to the Russian mathematician Ostrogradsky, who discovered

the theorem around the same time as Gauss). Stokes’ theorem was first

suggested in a letter to Stokes from the physicist Lord Kelvin in 1850 and

was used by Stokes on the examination for the Smith Prize in 1854.

427
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8.1 Green’s Theorem

Green’s theorem relates a line integral along a closed curve C in the plane R2 to a
double integral over the region enclosed by C . This important result will be generalized
in the following sections to curves and surfaces in R3. We shall be referring to line
integrals around curves that are the boundaries of elementary regions (see Section 5.3).
To understand the ideas in this section, you may also need to refer to Section 7.2.

Simple and Elementary Regions and Their Boundaries
A simple closed curve C that is the boundary of an elementary region has two ori-
entations—counterclockwise (positive) and clockwise (negative). We denote C with
the counterclockwise orientation as C+, and with the clockwise orientation as C−

(Figure 8.1.1).
The boundary C of a y-simple region can be decomposed into bottom and top

portions, C1 and C2, and (if applicable) left and right vertical portions, B1 and B2.
Following Figure 8.1.2, we write,

C+ = C+
1 + B+

2 + C−
2 + B−

1 ,

where the pluses denote the curves oriented in the direction of left to right or bottom
to top, and the minuses denote the curves oriented from right to left or from top to
bottom.

We can make a similar decomposition of the boundary of an x-simple region into
left and right portions, and upper and lower horizontal portions (if applicable)
(Figure 8.1.3).

Similarly, the boundary of a simple region has two decompositions: one into upper
and lower halves, the other into left and right halves.

Positive orientation Negative orientation

C + −C

(a) (b)

figure 8.1.1 (a) Positive orientation
of C, and (b) negative orientation
of C.

figure 8.1.2 Two examples
showing how to break the
positively oriented boundary of a
y-simple region D into oriented
components.

xx

y

x

y

y = φ  (x)

1

2

y = φ  (x)
1y = φ  (x)

y = φ  (x)2

a b a b

C −
2

B−
1

C +
1 +C1

C −
2

B+
2

B+
2

D D

C   = C  + B   + C   + B+ + 
1

+
2

−
2

−
1 C   = C  + B   + C   + + 

1
+
2

−
2
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x

y

x = y (y)2
1x = y (y)

c

d

C −
1

C +
2

B+
1

B−
2

C   = C  + B   + C   + B+ + 
2

− − +
12 1

figure 8.1.3 An example showing how to break
the positively oriented boundary of an x-simple
region D into oriented components.

Green’s Theorem
We shall now prove two lemmas in preparation for Green’s theorem.

Lemma 1 Let D be a y-simple region and let C be its boundary. Suppose
P: D → R is of class C1. Then∫

C+
P dx = −

∫∫
D

∂P

∂y
dx dy.

(The left-hand side denotes the line integral
∫

C+ P dx + Q dy, where Q = 0.)

proof Suppose D is described by

a ≤ x ≤ b φ1(x) ≤ y ≤ φ2(x).

We decompose C+ by writing C+ = C+
1 + B+

2 + C−
2 + B−

1 (see Figure 8.1.2). By
Fubini’s theorem, we can evaluate the double integral as an iterated integral and then
use the fundamental theorem of calculus:

∫∫
D

∂P

∂y
(x , y) dx dy =

∫ b

a

∫ φ2(x)

φ1(x)

∂P

∂y
(x , y) dy dx

=
∫ b

a
[P(x , φ2(x)) − P(x , φ1(x))] dx.

However, because C+
1 can be parametrized by x �→ (x , φ1(x)), a ≤ x ≤ b, and C+

2 can
be parametrized by x �→ (x , φ2(x)), a ≤ x ≤ b, we have

∫ b

a
P(x , φ1(x)) dx =

∫
C+

1

P(x , y) dx

and
∫ b

a
P(x , φ2(x)) dx =

∫
C+

2

P(x , y) dx.
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Thus, by reversing orientations,

−
∫ b

a
P(x , φ2(x)) dx =

∫
C−

2

P(x , y) dx.

Hence,
∫∫

D

∂P

∂y
dx dy = −

∫
C+

1

P dx −
∫

C−
2

P dx.

Because x is constant on B+
2 and B−

1 , we have

∫
B+

2

P dx = 0 =
∫

B−
1

P dx,

so
∫

C+
P dx =

∫
C+

1

P dx +
∫

B+
2

P dx +
∫

C−
2

P dx +
∫

B−
1

P dx =
∫

C+
1

P dx +
∫

C−
2

P dx.

Thus,

∫∫
D

∂P

∂y
dx dy = −

∫
C+

1

P dx −
∫

C−
2

P dx = −
∫

C+
P dx. ■

We now prove the analogous lemma with the roles of x and y interchanged.

Lemma 2 Let D be an x-simple region with boundary C . Then if Q: D → R

is C1,
∫

C+
Q dy =

∫∫
D

∂Q

∂x
dx dy.

The negative sign does not occur here, because reversing the role of x and y corresponds
to a change of orientation for the plane.

proof Suppose D is given by

ψ1( y) ≤ x ≤ ψ2( y), c ≤ y ≤ d.

Using the notation of Figure 8.1.3, and noting that y is constant on B+
1 and B−

2 , we have

∫
C+

Q dy =
∫

C−
1 +B+

1 +C+
2 +B−

2

Q dy =
∫

C+
2

Q dy +
∫

C−
1

Q dy,

where C+
2 is the curve parametrized by y �→ (ψ2( y), y), c ≤ y ≤ d, and C+

1 is the
curve y �→ (ψ1( y), y), c ≤ y ≤ d. Applying Fubini’s theorem and the fundamental
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figure 8.1.4 The correct
orientation for the boundary of a
region D.

15

D

C

theorem of calculus, we obtain

∫∫
D

∂Q

∂x
dx dy =

∫ d

c

∫ ψ2( y)

ψ1( y)

∂Q

∂x
dx dy =

∫ d

c
[Q(ψ2( y), y) − Q(ψ1( y), y)] dy

=
∫

C+
2

Q dy −
∫

C+
1

Q dy =
∫

C+
2

Q dy +
∫

C−
1

Q dy =
∫

C+
Q dy.

■

Adding the results of Lemmas 1 and 2 proves the following important theorem.

Theorem 1 Green’s Theorem Let D be a simple region and let C be its
boundary. Suppose P: D → R and Q: D → R are of class C1. Then

∫
C+

P dx + Q dy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy.

The correct (positive) orientation for the boundary curves of region D can be re-
membered by the following device: If you walk along the curve C with the correct
orientation, the region D will be on your left (see Figure 8.1.4).

Historical Note

George Green

George Green was born in Nottingham England in 1793 and died in 1841. No
picture of him is known to exist. Little is known about his early life before the age
of 30 other than that he was a self-taught man, who developed a passion for
mathematics at an early age. In 1833, at age 40, Green enrolled as a student in
Cambridge. Amazingly, five years earlier, he had published (at his own expense)
his first and most famous work “An Essay on the Application of Mathematical
Analysis to the Theories of Electricity and Magnetism.” Here he proved a theorem
similar to the Green’s Theorem of this section and also introduced other very
important mathematical concepts such as Green’s functions, now so ubiquitous
in mathematical analysis. He was the first person to create a theory of electricity
and magnetism, a theory that later formed the basis of the work of Maxwell and
others.
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D

C

2

1

1

2

4 3

C

D

D D

D = 1D 2D 3D D4

figure 8.1.5 Green's theorem applies to
D = D1 ∪ D2 ∪ D3 ∪ D4.

Generalizing Green’s Theorem
Green’s theorem actually applies to any “decent” region in R2. For instance, Green’s
theorem applies to regions that are not simple, but that can be broken up into pieces,
each of which is simple. An example is shown in Figure 8.1.5. The region D is an
annulus; its boundary consists of two curves C = C1 + C2 with the indicated orien-
tations. (Note that for the inner region the correct orientation to ensure the validity of
Green’s theorem is clockwise; the device in Figure 8.1.4 still works for remembering
the orientation!) If Theorem 1 is applied to each of the regions D1, D2, D3, and D4 and
the results are summed, the equality of Green’s theorem will be obtained for D and its
boundary curve C . This works because the integrals along the interior lines in opposite
directions cancel. This trick, in fact, shows that Green’s theorem holds for virtually all
regions with reasonable boundaries that one is likely to encounter (see Exercise 16).

Let us use the notation ∂D for the oriented curve C+, that is, the boundary curve of
D oriented in the sense as described by the device in Figure 8.1.4. Then we can write
Green’s theorem as

∫
∂D

P dx + Q dy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy.

Green’s theorem is very useful because it relates a line integral around the boundary of
a region to an area integral over the interior of the region, and in many cases it is easier to
evaluate the line integral than the area integral or vice versa. For example, if we know that
P vanishes on the boundary, we can immediately conclude that

∫∫
D(∂P/∂y) dx dy = 0

even though ∂P/∂y need not vanish on the interior. (Can you construct such a P on the
unit square?)

example 1 Verify Green’s theorem for P(x , y) = x and Q(x , y) = xy, where D is the unit disc
x2 + y2 ≤ 1.

solut ion We do this by evaluating both sides in Green’s theorem directly. The boundary of D is
the unit circle parametrized by x = cos t , y = sin t , 0 ≤ t ≤ 2π , and so

∫
∂D

P dx + Q dy =
∫ 2π

0
[(cos t)(−sin t) + cos t sin t cos t] dt

=
[

cos2 t

2

]2π

0

+
[
−cos3 t

3

]2π

0

= 0.
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On the other hand, ∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫∫
D

y dx dy,

which is also zero by symmetry. Thus, Green’s theorem is verified in this case. ▲

Areas
We can use Green’s theorem to obtain a formula for the area of a region bounded by a
simple closed curve.

Theorem 2 Area of a Region If C is a simple closed curve that bounds a
region to which Green’s theorem applies, then the area of the region D bounded
by C = ∂D is

A = 1

2

∫
∂D

xdy − y dx.

proof Let P(x , y) = −y, Q(x , y) = x ; then by Green’s theorem we have

1

2

∫
∂D

xdy − y dx = 1

2

∫∫
D

[
∂x

∂x
− ∂(−y)

∂y

]
dx dy

= 1

2

∫∫
D

[1 + 1] dx dy =
∫∫

D
dx dy = A. ■

example 2 Let a > 0. Compute the area (see Figure 8.1.6) of the region enclosed by the hypocycloid
defined by x2/3 + y2/3 = a2/3 using the parametrization

x = a cos3 θ , y = a sin3 θ , 0 ≤ θ ≤ 2π.

x

y

(−a, 0)

(0, −a)

(a, 0)

(0, a)

( )a

2
,

2
a

22

figure 8.1.6 The hypocycloid x = a cos3
θ, y = a sin3

θ, 0 ≤ θ ≤ 2π .
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s o l u t i o n From the preceding box, and using the trigonometric identities cos2 θ + sin2 θ =
1, sin 2θ = 2 sin θ cos θ , and sin2 φ = (1 − cos 2φ)/2, we get

A = 1

2

∫
∂D

xdy − y dx

= 1

2

∫ 2π

0
[(a cos3 θ )(3a sin2 θ cos θ ) − (a sin3 θ )(−3a cos2 θ sin θ )] dθ

= 3

2
a2

∫ 2π

0
(sin2 θ cos4 θ + cos2 θ sin4 θ ) dθ = 3

2
a2

∫ 2π

0
sin2 θ cos2 θ dθ

= 3

8
a2

∫ 2π

0
sin2 2θ dθ = 3

8
a2

∫ 2π

0

(
1 − cos 4θ

2

)
dθ

= 3

16
a2

∫ 2π

0
dθ − 3

16
a2

∫ 2π

0
cos 4θ dθ = 3

8
πa2.

▲

Vector Form Using the Curl
The statement of Green’s theorem can be neatly rewritten in the language of vector
fields. As we will see, this points the way to one possible generalization to R3.

Theorem 3 Vector Form of Green’s Theorem Let D ⊂ R2 be a region
to which Green’s theorem applies, let ∂D be its (positively oriented) boundary,
and let F = Pi + Qj be a C1 vector field on D. Then

∫
∂D

F · ds =
∫∫

D
(curl F) · k dA =

∫∫
D

(∇ × F) · k dA

(see Figure 8.1.7).

This result follows from Theorem 1 and the fact that (∇ × F) · k = ∂Q/∂x − ∂P/∂y.
We ask you to supply the details in Exercise 22.

x

y

z

D F(x, y)

∂D

k

(x, y)

figure 8.1.7 The vector form of Green’s
theorem.



Marsden-3620111 VC September 27, 2011 10:42 435

8.1 Green’s Theorem 435

example 3 Let F = (xy2, y + x). Integrate (∇ ×F) · k over the region in the first quadrant bounded
by the curves y = x2 and y = x .

solut ion Method 1. We first compute the curl

∇ × F =
(

0, 0,
∂F2

∂x
− ∂F1

∂y

)
= (1 − 2xy)k.

Thus, (∇ × F) · k = 1 − 2xy. This can be integrated over the given region D (see
Figure 8.1.8) using an iterated integral as follows:

∫∫
D

(∇ × F) · k dx dy =
∫ 1

0

∫ x

x2

(1 − 2xy) dy dx =
∫ 1

0
[ y − xy2]|x

x2 dx

=
∫ 1

0
[x − x3 − x2 + x5] dx = 1

2
− 1

4
− 1

3
+ 1

6
= 1

12
.

x

y

y = x

(0, 0)

(1, 1)

2y = x

figure 8.1.8 The region bounded by the curves y = x2

and y = x.

Method 2. Here we use Theorem 3 to obtain

∫∫
D

(∇ × F) · k dx dy =
∫

∂D
F · ds.

The line integral of F along the curve y = x from left to right is

∫ 1

0
F1 dx + F2 dy =

∫ 1

0
(x3 + 2x) dx = 1

4
+ 1 = 5

4
.

Along the curve y = x2 we get

∫ 1

0
F1 dx + F2 dy =

∫ 1

0
x5 dx + (x + x2)(2x dx) = 1

6
+ 2

3
+ 1

2
= 4

3
.

Thus, remembering that the integral along y = x is to be taken from right to left, as in
Figure 8.1.8,

∫
∂D

F · ds = 4

3
− 5

4
= 1

12
. ▲
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Vector Form Using the Divergence
There is another form of Green’s theorem that can be generalized to R3.

Theorem 4 Divergence Theorem in the Plane Let D ⊂ R2 be a region
to which Green’s theorem applies and let ∂D be its boundary. Let n denote the
outward unit normal to ∂D. If c: [a, b] → R2, t �→ c(t) = (x(t), y(t)) is a
positively oriented parametrization of ∂D, n is given by

n = ( y′(t), −x ′(t))√
[x ′(t)]2 + [ y′(t)]2

(see Figure 8.1.9). Let F = Pi + Qj be a C1 vector field on D. Then

∫
∂D

F · n ds =
∫∫

D
div F dA.

proof Recall that c′(t) = (x ′(t), y′(t)) is tangent to ∂D, and note that n · c′ = 0.
Thus, n is normal to the boundary. The sign of n is chosen to make it correspond to
the outward (rather than the inward) direction. By the definition of the line integral (see
Section 7.2),

∫
∂D

F · n ds =
∫ b

a

P(x(t), y(t))y′(t) − Q(x(t), y(t))x ′(t)√
[x ′(t)]2 + [ y′(t)]2

√
[x ′(t)]2 + [ y′(t)]2 dt

=
∫ b

a
[P(x(t), y(t))y′(t) − Q(x(t), y(t))x ′(t)] dt

=
∫

∂D
Pdy − Q dx.

By Green’s theorem, this equals

∫∫
D

(
∂P

∂x
+ ∂Q

∂y

)
dx dy =

∫∫
D

div F dA.
■

D

n

figure 8.1.9 n is the outward unit normal to ∂D.
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example 4 Let F = y3i + x5j. Compute the integral of the normal component of F around the unit
square.

solut ion This can be done using the divergence theorem. Indeed∫
∂D

F · n ds =
∫∫

D
div F dA.

But div F = 0, and so the integral is zero. ▲

exercises

1. Let D be the triangle in the xy plane with vertices at
(−1, 1), (1, 0), and (3, 2). Describe the boundary ∂D as
a piecewise smooth curve, oriented counterclockwise.

2. Let D be the region in the xy plane lying between the
curves y = x2 + 4 and y = 2x2. Describe the boundary
∂D as a piecewise smooth curve, oriented
counterclockwise.

In Exercises 3 to 6, verify Green’s theorem for the indicated region D and boundary ∂D, and functions P and Q.

3. D = [−1, 1] × [−1, 1], P(x , y) = −y,
Q(x , y) = x

4. D = [−1, 1] × [−1, 1], P(x , y) = x , Q(x , y) = y

5. D = [−1, 1] × [−1, 1], P(x , y) = x − y,
Q(x , y) = x + y
[HINT: Use 3 and 4.]

6. D = [
0, π

2

] × [
0, π

2

]
, P(x , y) = sin x ,

Q(x , y) = cos y

7. Let C be the closed, piecewise smooth curve formed by
traveling in straight lines between the points (−2, 1),
(−2, −3), (1, −1), (1, 5), and back to (−2, 1), in that
order. Use Green’s theorem to evaluate the integral:∫

C
(2xy) dx + (xy2) dy

8. A particle travels across a flat surface, moving due east
for 3 m, then due north for 4 m, and then returns to its
origin. A force field acts on the particle, given by
F(x , y) = (3x + 4y2)i + (10xy)j. (Here we assume that
j points north.) Use Green’s theorem to find the work
done on the particle by F.

9. Evaluate
∫

C y dx − xdy, where C is the boundary of the
square [−1, 1] × [−1, 1] oriented in the
counterclockwise direction, using Green’s theorem.

10. Find the area of the disc D of radius R using Green’s
theorem.

11. Verify Green’s theorem for the disc D with center (0, 0)
and radius R and the functions:

(a) P(x , y) = xy2, Q(x , y) = −yx2

(b) P(x , y) = x + y, Q(x , y) = y

(c) P(x , y) = xy = Q(x , y)

(d) P(x , y) = 2y, Q(x , y) = x

12. Using the divergence theorem, show that∫
∂D F · n ds = 0, where F(x , y) = yi − xj and D is the

unit disc. Verify this directly.

13. Find the area bounded by one arc of the cycloid
x = a(θ − sin θ ), y = a(1 − cos θ ), where a > 0, and
0 ≤ θ ≤ 2π , and the x axis (use Green’s theorem).

14. Under the conditions of Green’s theorem, prove that

(a)

∫
∂D

PQ dx + PQ dy =
∫∫

D

[
Q

(
∂P

∂x
− ∂P

∂y

)
+ P

(
∂Q

∂x
− ∂Q

∂y

)]
dx dy

(b)

∫
∂D

(
Q

∂P

∂x
− P

∂Q

∂x

)
dx +

(
P

∂Q

∂y
− Q

∂P

∂y

)
dy

= 2

∫∫
D

(
P

∂2 Q

∂x ∂y
− Q

∂2 P

∂x ∂y

)
dx dy

15. Evaluate the line integral

∫
C

(2x3 − y3) dx + (x3 + y3) dy,

where C is the unit circle, and verify Green’s theorem
for this case.
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16. Prove the following generalization of Green’s theorem:
Let D be a region in the xy plane with boundary a finite
number of oriented simple closed curves. Suppose that
by means of a finite number of line segments parallel to
the coordinate axes, D can be decomposed into a finite
number of simple regions Di with the boundary of each
Di oriented counterclockwise (see Figure 8.1.5). Then if
P and Q are of class C1 on D,∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫
∂D

P dx + Q dy,

where ∂D is the oriented boundary of D. (HINT: Apply
Green’s theorem to each Di .)

17. Verify Green’s theorem for the integrand of Exercise 15
(that is, with P = 2x3 − y3 and Q = x3 + y3) and the
annular region D described by a ≤ x2 + y2 ≤ b, with
boundaries oriented as in Figure 8.1.5.

18. Let D be a region for which Green’s theorem holds.
Suppose f is harmonic; that is,

∂2 f

∂x2 + ∂2 f

∂y2 = 0

on D. Prove that∫
∂D

∂ f

∂y
dx − ∂ f

∂x
dy = 0.

19. (a) Verify the divergence theorem for F = x i + yj and
D the unit disc x2 + y2 ≤ 1.

(b) Evaluate the integral of the normal component of
2xyi − y2j around the ellipse defined by
x2/a2 + y2/b2 = 1.

20. Let P(x , y) = −y/(x2 + y2) and
Q(x , y) = x/(x2 + y2). Assuming D is the unit disc,
investigate why Green’s theorem fails for this P and Q.

21. Use Green’s theorem to evaluate
∫

C+ ( y2 + x3) dx +
x4dy, where C+ is the perimeter of the square [0, 1] ×
[0, 1] in the counterclockwise direction.

22. Verify Theorem 3 by showing that
(∇ × F) · k = ∂Q/∂x − ∂P/∂y.

23. Use Theorem 2 to compute the area inside the ellipse
x2/a2 + y2/b2 = 1.

24. Use Theorem 2 to recover the formula A = 1
2

∫ b
a r2 dθ

for a region in polar coordinates.

25. Sketch the proof of Green’s theorem for the region
shown in Figure 8.1.10.

D

figure 8.1.10 Prove
Green’s theorem for
this region.

26. Prove the identity

∫
∂D

φ∇φ · n ds =
∫∫

D
(φ∇2φ + ∇φ · ∇φ) d A.

27. Use Green’s theorem to find the area of one loop of the
four-leafed rose r = 3 sin 2θ . (HINT:
x dy − y dx = r2dθ.)

28. Show that if C is a simple closed curve that bounds a
region to which Green’s theorem applies, then the area
of the region D bounded by C is

A =
∫

∂D
xdy = −

∫
∂D

y dx.

Show how this implies Theorem 2.

Exercises 29 to 37 illustrate the application of Green’s theorem to partial differential equations. (Further applications are
given in the Internet supplement.) They are particularly concerned with solutions to Laplace’s equation, that is, with
harmonic functions. For these exercises, let D be an open region in R2 with boundary ∂D. Let u: D ∪ ∂D → R be a
continuous function that is of class C2 on D. Suppose p ∈ D and the closed discs Bρ = Bρ (p) of radius ρ centered at p are
contained in D for 0 < ρ ≤ R. Define I (ρ) by

I (ρ) = 1

ρ

∫
∂ Bρ

u ds.

29. Show that limitρ→0 I (ρ) = 2πu(p).

30. Let n denote the outward unit normal to ∂ Bρ

and ∂u/∂n = ∇u · n. Show that∫
∂ Bρ

∂u

∂n
ds =

∫∫
Bρ

∇2u dA.
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31. Using Exercise 30, show that
I ′(ρ) = (1/ρ)

∫∫
Bρ

∇2u dA.

32. Suppose u satisfies Laplace’s equation: ∇2u = 0 on D.
Use the preceding exercises to show that

u(p) = 1

2π R

∫
∂ BR

u ds.

(This expresses the fact that the value of a harmonic
function at a point is the average of its values on the
circumference of any disc centered about it.)

33. Use Exercise 32 to show that if u is harmonic (i.e., if
∇2u = 0), then u(p) can be expressed as an area integral

u(p) = 1

π R2

∫∫
BR

u dA.

34. Suppose u is a harmonic function defined on D (i.e.,
∇2u = 0 on D) and that u has a local maximum (or
minimum) at a point p in D.

(a) Show that u must be constant on some disc centered
at p. (HINT: Use the results of Exercise 25.)

(b) Suppose that D is path-connected [i.e., for any
points p and q in D, there is a continuous path
c: [0, 1] → D such that c(0) = p and c(1) = q] and
that for some p the maximum or minimum at p is
absolute; thus, u(q) ≤ u(p) or u(q) ≥ u(p) for
every q in D. Show that u must be constant on D.

(The result in this Exercise is called a strong
maximum or minimum principle for harmonic
functions. Compare this with Exercises 46 to 50 in
Section 3.3.)

35. A function is said to be subharmonic on D if ∇2u ≥ 0
everywhere in D. It is said to be superharmonic if
∇2u ≤ 0.

(a) Derive a strong maximum principle for
subharmonic functions.

(b) Derive a strong minimum principle for
superharmonic functions.

36. Suppose D is the disc {(x , y) | x2 + y2 < 1} and C is
the circle {(x , y) | x2 + y2 = 1}. In the Internet
supplement, we shall show that if f is a continuous
real-valued function on C , then there is a continuous
function u on D ∪ C that agrees with f on C and is
harmonic on D. That is, f has a harmonic extension to
the disc. Assuming this, show the following:

(a) If q is a nonconstant continuous function on D ∪ C
that is subharmonic (but not harmonic) on D, then
there is a continuous function u on D ∪ C that is
harmonic on D such that u agrees with q on C and
q < u everywhere on D.

(b) The same assertion holds if “subharmonic” is
replaced by “superharmonic” and “q < u” by
“q > u.”

37. Let D be as in Exercise 36. Let f : D → R be
continuous. Show that a solution to the equation
∇2u = 0 satisfying u(x) = f (x) for all x ∈ ∂D is
unique.

38. Use Green’s theorem to prove the change of variables
formula in the following special case:∫∫

D
dx dy =

∫∫
D∗

∣∣∣∂(x , y)

∂(u, v)

∣∣∣ du dv

for a transformation (u, v) �→ (x(u, v), y(u, v)).

8.2 Stokes’ Theorem

Stokes’ theorem relates the line integral of a vector field around a simple closed curve
C in R3 to an integral over a surface S for which C is the boundary. In this regard it is
very much like Green’s theorem.

Stokes’ Theorem for Graphs
Let us begin by recalling a few facts from Chapter 7. Consider a surface S that is the
graph of a function f (x , y), so that S is parametrized by

⎧⎨
⎩

x = u
y = v

z = f (u, v) = f (x , y)
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for (u, v) in some domain D in the plane. The integral of a vector function F over S
was developed in Section 7.6 as

∫∫
S

F · dS =
∫∫

D

[
F1

(
− ∂z

∂x

)
+ F2

(
− ∂z

∂y

)
+ F3

]
dx dy, (1)

where F = F1i + F2j + F3k.
In Section 8.1, we first assumed that the regions D under consideration were simple;

while this was used in our proof of Green’s theorem, we noted there that the theorem
is valid for a wider class of regions. In this section we assume that D is a region whose
boundary is a simple closed curve and to which Green’s theorem applies. Green’s theorem
involves choosing an orientation on the boundary of D, as was explained in Section 8.1.
The choice of orientation that validates Green’s theorem will be called positive. Recall
that if D is simple, then the positive orientation is the counterclockwise one.

Suppose that c: [a, b] → R2, c(t) = (x(t), y(t)) is a parametrization of ∂D in the
positive direction. Then we define the boundary curve ∂S to be the oriented simple
closed curve that is the image of the mapping p: t �→ (x(t), y(t), f (x(t), y(t))) with
the orientation induced by p (Figure 8.2.1).

To remember this orientation (i.e., the positive direction) on ∂S, imagine that you
are an “observer” walking along the boundary of the surface with the normal as your
upright direction; you are moving in the positive direction if the surface is on your left.
This orientation on ∂S is often called the orientation induced by an upward normal n.

Theorem 5 Stokes’ Theorem for Graphs Let S be the oriented surface
defined by a C2 function z = f (x , y), where (x , y) ∈ D, a region to which
Green’s theorem applies, and let F be a C1 vector field on S. Then if ∂S denotes
the oriented boundary curve of S as just defined, we have∫∫

S
curl F · dS =

∫∫
S
(∇ × F) · dS =

∫
∂S

F · ds.

Remember that
∫

∂S F · ds is the integral around ∂S of the tangential component of F,
while

∫∫
S G · dS is the integral over S of G · n, the normal component of G (see Sec-

tions 7.2 and 7.6). Thus, Stokes’ theorem says that the integral of the normal component
of the curl of a vector field F over a surface S is equal to the integral of the tangential
component of F around the boundary ∂S.

x

y

z

∂D

D

n

∂S

S
figure 8.2.1 The induced orientation on ∂S:
As you walk around the boundary, the
surface should be on your left.
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proof If F = F1i + F2j + F3k, then

curl F =
(

∂F3

∂y
− ∂F2

∂z

)
i +

(
∂F1

∂z
− ∂F3

∂x

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k.

Therefore, we use formula (1) to write
∫∫

S
curl F · dS =

∫∫
D

[ (
∂F3

∂y
− ∂F2

∂z

) (
− ∂z

∂x

)

+
(

∂F1

∂z
− ∂F3

∂x

) (
−∂z

∂y

)
+

(
∂F2

∂x
− ∂F1

∂y

) ]
dA. (2)

On the other hand,
∫

∂S
F · ds =

∫
p

F · ds =
∫

p
F1 dx + F2 dy + F3 dz,

where p: [a, b] → R3, p(t) = (x(t), y(t), f (x(t), y(t))) is the orientation-preserving
parametrization of the oriented simple closed curve ∂S discussed earlier. Thus,

∫
∂S

F · ds =
∫ b

a

(
F1

dx

dt
+ F2

dy

dt
+ F3

dz

dt

)
dt. (3)

By the chain rule,

dz

dt
= ∂z

∂x

dx

dt
+ ∂z

∂y

dy

dt
.

Substituting this expression into equation (3), we obtain

∫
∂S

F · ds =
∫ b

a

[(
F1 + F3

∂z

∂x

)
dx

dt
+

(
F2 + F3

∂z

∂y

)
dy

dt

]
dt

=
∫

c

(
F1 + F3

∂z

∂x

)
dx +

(
F2 + F3

∂z

∂y

)
dy (4)

=
∫

∂D

(
F1 + F3

∂z

∂x

)
dx +

(
F2 + F3

∂z

∂y

)
dy.

Applying Green’s theorem to equation (4) yields (we are assuming that Green’s theorem
applies to D)

∫∫
D

[
∂(F2 + F3 ∂z/∂y)

∂x
− ∂(F1 + F3 ∂z/∂x)

∂y

]
dA.

Now we use the chain rule, remembering that F1, F2, and F3 are functions of x , y, and
z and that z is a function of x and y, to obtain

∫∫
D

[ (
∂F2

∂x
+ ∂F2

∂z

∂z

∂x
+ ∂F3

∂x

∂z

∂y
+ ∂F3

∂z

∂z

∂x

∂z

∂y
+ F3

∂2z

∂x∂y

)

−
(

∂F1

∂y
+ ∂F1

∂z

∂z

∂y
+ ∂F3

∂y

∂z

∂x
+ ∂F3

∂z

∂z

∂y

∂z

∂x
+ F3

∂2z

∂y ∂x

) ]
dA.

Because mixed partials are equal, the last two terms in each parenthesis cancel each
other, and we can rearrange terms to obtain the integral of equation (2), which completes
the proof. ■
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example 1 Let F = ye zi + xe zj + xye zk. Show that the integral of F around an oriented simple
closed curve C that is the boundary of a surface S is 0. (Assume S is the graph of a
function, as in Theorem 5.)

solut ion Indeed,
∫

C F · ds = ∫∫
S (∇ × F) · dS, by Stokes’ theorem. But we compute

∇ × F =

∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z
ye z xe z xye z

∣∣∣∣∣∣∣∣
= 0,

and so
∫

C F · ds = 0. Alternatively, we can observe that F = ∇(xye z), so its integral
around a closed curve is zero. ▲

example 2 Use Stokes’ theorem to evaluate the line integral∫
C

−y3 dx + x3dy − z3 dz,

where C is the intersection of the cylinder x2 + y2 = 1 and the plane x + y + z = 1,
and the orientation on C corresponds to counterclockwise motion in the xy plane.

solut ion The curve C bounds the surface S defined by the equation z = 1 − x − y = f (x , y)
for (x , y) in the set D = {(x , y) | x2 + y2 ≤ 1} (Figure 8.2.2). We set F = −y3i +
x3j − z3k, which has curl ∇ × F = (3x2 + 3y2)k. Then, by Stokes’ theorem, the line
integral is equal to the surface integral

∫∫
S
(∇ × F) · dS.

But ∇ × F has only a k component. Thus, by formula (1) we have
∫∫

S
(∇ × F) · dS =

∫∫
D

(3x2 + 3y2) dx dy.

y

x

x2 + y2 = 1

(0, 1, 0)
(1, 0, 0)

z

figure 8.2.2 The curve C is the intersection of the
cylinder x2 + y2 = 1 and the plane x + y + z = 1.
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This integral can be evaluated by changing to polar coordinates. Doing this, we get

3
∫∫

D
(x2 + y2) dx dy = 3

∫ 1

0

∫ 2π

0
r 2 · r dθ dr = 6π

∫ 1

0
r 3 dr = 6π

4
= 3π

2
.

Let us verify this result by directly evaluating the line integral
∫

C
−y3 dx + x3 dy − z3 dz.

We can parametrize the curve ∂D by the equations

x = cos t , y = sin t , z = 0, 0 ≤ t ≤ 2π.

The curve C is therefore parametrized by the equations

x = cos t , y = sin t , z = 1 − sin t − cos t , 0 ≤ t ≤ 2π.

Thus,
∫

C
− y3 dx + x3dy − z3 dz

=
∫ 2π

0
[(−sin3 t)(−sin t) + (cos3 t)(cos t)

− (1 − sin t − cos t)3(−cos t + sin t)] dt

=
∫ 2π

0
(cos4 t + sin4 t) dt −

∫ 2π

0
(1 − sin t − cos t)3(−cos t + sin t) dt.

The second integrand is of the form u3 du, where u = 1 − sin t − cos t , and thus the
integral is equal to

1

4
[(1 − sin t − cos t)4]2π

0 = 0.

Hence, we are left with
∫ 2π

0
(cos4 t + sin4 t) dt.

This integral can be evaluated using formulas (18) and (19) of the table of integrals.
We can also proceed as follows. Using the trigonometric identities

sin2 t = 1 − cos 2t

2
, cos2 t = 1 + cos 2t

2
,

substituting and squaring these expressions, we reduce the preceding integral to

1

2

∫ 2π

0
(1 + cos2 2t) dt = π + 1

2

∫ 2π

0
cos2 2t dt.

Again using the identity cos2 2t = (1 + cos 4t)/2, we find

π + 1

4

∫ 2π

0
(1 + cos 4t) dt = π + 1

4

∫ 2π

0
dt + 1

4

∫ 2π

0
cos 4t dt

= π + π

2
+ 0 = 3π

2
. ▲
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(0, 1, 0)

S

“Mistaken” boundary of S

y

x

z

figure 8.2.3 The surface S is a portion of a sphere.

Stokes’ Theorem for Parametrized Surfaces
To simplify the proof of Stokes’ theorem given earlier, we assumed that the surface S
could be described as the graph of a function z = f (x , y), (x , y) ∈ D, where D is
some region to which Green’s theorem applies. However, without too much more effort
we can obtain a more general theorem for oriented parametrized surfaces S. The main
complication is in the definition of ∂S.

Suppose �: D → R3 is a parametrization of a surface S and c(t) = (u(t), v(t)) is a
parametrization of ∂D. We might be tempted to define ∂S as the curve parametrized by
t �→ p(t) = �(u(t), v(t)). However, with this definition, ∂S might not be the boundary
of S in any reasonable geometric sense.

For example, we would conclude that the boundary of the unit sphere S parametrized
by spherical coordinates in R3 is half of the great circle on S lying in the xz plane, but
clearly in a geometric sense S is a smooth surface (no points or cusps) with no boundary
or edge at all (see Figure 8.2.3 and Exercise 20). Thus, this great circle is in some sense
the “mistaken” boundary of S.

We can get around this difficulty by assuming that � is one-to-one on all of D.
Then the image of ∂D under �, namely, �(∂D), will be the geometric boundary of
S = �(D). If c(t) = (u(t), v(t)) is a parametrization of ∂D in the positive direction,
we define ∂S to be the oriented simple closed curve that is the image of the mapping
p: t �→ �(u(t), v(t)), with the orientation of ∂S induced by p (see Figure 8.2.1).

Theorem 6 Stokes’ Theorem: Parametrized Surfaces Let S be an ori-
ented surface defined by a one-to-one parametrization �: D ⊂ R2 → S, where D
is a region to which Green’s theorem applies. Let ∂S denote the oriented boundary
of S and let F be a C1 vector field on S. Then∫∫

S
(∇ × F) · dS =

∫
∂S

F · ds.

If S has no boundary, and this includes surfaces such as the sphere, then the integral
on the left is zero (see Exercise 25).

This is proved in the same way as Theorem 5.

example 3 Let S be the surface shown in Figure 8.2.4, with the indicated orientation. Let F =
yi − xj + e xzk. Evaluate

∫∫
S (∇ × F) · dS.
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S

x2 + y2 = 1
x

y

z

n

figure 8.2.4 This surface S is a portion of a sphere
sitting on top of the circle x2 + y2 = 1. It does not
include the disc x2 + y2 < 1 in the xy plane.

s o l u t i o n This surface could be parametrized using spherical coordinates based at the center of
the sphere. However, we need not explicitly find � in order to solve this problem.
By Theorem 6,

∫∫
S (∇ × F) · dS = ∫

∂S F· ds, and so if we parametrize ∂S by x(t) =
cos t , y(t) = sin t , 0 ≤ t ≤ 2π , we determine∫

∂S
F · ds =

∫ 2π

0

(
y

dx

dt
− x

dy

dt

)
dt =

∫ 2π

0
(− sin2 t − cos2 t) dt = −

∫ 2π

0
dt = −2π

and therefore
∫∫

S (∇ × F) · dS = −2π . ▲

The Curl as Circulation per Unit Area
Let us now use Stokes’ theorem to justify the physical interpretation of ∇ × F in terms
of paddle wheels that was proposed in Chapter 4. Paraphrasing Theorem 6, we have∫∫

S
(curl F) · n dS =

∫∫
S
(curl F) · dS =

∫
∂S

F · ds =
∫

∂S
FT ds,

where FT is the tangential component of F. This says that the integral of the normal
component of the curl of a vector field over an oriented surface S is equal to the line
integral of F along ∂S, which in turn is equal to the path integral of the tangential
component of F over ∂S.

Suppose V represents the velocity vector field of a fluid. Consider a point P and a
unit vector n. Let Sρ denote the disc of radius ρ and center P, which is perpendicular to
n. By Stokes’ theorem,∫∫

Sρ

curl V · dS =
∫∫

Sρ

curl V · n dS =
∫

∂Sρ

V · ds,

where ∂Sρ has the orientation induced by n (see Figure 8.2.5).
By the mean-value theorem for integrals (Exercise 16, Section 7.6), there is a point

Q in Sρ such that ∫∫
Sρ

curl V · n d S = [curl V(Q) · n]A(Sρ),

where A(Sρ) = πρ2 is the area of Sρ and curl V(Q) is the value of curl V at Q. Thus,

limit
ρ→0

1

A(Sρ)

∫
∂Sρ

V · ds = limit
ρ→0

1

A(Sρ)

∫∫
Sρ

(curl V) · dS

= limit
ρ→0

curl V(Q) · n = curl V(P) · n.
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P

n

∂Sr

Sr
r

figure 8.2.5 A normal n induces an orientation on
the boundary ∂Sρ of the disc Sρ .

figure 8.2.6 The intuitive
meaning of the possible signs of∫

C
V · ds.

V   ds  >  0
C

 . V   ds  <  0 . V   ds  =  0 .

V

V

V

C C C

∫ C∫ C∫
Thus,1

curl V(P) · n = limit
ρ→0

1

A(Sρ)

∫
∂Sρ

V · ds. (5)

Let us pause to consider the physical meaning of
∫

C V · ds when V is the velocity field
of a fluid. Suppose, for example, that V points in the direction tangent to the oriented
curve C (Figure 8.2.6). Then clearly

∫
C V · ds > 0, and particles on C tend to rotate

counterclockwise. If V is pointing in the opposite direction, then
∫

C V · ds < 0 and
particles tend to rotate clockwise. If V is perpendicular to C , then particles don’t rotate
on C at all and

∫
C V · ds = 0. In general,

∫
C V · ds, being the integral of the tangential

component of V, represents the net amount of turning of the fluid in a counterclockwise
direction around C . We therefore refer to

∫
C V · ds as the circulation of V around C

(see Figure 8.2.7).
These results allow us to see just what curl V means for the motion of a fluid. The

circulation
∫

∂Sρ
V · ds is the net velocity of the fluid around ∂Sρ , so that (curl V) · n

represents the turning or rotating effect of the fluid around the axis n.

Circulation and Curl The dot product of curl V(P) with a unit vector n,
namely, curl V(P) · n, equals the circulation of V per unit area at P on a surface
perpendicular to n.

1Some informal texts adopt equation (5) as the definition of the curl, and use it to “prove” Stokes’
theorem. However, this raises the danger of circular reasoning, for to show that equation (5) really
defines a vector “curl V(P)” requires Stokes’ theorem, or some similar argument.
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figure 8.2.7 Circulation of a
vector field (velocity field of a
fluid): (a) Circulation about C is
zero; (b) nonzero circulation
about C (“whirlpool”).

Motion
of fluid
particles

C

V

V

Motion
of fluid
particles

C

V

V(x, y, z)

(x, y, z)

(a) (b)

Observe that the magnitude of curl V(P) · n is maximized when n = curl V/‖curl V‖
(evaluated at P). Therefore, the rotating effect at P is greatest about the axis that is
parallel to curl V/‖curl V‖. Thus, curl V is aptly called the vorticity vector.

We can use these ideas to compute the curl in cylindrical coordinates.

example 4 Let the unit vectors er , eθ , ez associated with cylindrical coordinates be as shown in
Figure 8.2.8. Let F = Fr er + Fθeθ + Fzez . (The subscripts here denote components of
F, not partial derivatives.) Find a formula for the er component of ∇ × F in cylindrical
coordinates.

x

y

z

r

e

θ z

r

eθ

ez

figure 8.2.8 Orthonormal vectors er , eθ , and ez

associated with cylindrical coordinates. The vector er

is parallel to the line labeled r.

solut ion Let S be the surface shown in Figure 8.2.9.

x

y

z

e

θ

r

dθ

z S
z + dz

figure 8.2.9 A surface element in cylindrical
coordinates.
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The area of S is r dθ dz and the unit normal is er . The integral of F around the edges
of S is approximately

[Fθ (r, θ , z) − Fθ (r, θ , z + dz)]r dθ + [Fz(r, θ + dθ , z) − Fz(r, θ , z)] dz

≈ −∂Fθ

∂z
dz r dθ + ∂Fz

∂θ
dθ dz.

Thus, the circulation per unit area is this expression divided by r dθ dz, namely,

1

r

∂Fz

∂θ
− ∂Fθ

∂z
.

According to the previous box, this must be the er component of the curl. ▲

Gradient, Divergence, and Curl in Cylindrical
and Spherical Coordinates
By similar arguments to Example 4, we find that the curl in cylindrical coordinates is
given by

∇ × F = 1

r

∣∣∣∣∣∣∣∣∣

er reθ ez

∂

∂r

∂

∂θ

∂

∂z
Fr rFθ Fz

∣∣∣∣∣∣∣∣∣
.

We can find other important vector quantities expressed in different coordinate systems.
For example, the chain rule shows that the gradient in cylindrical coordinates is

∇ f = ∂ f

∂r
er + 1

r

∂ f

∂θ
eθ + ∂ f

∂z
ez ,

and in Section 8.4 we will establish related techniques that give the following formula
for the divergence in cylindrical coordinates:

∇ · F = 1

r

[
∂

∂r
(r Fr ) + ∂Fθ

∂θ
+ ∂

∂z
(r Fz)

]
.

Corresponding formulas for gradient, divergence, and curl in spherical coordinates are

∇ f = ∂ f

∂ρ
eρ + 1

ρ

∂ f

∂φ
eφ + 1

ρ sin φ

∂ f

∂θ
eθ

∇ · F = 1

ρ2

∂

∂ρ
(ρ2 Fρ) + 1

ρ sin φ

∂

∂φ
(sin φFφ) + 1

ρ sin φ

∂Fθ

∂θ

and

∇ × F =
[

1

ρ sin φ

∂

∂φ
(sin φFθ ) − 1

ρ sin φ

∂Fφ

∂θ

]
eρ

+
[

1

ρ sin φ

∂Fρ

∂θ
− 1

ρ

∂

∂ρ
(ρFθ )

]
eφ +

[
1

ρ

∂

∂ρ
(ρFφ) − 1

ρ

∂Fρ

∂φ

]
eθ ,

where eρ , eφ , eθ are as shown in Figure 8.2.10 and where F = Fρeρ + Fφeφ + Fθeθ .

x

y

z

rθ

eθ

eφ
φ

ρ

eρ

figure 8.2.10 Orthonormal
vectors eρ , eφ , and eθ

associated with spherical
coordinates.
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Faraday’s Law
Vector calculus plays an essential role in the theory of electromagnetism. The next
example shows how Stokes’ theorem applies.

example 5 Let E and H be time-dependent electric and magnetic fields, respectively, in space. Let
S be a surface with boundary C . We define∫

C
E · ds = voltage around C,

∫∫
S

H · dS = magnetic flux across S.

Faraday’s law (see Figure 8.2.11) states that the voltage around C equals the negative
rate of change of magnetic flux through S. Show that Faraday’s law follows from the
following differential equation (one of the Maxwell equations):

∇ × E = −∂H

∂t
.

CE

H
(magnet)

E

figure 8.2.11 Faraday’s law.

solut ion Assume that −∂H/∂t = ∇ × E holds. By Stokes’ theorem,∫
C

E · ds =
∫∫

S
(∇ × E) · dS.

Assuming that we can move ∂/∂t under the integral sign, we get

− ∂

∂t

∫∫
S

H · dS =
∫∫

S
−∂H

∂t
· dS =

∫∫
S
(∇ × E) · dS =

∫
C

E · ds

and so ∫
C

E · ds = − ∂

∂t

∫∫
S

H · dS,

which is Faraday’s law. ▲

Falling Cats and Stokes’ Theorem

Have you ever wondered how a falling cat can right itself? Released from a resting
position with its feet above its head, the cat is able to execute a 180◦ reorientation and
land safely on its feet. This well-known phenomenon has fascinated people for many
years—especially in cities like New York, where cats have been known to survive falls
of 8 to 30 stories!

There have been many incorrect explanations as to how cats are able to right them-
selves, including the idea that it has to do with how the cat twirls its tail. This cannot
be right because Manx cats, which have no tails, can also perform this feat!

figure 8.2.12
The falling cat
rights itself by
wriggling its
body parts.

We observe, as in Figure 8.2.12, that the cat achieves this net change in orientation by
wriggling, to create changes in its internal shape or configuration. On the surface, this
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provides a seeming contradiction; because the cat is dropped from a resting position,
it has zero angular momentum at the beginning of the fall and hence, according to
a basic law of physics called conservation of angular momentum, the cat has zero
angular momentum throughout the duration of its fall.2 Amazingly, the cat has effectively
changed its angular position while maintaining zero angular momentum!

The exact process by which this occurs is subtle; intuitive reasoning can lead one
astray and, as we have indicated, many false explanations have been offered throughout
the history of trying to solve this mystery.3 Recently, new and interesting insights have
been discovered using geometric methods that, in fact, are related to curvature (see
Section 7.7).4

The way that curvature and geometry are related to the falling cat phenomenon is
not easy to explain in full detail, but we can explain a similar phenomenon that is easy
to understand. Interestingly, Stokes’ theorem is the key to understanding these types of
phenomena.

exercises

1. Let S be the portion of the plane 2x + 3y + z = 5 lying
between the points (−1, 1, 4), (2, 1, −2), (2, 3, −8), and
(−1, 3, 2). Find parameterizations for both the surface S
and its boundary ∂S. Be sure that their respective
orientations are compatible with Stokes’ theorem.

2. Let S be the portion of the surface z = x2 + y2 lying
between the points (0, 0, 0), (2, 0, 4), (0, 2, 4), and
(2, 2, 8). Find parameterizations for both the surface S
and its boundary ∂S. Be sure that their respective
orientations are compatible with Stokes’ theorem.

In Exercises 3 to 6, verify Stokes’ theorem for the given surface S and boundary ∂S, and vector fields F.

3. S = {(x , y, z) : x2 + y2 + z2 = 1, z ≥ 0}
(oriented as a graph)

∂S = {(x , y) : x2 + y2 = 1}
F = x i + yj + zk

4. S as in (1), and F = yi + zj + xk

5. S = {(x , y, z) : z = 1 − x2 − y2, z ≥ 0}
(oriented as a graph)

∂S = {(x , y) : x2 + y2 = 1}
F = zi + xj + (2zx + 2xy)k

6. S as in (3), and F = z2i + xj + y2k

7. Let C be the closed, piecewise smooth curve formed by
traveling in straight lines between the points (0, 0, 0),
(2, 0, 4), (3, 2, 6), (1, 2, 2), and back to the origin, in
that order. (Thus the surface S lying interior to C is
contained in the plane z = 2x .) Use Stokes’ theorem to
evaluate the integral:

∫
C

(z cos x) dx + (x2 yz) dy + (yz) dz

2We saw an instance of the law of conservation of angular momentum in Section 4.1, Exercise 26.

3Another favorite fallacious argument, showing that a cat cannot turn itself over(!), is this: “Accept from
physics that angular momentum is the moment of inertia times angular velocity [moments of inertia
are discussed in Section 6.3]. But the angular momentum of the cat is zero, so the angular velocity
must also be zero. Because angular velocity is the rate of change of the angular position, the angular
position is constant. Thus, the cat cannot turn itself over.” What is wrong? This argument ignores the
fact that the cat changes its shape, and hence its moment of inertia, during the fall.

4See T. R. Kane and M. Scher, “A Dynamical Explanation of the Falling Cat Phenomenon,” Int. J. Solids
Struct., 5 (1969): 663–670. See also R. Montgomery, “Isoholonomic Problems and Some Applications,”
Commun. Math. Phys., 128 (1990): 565–592; R. Montgomery, “How Much Does a Rigid Body Rotate?
A Berry’s Phase from the 18th Century,” Am. J. Phys., 59 (1991b): 394–398. See also J. E. Marsden
and J. Ostrowski, “Symmetries in Motion: Geometric Foundations of Motion Control,” Nonlinear Sci-
ence Today (1998), http://link.springer-ny.com; R. Batterman, “Falling Cats, Parallel Parking, and Po-
larized Light,” Philos. Soc. Arch. (2002); http://philsci-archive.pitt.edu/documents/disk0/00/00/05/83,
http://www.its.caltech.edu/∼mleok/falling cats.htm, and references therein.

http://link.springer-ny.com
http://philsci-archive.pitt.edu/documents/disk0/00/00/05/83
http://www.its.caltech.edu/%E2%88%BCmleok/falling
http://www.its.caltech.edu/%E2%88%BCmleok/falling
http://www.its.caltech.edu/%E2%88%BCmleok/falling
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8. Let C be the closed, piecewise smooth curve formed by
traveling in straight lines between the points (0, 0, 0),
(2, 1, 5), (1, 1, 3), and back to the origin, in that order.
Use Stokes’ theorem to evaluate the integral:

∫
C

(xyz) dx + (xy) dy + (x) dz

9. Redo Exercise 9 of Section 7.6 using Stokes’ theorem.

10. Redo Exercise 10 of Section 7.6 using Stokes’ theorem.

11. Verify Stokes’ theorem for the upper hemisphere
z =

√
1 − x2 − y2, z ≥ 0, and the radial vector field

F(x , y, z) = x i + yj + zk.

12. Let S be a surface with boundary ∂S, and suppose E is
an electric field that is perpendicular to ∂S. Show that
the induced magnetic flux across S is constant in time.
(HINT: Use Faraday’s law.)

13. Let S be the capped cylindrical surface shown in
Figure 8.2.13. S is the union of two surfaces, S1 and S2,
where S1 is the set of (x , y, z) with x2 + y2 = 1,
0 ≤ z ≤ 1, and S2 is the set of (x , y, z) with
x2 + y2 + (z − 1)2 = 1, z ≥ 1. Set F(x , y, z) =
(zx + z2 y + x)i + (z3 yx + y)j + z4x2k. Compute∫∫

S(∇ × F) · dS. (HINT: Stokes’ theorem holds for this
surface.)

x

S1

S2

z

1

y

figure 8.2.13 The capped cylinder is the
union of S1 and S2.

14. Let c consist of straight lines joining (1, 0, 0), (0, 1, 0),
and (0, 0, 1) and let S be the triangle with these vertices.
Verify Stokes’ theorem directly with
F = yzi + xzj + xyk.

15. Evaluate the integral
∫∫

S(∇ × F) · dS, where S is the
portion of the surface of a sphere defined by

x2 + y2 + z2 = 1 and x + y + z ≥ 1, and where
F = r × (i + j + k), r = x i + yj + zk.

16. Show that the calculation in Exercise 15 can be
simplified by observing that

∫
∂S F · dr = ∫

∂�
F · dr for

any other surface �. By picking � appropriately,∫∫
�

(∇ × F) · dS may be easy to compute. Show that this
is the case if � is taken to be the portion of the plane
x + y + z = 1 inside the circle ∂S.

17. Calculate the surface integral
∫∫

S(∇ × F) · dS, where S
is the hemisphere x2+y2+z2 = 1, x ≥ 0, and
F = x3i − y3j.

18. Find
∫∫

S(∇ × F) · dS, where S is the ellipsoid

x2 + y2 + 2z2 = 10 and F is the vector field
F = (sin xy)i + ex j − yzk.

19. Let F = yi − xj + zx3 y2k. Evaluate∫∫
S(∇ × F) · n d A, where S is the surface defined by

x2 + y2 + z2 = 1, z ≤ 0.

20. A hot-air balloon has the truncated spherical shape
shown in Figure 8.2.14. The hot gases escape through
the porous envelope with a velocity vector field

V(x , y, z) = ∇ × �(x , y, z)
where �(x , y, z) = −yi + xj.

If R = 5, compute the volume flow rate of the gases
through the surface.

y

x

R
4

R

z

figure 8.2.14 A hot-air balloon.

21. Prove that Faraday’s law implies ∇ × E = −∂H/∂t .

22. Let S be a surface and let F be perpendicular to the
tangent to the boundary of S. Show that∫∫

S
(∇ × F) · dS = 0.

What does this mean physically if F is an electric field?
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23. Consider two surfaces S1, S2 with the same boundary
∂S. Describe with sketches how S1 and S2 must be
oriented to ensure that∫∫

S1

(∇ × F) · dS =
∫∫

S2

(∇ × F) · dS.

24. For a surface S and a fixed vector v, prove that

2

∫∫
S

v · n d S =
∫

∂S
(v × r) · ds,

where r(x , y, z) = (x , y, z).

25. Argue informally that if S is a closed surface, then∫∫
S
(∇ × F) · dS = 0

(see Exercise 23). (A closed surface is one that forms
the boundary of a region in space; thus, for example, a
sphere is a closed surface.)

26. If C is a closed curve that is the boundary of a surface S,
and f and g are C2 functions, show that

(a)

∫
C

f ∇g · ds =
∫∫

S

(∇ f × ∇g) · dS

(b)

∫
C

( f ∇g + g∇ f ) · ds = 0

27. (a) If C is a closed curve that is the boundary of a
surface S, and v is a constant vector, show that∫

C
v · ds = 0.

(b) Show that this is true even if C is not the boundary
of a surface S.

28. Show that �: D → R3, D = [0, π ] × [0, 2π ],
�(φ , θ ) = (cos θ sin φ, sin θ sin φ, cos φ), which
parametrizes the unit sphere, takes the boundary of
D to half of a great circle on S.

29. Verify Theorem 6 for the helicoid
�(r, θ ) = (r cos θ , r sin θ , θ ), (r, θ ) ∈ [0, 1] × [0, π/2],
and the vector field F(x , y, z) = (z, x , y).

30. Prove Theorem 6.

31. Let F = x2i + (2xy + x)j + zk. Let C be the circle
x2 + y2 = 1 and S the disc x2 + y2 ≤ 1 within the
plane z = 0.

(a) Determine the flux of F out of S.

(b) Determine the circulation of F around C .

(c) Find the flux of ∇ × F. Verify Stokes’ theorem
directly in this case.

32. Let S be a surface with boundary ∂S, and suppose that E
is an electric field that is perpendicular to ∂S. Use
Faraday’s law to show that the induced magnetic flux
across S is constant in time.

33. Integrate ∇ × F, F = (3y, −xz, −yz2) over the portion
of the surface 2z = x2 + y2 below the plane z = 2, both
directly and by using Stokes’ theorem.

34. Ampère’s law states that if the electric current density is
described by a vector field J and the induced magnetic
field is H, then the circulation of H around the boundary
C of a surface S equals the integral of J over S (i.e., the
total current crossing S ). See Figure 8.2.15. Show that
this is implied by the steady-state Maxwell equation
∇ × H = J.

Current I = flux
of J 

H

J

H

figure 8.2.15 Ampère’s law.

35. Faraday’s law relates the line integral of the electric field
around a loop C to the surface integral of the rate of
change of the magnetic field over a surface S with
boundary C . Regarding the equation ∇ × E = −∂H/∂t
as the basic equation, Faraday’s law is a consequence of
Stokes’ theorem, as we have seen in Example 4.

Suppose we are given electric and magnetic fields
in space that satisfy ∇ × E = −∂H/∂t . Suppose C is
the boundary of the Möbius band shown in Figures 7.6.3
and 7.6.4. Because the Möbius band cannot be oriented,
Stokes’ theorem does not apply. What becomes of
Faraday’s law? What do you guess

∫
C E · ds equals?

36. (a) If in spherical coordinates, we write

er = αi + βj + γ k, find α, β, and γ.

(b) Find similar formulas for eφ and eθ .
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8.3 Conservative Fields

We saw in Section 7.2 that for a gradient force field F = ∇ f , line integrals of F were
evaluated as follows:

∫
c

F · ds = f (c(b)) − f (c(a)).

The value of the integral depends only on the endpoints c(b) and c(a) of the path. In
other words, if we used another path with the same endpoints, we would still get the
same answer. This leads us to say that the integral is path-independent.

Gradient fields are important in many physical problems. For example, if V = − f
represents a potential energy (gravitational, electrical, and so on), then F represents a
force.5 Consider the example of a particle of mass m in the field of the earth; in this
case, we take f to be GmM/r or V = −GmM/r , where G is the gravitational constant,
M is the mass of the earth, and r is the distance from the center of the earth. The
corresponding force is F = −(GmM/r3)r = −(GmM/r 2)n, where n is the unit radial
vector. Note that F fails to be defined at the point r = 0.

When Are Vector Fields Gradients?
We wish to characterize those vector fields that can be written as a gradient. Our task is
simplified considerably by Stokes’ theorem.

Theorem 7 Conservative Fields Let F be a C1 vector field defined on R3,
except possibly for a finite number of points. The following conditions on F are
all equivalent:

(i) For any oriented simple closed curve C,
∫

C F · ds = 0.

(ii) For any two oriented simple curves C1 and C2 that have the same endpoints,∫
C1

F · ds =
∫

C2

F · ds.

(iii) F is the gradient of some function f ; that is, F = ∇ f (and if F has one or
more exceptional points where it fails to be defined, f is also undefined there).

(iv) ∇ × F = 0.

A vector field satisfying one (and, hence, all) of the conditions (i)–(iv) is called
a conservative vector field.6

5If the minus sign is used, then V is decreasing in the direction F.
6In the plane R2, exceptional points are not allowed (see Exercise 16). Theorem 7 can be proved in the
same way if F is defined and is of class C1 only on an open convex set in R2 or R3. (A set D is convex
if P, Q ∈ D implies the line joining P and Q also belongs to D.)
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figure 8.3.1 Constructing (a) an
oriented simple closed curve
c1 − c2 from (b) two oriented
simple curves.

c = c  − c

c (a) = c  (a)

1

2

c (b) = c  (b)1 2

1

2

c2

c1

(a) (b)

proof We shall establish the following chain of implications, which will prove the
theorem:

(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i).

First we show that condition (i) implies condition (ii). Suppose c1 and c2 are para-
metrizations representing C1 and C2, with the same endpoints. Construct the closed
curve c obtained by first traversing c1 and then −c2 (Figure 8.3.1), or, symbolically, the
curve c = c1 − c2. Assuming c is simple, condition (i) gives

∫
c

F · ds =
∫

c1

F · ds −
∫

c2

F · ds = 0,

and so condition (ii) holds. (If c is not simple, an additional argument, omitted here, is
needed.)

Next, we prove that condition (ii) implies condition (iii). Let C be any oriented simple
curve joining a point such as (0, 0, 0) to (x , y, z), and suppose C is represented by the
parametrization c [if (0, 0, 0) is the exceptional point of F, we can choose a different
starting point for c without affecting the argument]. Define f (x , y, z) to be

∫
c F · ds. By

hypothesis (ii), f (x , y, z) is independent of C . We shall show that F = grad f . Indeed,
choose c to be the path shown in Figure 8.3.2, so that

f (x , y, z) =
∫ x

0
F1(t , 0, 0) dt +

∫ y

0
F2(x , t , 0) dt +

∫ z

0
F3(x , y, t) dt,

where F = (F1, F2, F3).
It follows from the fundamental theorem of calculus that ∂ f/∂z = F3. We can repeat

this processing using two other paths from (0, 0, 0) to (x , y, z) [for example, by drawing
the lines from (0, 0, 0) to (0, y, 0) to (x , y, 0) to (x , y, z)], and we can similarly show
that ∂ f/∂x = F1 and ∂ f/∂y = F2 (see Exercise 26). Thus, ∇ f = F.

Third, condition (iii) implies condition (iv), because, as proved in Section 4.4,

∇ × ∇ f = 0.

x

y

z

(x, 0, 0) (x, y, 0)

(x, y, z)

(0, 0, 0) figure 8.3.2 A path joining (0, 0, 0) to (x, y, z).
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n
C

S

n

n

figure 8.3.3 A surface S spanning a curve C.

Finally, let c represent a closed curve C and let S be any surface whose boundary is
c (if F has exceptional points, choose S to avoid them). Figure 8.3.3 indicates that we
can probably always find such a surface; however, a formal proof of this would require
the development of more sophisticated mathematical ideas than we can present here.
By Stokes’ theorem,

∫
C

F · ds =
∫

c
F · ds =

∫∫
S
(∇ × F) · n d S =

∫∫
S
(curl F) · n d S.

Because ∇ × F = 0, this integral vanishes, so that condition (iv) ⇒ condition (i). ■

Physical Interpretations of
∫
C F · ds

We have already seen that one interpretation of the line integral is as the work done by F
in moving a particle along C . A second interpretation is the notion of circulation, which
we encountered at the end of the last section. Recall that in this case, we think of F as
the velocity field of a fluid; that is, to each point P in space, F assigns the velocity vector
of the fluid at P (in the last section, F was designated V). Take C to be a closed curve,
and let �s be a small directed chord of C . Then F · �s is approximately the tangential
component of F times ‖�s‖. The circulation

∫
C F · ds is the net tangential component

around C . A small paddle wheel placed in the fluid would rotate if it is centered at a
point where F vanishes and if the circulation of the fluid is nonzero, or

∫
C F · ds �= 0

for small loops C (see Figure 8.3.4).
There is a similar interpretation in electromagnetic theory: If F represents an electric

field, then a current will flow around a loop C if
∫

C F · ds �= 0.
By Theorem 7, a field F has no circulation if and only if curl F = ∇ ×F = 0. Hence,

a vector field F with curl F = 0 is called irrotational. We have therefore proved that a
vector field in R3 is irrotational if and only if it is a gradient field for some function,
that is, if and only if F = ∇ f . The function f is called a potential for F.

curl F 

C 

figure 8.3.4
∫

C
F · ds �= 0 implies that a paddle

wheel in a fluid with velocity field F will rotate
around its axis.
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example 1 Consider the vector field F on R3 defined by

F(x , y, z) = yi + (z cos yz + x)j + ( y cos yz)k.

Show that F is irrotational and find a scalar potential for F.

solut ion We compute ∇ × F:

∇ × F =

∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

y x + z cos yz y cos yz

∣∣∣∣∣∣∣∣∣
= (cos yz − yz sin yz − cos yz + yz sin yz)i + (0 − 0)j + (1 − 1)k
= 0i + 0j + 0k = 0,

so F is irrotational. Thus, a potential exists by Theorem 7. We can find it in several ways.
Method 1. By the technique used to prove that condition (ii) implies condition (iii)

in Theorem 7, we can set

f (x , y, z) =
∫ x

0
F1(t , 0, 0) dt +

∫ y

0
F2(x , t , 0) dt +

∫ z

0
F3(x , y, t) dt

=
∫ x

0
0 dt +

∫ y

0
x dt +

∫ z

0
y cos yt dt

= 0 + xy + sin yz = xy + sin yz.

We easily verify that ∇ f = F, as required:

∇ f = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k = yi + (x + z cos yz)j + ( y cos yz)k.

Method 2. Because we know that f exists, we know that we can solve the system
of equations

∂ f

∂x
= y,

∂ f

∂y
= x + z cos yz,

∂ f

∂z
= y cos yz,

for f (x , y, z). These are equivalent to the simultaneous equations

(a) f (x , y, z) = xy + h1( y, z)

(b) f (x , y, z) = sin yz + xy + h2(x , z)

(c) f (x , y, z) = sin yz + h3(x , y)

for functions h1, h2, h3 independent of x , y, and z (respectively). When h1( y, z) =
sin yz, h2(x , z) = 0, and h3(x , y) = xy, the three equations agree and so yield a
potential for F. However, we have only guessed at the values of h1, h2, and h3. To derive
the formula for f more systematically, we note that because f (x , y, z) = xy +h1( y, z)
and ∂ f/∂z = y cos yz, we find that

∂h1( y, z)

∂z
= y cos yz



Marsden-3620111 VC September 27, 2011 10:42 457

8.3 Conservative Fields 457

or

h1( y, z) =
∫

y cos yz dz + g( y) = sin yz + g( y).

Therefore, substituting this back into equation (a), we get

f (x , y, z) = xy + sin yz + g( y);

but by equation (b),

g( y) = h2(x , z).

Because the right side of this equation is a function of x and z and the left side is a
function of y alone, we conclude that they must equal some constant C . Thus,

f (x , y, z) = xy + sin yz + C

and we have determined f up to a constant. ▲

example 2 A mass M at the origin in R3 exerts a force on a mass m located at r = (x , y, z)
with magnitude GmM/r 2 and directed toward the origin. Here, G is the gravitational
constant, which depends on the units of measurement, and r = ‖r‖ = √

x2 + y2 + z2.
If we remember that −r/r is a unit vector toward the origin, then we can write the force
field as

F(x , y, z) = −GmMr

r 3
.

Show that F is irrotational and find a scalar potential for F. (Notice that F is not defined
at the origin, but Theorem 7 still applies, because it allows an exceptional point.)

solut ion First let us verify that ∇×F = 0. Referring to formula 10 in the table of vector identities
in Section 4.4, we get

F = −GmM

[
∇

(
1

r 3

)
× r + 1

r 3
∇ × r

]
.

But ∇(1/r 3) = −3r/r 5 (see Exercise 38, Section 4.4), and so the first term vanishes,
because r × r = 0. The second term vanishes, because

∇ × r =

∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

x y z

∣∣∣∣∣∣∣∣∣
=

(
∂z

∂y
− ∂y

∂z

)
i +

(
∂x

∂z
− ∂z

∂x

)
j +

(
∂y

∂x
− ∂x

∂y

)
k = 0.

Hence, ∇ × F = 0 (for r �= 0).
If we recall the formula ∇(rn) = nrn−2r (again, see Exercise 38, Section 4.4), then

we can read off a scalar potential for F by inspection. We have F = −∇V , where
V (x , y, z) = −GmM/r is called the gravitational potential energy.

[We observe in passing that by Theorem 3 of Section 7.2, the work done by F in
moving a particle of mass m from a point P1 to a point P2 is given by

V (P1) − V (P2) = GmM

(
1

r2
− 1

r1

)
,

where r1 is the radial distance of P1 from the origin, with r2 similarly defined.] ▲
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The Planar Case
By the same proof, Theorem 7 is also true for C1 vector fields F on R2. In this case, we re-
quire that F has no exceptional points; that is, F is smooth everywhere (see Exercise 16).
Notice, however, that the conclusion might still hold even if there are exceptional points,
an example being (x i + yj)/(x2 + y2)3/2. An example where the conclusion does not
hold is (−yi + xj)/(x2 + y2), as shown in Exercise 16.

If F = Pi + Qj, then

∇ × F =
(

∂Q

∂x
− ∂P

∂y

)
k.

Sometimes ∂Q/∂x − ∂P/∂y is called the scalar curl of F. Therefore, the condition
∇ × F = 0 reduces to

∂P

∂y
= ∂Q

∂x
.

Thus, we have:

Corollary 1 F is a C1 vector field on R2 of the form Pi + Qj that satisfies
∂P/∂y = ∂Q/∂x , then F = ∇ f for some f on R2.

We emphasize again that this corollary can be false if F fails to be of class C1 at even
a single point (an example is given in Exercise 16). In R3, however, as already noted,
exceptions at single points are allowed (see Theorem 7).

example 3 (a) Determine whether the vector field

F = exy i + ex+yj

is a gradient field.
(b) Repeat part (a) for

F = (2x cos y)i − (x2 sin y)j.

solut ion (a) Here P(x , y) = exy and Q(x , y) = ex+y , and so we compute

∂P

∂y
= xexy ,

∂Q

∂x
= ex+y .

These are not equal, and so F cannot have a potential function.
(b) In this case, we find

∂P

∂y
= −2x sin y = ∂Q

∂x
,

and so F has a potential function f . To compute f we solve the equations

∂ f

∂x
= 2x cos y,

∂ f

∂y
= −x2 sin y.

Thus, f (x , y) = x2 cos y + h1( y) and f (x , y) = x2 cos y + h2(x). If h1 and h2 are the
same constant, then both equations are satisfied, and so f (x , y) = x2 cos y is a potential
for F. ▲
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example 4 Let c: [1, 2] → R2 be given by x = et−1, y = sin(π/t). Compute the integral
∫

c
F · ds =

∫
c

2x cos y dx − x2 sin y dy,

where F = (2x cos y)i − (x2 sin y)j.

solut ion The endpoints are c(1) = (1, 0) and c(2) = (e, 1). Because ∂(2x cos y)/∂y =
∂(−x2 sin y)/∂x , F is irrotational and hence a gradient vector field (as we saw in Ex-
ample 3). Thus, by Theorem 7, we can replace c by any piecewise C1 curve having the
same endpoints, in particular, by the polygonal path from (1, 0) to (e, 0) to (e, 1). Thus,
the line integral must be equal to

∫
c

F · ds =
∫ e

1
2t cos 0 dt +

∫ 1

0
− e2 sin t dt = (e2 − 1) + e2(cos 1 − 1)

= e2 cos 1 − 1.

Alternatively, using Theorem 3 of Section 7.2, we have
∫

c
2x cos y dx − x2 sin y dy =

∫
c
∇ f · ds = f (c(2)) − f (c(1)) = e2 cos 1 − 1,

because f (x , y) = x2 cos y is a potential function for F. Evidently, this technique is
simpler than computing the integral directly. ▲

We conclude this section with a theorem that is quite similar in spirit to Theorem 7.
Theorem 7 was motivated partly as a converse to the result that curl ∇ f = 0 for any C1

function f : R3 → R—or, if curl F = 0, then F = ∇ f . We also know [formula (9) in
the table of vector identities in Section 4.4] that div(curl G) = 0 for any C2 vector field
G. We can ask about the converse statement: If div F = 0, is F the curl of a vector field
G? The following theorem answers this in the affirmative.

Theorem 8 If F is a C1 vector field on all of R3 with div F = 0, then there
exists a C1 vector field G with F = curl G.

The proof is outlined in Exercise 20. We should warn you at this point that, unlike the
F in Theorem 7, the vector field F in Theorem 8 is not allowed to have an exceptional
point. For example, the gravitational force field F = −(GmMr/r 3) has the property
that div F = 0, and yet there is no G for which F = curl G (see Exercise 29). Theorem
8 does not apply, because the gravitational force field F is not defined at 0 ∈ R3.

exercises

1. Determine which of the following vector fields F in the
plane is the gradient of a scalar function f . If such an f
exists, find it.

(a) F(x , y) = x i + yj

(b) F(x , y) = xyi + xyj

(c) F(x , y) = (x2 + y2)i + 2xyj

2. Repeat Exercise 1 for the following vector fields:

(a) F(x , y) = (cos xy − xy sin xy)i − (x2 sin xy)j

(b) F(x , y) = (x
√

x2 y2 + 1)i + ( y
√

x2 y2 + 1)j

(c) F(x , y) = (2x cos y + cos y)i − (x2 sin y + x sin y)j
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3. For each of the following vector fields F, determine (i) if
there exists a function g such that ∇g = F, and (ii) if
there exists a vector field G such that curl G = F. (It is
not necessary to find g or G.)

(a) F(x , y, z) = (4xz − x , −4yz, z − 2y)

(b) F(x , y, z) = (ex sin y, ex cos y, z2)

(c) F(x , y, z) = (log(z2 + 1) + y2, 2xy, 2xz
z2+1 )

(d) F(x , y, z) = (x2 + x sin z, y cos z − 2xy,
cos z + sin z)

4. For each of the following vector fields F, determine (i) if
there exists a function g such that ∇g = F, and (ii) if
there exists a vector field G such that curl G = F. (It is
not necessary to find g or G.)

(a) F(x , y, z) = (ex cos y, −ex sin y, π )

(b) F(x , y, z) = ( y
z2+4 , x

z2+4 , −2xyz
z4+8z2+16

)
(c) F(x , y, z) = (x2 y2z2, yex , xy cos z)

(d) F(x , y, z) = (6z5 y5, 9x8z2, 4x3 y3)

5. Show that any two potential functions for a vector field
on R3 differ at most by a constant.

6. (a) Let F(x , y) = (xy, y2) and let c be the path y = 2x2

joining (0, 0) to (1, 2) in R2. Evaluate
∫

c F · ds.

(b) Does the integral in part (a) depend on the path
joining (0, 0) to (1, 2)?

7. Let F(x , y, z) = (2xyz + sin x)i + x2zj + x2 yk. Find a
function f such that F = ∇ f .

8. Evaluate
∫

c F · ds, where c(t) = (cos5 t , sin3 t , t4),
0 ≤ t ≤ π , and F is as in Exercise 7.

9. If f (x) is a smooth function of one variable, must
F(x , y) = f (x)i + f ( y)j be a gradient?

10. (a) Show that F = −r/‖r‖3 is the gradient of
f (x , y, z) = 1/r .

(b) What is the work done by the force F = −r/‖r‖3 in
moving a particle from a point r0 ∈ R3 “to ∞,”
where r(x , y, z) = (x , y, z)?

11. Let F(x , y, z) = xyi + yj + zk. Can there exist a
function f such that F = ∇ f ?

12. Let F = F1i + F2j + F3k and suppose each Fk satisfies
the homogeneity condition

Fk (t x , t y, t z) = t Fk (x , y, z), k = 1, 2, 3.

Suppose also ∇ × F = 0. Prove that F = ∇ f , where

2 f (x , y, z) = x F1(x , y, z)+yF2(x , y, z)+zF3(x , y, z).

[HINT: Use Review Exercise 31, Chapter 2.]

13. Let F(x , y, z) = (ex sin y)i + (ex cos y)j + z2k.
Evaluate the integral

∫
c F · ds, where

c(t) = (
√

t , t3, exp
√

t), 0 ≤ t ≤ 1.

14. Let a fluid have the velocity field F(x , y, z) =
xyi + yzj + xzk. What is the circulation around the unit
circle in the xy plane? Interpret your answer.

15. The mass of the earth is approximately 6 × 1027 g and
that of the sun is 330,000 times as much. The
gravitational constant is 6.7 × 10−8 cm3/s2 · g. The
distance of the earth from the sun is about 1.5 × 1012 cm.
Compute, approximately, the work necessary to increase
the distance of the earth from the sun by 1 cm.

16. (a) Show that
∫

C (x dy − y dx)/(x2 + y2) = 2π , where
C is the unit circle.

(b) Conclude that the associated vector field
[−y/(x2 + y2)]i + [x/(x2 + y2)]j is not a
conservative field.

(c) Show, however, that ∂P/∂y = ∂Q/∂x . Does this
contradict the corollary to Theorem 7? If not, why
not?

17. Determine if the following vector fields F are gradient
fields. If there exists a fuction f such that ∇ f = F,
find f .

(a) F(x , y, z) = (2xyz, x2z, x2 y)

(b) F(x , y) = (x cos y, x sin y)

(c) F(x , y, z) = (x2ey , xyz, ez)

(d) F(x , y) = (2x cos y, −x2 sin y)

18. Determine if the following vector fields F are gradient
fields. If there exists a function f such that ∇ f = F,
find f .

(a) F(x , y) = (2x + y2 − y sin x , 2xyz + cos x)

(b) F(x , y, z) = (6x2z2, 5x2 y2, 4y2z2)

(c) F(x , y) = (y3 + 1, 3xy2 + 1)

(d) F(x , y) = (xe(x2+y2) + 2xy, ye(x2+y2) + 4y3z, y4)

19. Show that the following vector fields are conservative.
Calculate

∫
C F · ds for the given curve.

(a) F = (xy2 + 3x2 y)i + (x + y)x2j; C is the curve
consisting of line segments from (1, 1) to (0, 2) to
(3, 0).

(b) F = 2x

y2 + 1
i − 2y(x2 + 1)

( y2 + 1)2 j; C is parametrized by

x = t3 − 1, y = t6 − t , 0 ≤ t ≤ 1.

(c) F = [cos (xy2) − xy2 sin (xy2)]i − 2x2 y sin (xy2)j;
C is the curve (et , et+1), −1 ≤ t ≤ 0.
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20. Prove Theorem 8. [HINT: Define G = G1i + G2j + G3k
by

G1(x , y, z) =
∫ z

0
F2(x , y, t) dt −

∫ y

0
F3(x , t , 0) dt

G2(x , y, z) = −
∫ z

0
F1(x , y, t) dt

and G3(x , y, z) = 0.]

21. Is each of the following vector fields the curl of some
other vector field? If so, find the vector field.

(a) F = x i + yj + zk

(b) F = (x2 + 1)i + (z − 2xy)j + yk

22. Let F = xzi − yzj + yk. Verify that ∇ · F = 0. Find a G
such that F = ∇ × G.

23. Repeat Exercise 22 for F = y2i + z2j + x2k.

24. Let F = xey i − (x cos z)j − zeyk. Find a G such that
F = ∇ × G.

25. Let F = (x cos y)i − (sin y)j + (sin x)k. Find a G such
that F = ∇ × G.

26. By using different paths from (0, 0, 0) to (x , y, z), show
that the function f defined in the proof of Theorem 7 for
“condition (ii) implies condition (iii)” satisfies
∂ f/∂x = F1 and ∂ f/∂y = F2.

27. Let F be the vector field on R3 given by F = −yi + xj.

(a) Show that F is rotational, that is, F is not
irrotational.

(b) Suppose F represents the velocity vector field of a
fluid. Show that if we place a cork in this fluid, it
will revolve in a plane parallel to the xy plane, in a
circular trajectory about the z axis.

(c) In what direction does the cork revolve?

28. Let G be the vector field on R3\{z axis} defined by

G = −y

x2 + y2 i + x

x2 + y2 j.

(a) Show that G is irrotational.

(b) Show that the result of Exercise 27(b) holds for G
also.

(c) How can we resolve the fact that the trajectories of
F and G are both the same (circular about the z axis)
yet F is rotational and G is not? [HINT: The property
of being rotational is a local condition, that is, a
property of the fluid in the neighborhood of a point.]

29. Let F = −(GmMr/r3) be the gravitational force field
defined on R3\{0}.
(a) Show that div F = 0.

(b) Show that F �= curl G for any C1 vector field G on
R3\{0}.

8.4 Gauss’ Theorem

Gauss’ theorem states that the flux of a vector field out of a closed surface equals the
integral of the divergence of that vector field over the volume enclosed by the surface.
The result parallels Stokes’ theorem and Green’s theorem in that it relates an integral
over a closed geometric object (curve or surface) to an integral over a contained region
(surface or volume).

Elementary Regions and Their Boundaries
We shall begin by asking you to review the various elementary regions in space that
were introduced when we considered the volume integral; these regions are illustrated in
Figures 5.5.2 and 5.5.4. As these figures indicate, the boundary of an elementary region
in R3 is a surface made up of a finite number (at most six, at least two) of surfaces that
can be described as graphs of functions from R2 to R. This kind of surface is called a
closed surface. The surfaces S1, S2, . . . , SN composing such a closed surface are called
its faces.

example 1 The cube in Figure 8.4.1(a) is an elementary region, and in fact a symmetric elementary
region, with six rectangles composing its boundary. The sphere in Figure 8.4.1(b) is the
boundary of a solid ball, which is also a symmetric elementary region.
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S1
S1

S2

(a) (b)

S2

S4

S5

S3

S6

figure 8.4.1 (a) Symmetric elementary
regions and (b) the surface Si composing
their boundaries.

▲

Closed surfaces can be oriented in two ways. The outward orientation makes the
normal point outward into space, and the inward orientation makes the normal point
into the bounded region (Figure 8.4.2).

Outward normal

Inward normal

figure 8.4.2 Two possible
orientations for a closed surface.

Suppose S is a closed surface oriented in one of these two ways and F is a vector
field on S. Then, as we defined it in Section 7.6,∫∫

S
F · dS =

∑
i

∫∫
Si

F · dS.

If S is given the outward orientation, the integral
∫∫

S F · dS measures the total flux of
F outward across S. That is, if we think of F as the velocity field of a fluid,

∫∫
S F · dS

indicates the amount of fluid leaving the region bounded by S per unit time. If S is given
the inward orientation, the integral

∫∫
S F · dS measures the total flux of F inward across S.

We recall another common way of writing these surface integrals, a way that explicitly
specifies the orientation of S. Let the orientation of S be given by a unit normal vector
n(x , y, z) at each point of S. Then we have the oriented integral

∫∫
S

F · dS =
∫∫

S
(F · n) d S,

that is, the integral of the normal component of F over S. In the remainder of this section,
if S is a closed surface enclosing a region W , we adopt the default convention that S =
∂W is given the outward orientation, with outward unit normal n(x , y, z) at each point
(x , y, z) ∈ S. Furthermore, we denote the surface with the opposite (inward) orientation
by ∂Wop. Then the associated unit normal direction for this orientation is −n. Thus,

∫∫
∂W

F · dS =
∫∫

S
(F · n) d S = −

∫∫
S
[F · (−n)] d S = −

∫∫
∂Wop

F · dS.

example 2 The unit cube W given by

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1

is a symmetric elementary region in space (see Figures 8.4.3 and 5.5.5).
We write the faces as

S1: z = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
S2: z = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
S3: x = 0, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1
S4: x = 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1
S5: y = 0, 0 ≤ x ≤ 1, 0 ≤ z ≤ 1
S6: y = 1, 0 ≤ x ≤ 1, 0 ≤ z ≤ 1.
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n3 = −i

n5 = −j

n2 = k

n1 = −k

n4 = i

n6 = j

figure 8.4.3 The outward orientation on the
cube.

From Figure 8.4.3, we see that

n2 = k = −n1,
n4 = i = −n3,
n6 = j = −n5,

and so for a continuous vector field F = F1i + F2j + F3k,

∫∫
∂W

F · dS =
∫∫

S
F · n d S = −

∫∫
S1

F3 d S +
∫∫

S2

F3 d S −
∫∫

S3

F1 d S

+
∫∫

S4

F1 d S −
∫∫

S5

F2 d S +
∫∫

S6

F2 d S. ▲

Gauss’ Theorem
We have now come to the last of the three central theorems of this chapter. This theorem
relates surface integrals to volume integrals; in other words, the theorem states that if W
is a region in R3, then the flux of a vector field F outward across the closed surface ∂W
is equal to the integral of div F over W . We begin by assuming that W is a symmetric
elementary region (Figure 5.5.5).

Theorem 9 Gauss’ Divergence Theorem Let W be a symmetric elemen-
tary region in space. Denote by ∂W the oriented closed surface that bounds W.

Let F be a smooth vector field defined on W. Then∫∫∫
W

(∇ · F) dV =
∫∫

∂W
F · dS

or, alternatively, ∫∫∫
W

(div F) dV =
∫∫

∂W
(F · n) d S.



Marsden-3620111 VC September 27, 2011 10:42 464

464 The Integral Theorems of Vector Analysis

proof If F = Pi + Qj + Rk, then by definition, the divergence of F is given by
div F = ∂P/∂x + ∂Q/∂y + ∂R/∂z, so we can write (using additivity of the volume
integral)

∫∫∫
W

div F dV =
∫∫∫

W

∂P

∂x
dV +

∫∫∫
W

∂Q

∂y
dV +

∫∫∫
W

∂R

∂z
dV .

On the other hand, the surface integral in question is

∫∫
∂W

F · n d S =
∫∫

∂W
( Pi + Qj + Rk) · n d S

=
∫∫

∂W
Pi · n d S +

∫∫
∂W

Qj · n d S +
∫∫

∂W
Rk · n d S.

The theorem will follow if we establish the three equalities

∫∫
∂W

Pi · n d S =
∫∫∫

W

∂P

∂x
dV , (1)

∫∫
∂W

Qj · n d S =
∫∫∫

W

∂Q

∂y
dV , (2)

and
∫∫

∂W
Rk · n d S =

∫∫∫
W

∂R

∂z
dV . (3)

We shall prove equation (3); the other two equalities can be proved in an analogous
fashion.

Because W is a symmetric elementary region, there is a pair of functions

z = g1(x , y), z = g2(x , y),

with common domain an elementary region D in the xy plane, such that W is the set of
all points (x , y, z) satisfying

g1(x , y) ≤ z ≤ g2(x , y), (x , y) ∈ D.

By reduction to iterated integrals, we have

∫∫∫
W

∂R

∂z
dV =

∫∫
D

(∫ z=g2(x , y)

z=g1(x , y)

∂R

∂z
dz

)
dx dy,

and so, by the fundamental theorem of calculus,

∫∫∫
W

∂R

∂z
dV =

∫∫
D

[R(x , y, g2(x , y)) − R(x , y, g1(x , y))] dx dy. (4)

The boundary of W is a closed surface whose top S2 is the graph of z = g2(x , y),
where (x , y) ∈ D, and whose bottom S1 is the graph of z = g1(x , y), (x , y) ∈ D. The
four other sides of ∂W consist of surfaces S3, S4, S5, and S6, whose normals are always
perpendicular to the z axis. (See Figure 8.4.4. Note that some of the other four sides
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S1

S3

S4

S5

S6

S2 z � g2(x, y)

z � g1(x, y)

figure 8.4.4 A symmetric elementary region
W for which

∫∫
∂W

Rk · dS =
∫∫∫

W
(∂R/∂z) dV.

The four sides of ∂W, which are S3, S4, S5, S6

have normals perpendicular to the z axis.

might be absent; for instance, if W is a solid ball and ∂W is a sphere.) By definition,

∫∫
∂W

Rk · n d S =
∫∫

S1

Rk · n1 d S +
∫∫

S2

Rk · n2 d S +
6∑

i=3

∫∫
Si

Rk · ni d S.

Because the normal ni is perpendicular to k on each of S3, S4, S5, S6, we have k · n = 0
along these faces, and so the integral reduces to

∫∫
∂W

Rk · n ds =
∫∫

S1

Rk · dS1 +
∫∫

S2

Rk · dS2. (5)

The surface S1 is defined by z = g1(x , y), and

dS1 =
(

∂g1

∂x
i + ∂g1

∂y
j − k

)
dx dy

(the negative of the general formula for dS for graphs from Section 7.6, because the
normal is downward pointing). Therefore,

∫∫
S1

Rk · dS1 = −
∫∫

D
R(x , y, g1(x , y)) dx dy. (6)

Similarly, for the top face S2,

dS2 =
(

−∂g2

∂x
i − ∂g2

∂y
j + k

)
dx dy.

Therefore,
∫∫

S2

Rk · dS2 =
∫∫

D
R(x , y, g2(x , y)) dx dy. (7)

Substituting equations (6) and (7) into equation (5) and then comparing with equation (4),
we obtain ∫∫∫

W

∂R

∂z
dV =

∫∫
∂W

R(k · n) dS.

The remaining equalities, (1) and (2), can be established in the same way to complete
the proof. ■
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n1S1

W
n2

S2
figure 8.4.5 A more general region to which Gauss’
theorem applies.

Generalizing Gauss’ Theorem
The reader should note that the proof of Gauss’ theorem is similar to that of Green’s
theorem. By the procedure used in Exercise 16 of Section 8.1, we can extend Gauss’
theorem to any region that can be broken up into symmetric elementary regions. This
includes all regions of interest to us. An example of a region to which Gauss’ theo-
rem applies is the region between two closed surfaces, one inside the other. The sur-
face of this region consists of two pieces oriented as shown in Figure 8.4.5. We shall
apply the divergence theorem to such a region when we prove Gauss’ law in Theo-
rem 10.

example 3 Consider F = 2x i + y2j + z2k. Let S be the unit sphere defined by x2 + y2 + z2 = 1.
Evaluate

∫∫
S F · n d S.

solut ion By Gauss’ theorem,
∫∫

S
F · n d S =

∫∫∫
W

(div F) dV ,

where W is the ball bounded by the sphere. The integral on the right is

2
∫∫∫

W
(1 + y + z) dV = 2

∫∫∫
W

dV + 2
∫∫∫

W
y dV + 2

∫∫∫
W

z dV .

By symmetry, we can argue that
∫∫∫

W y dV = ∫∫∫
W z dV = 0 (see Exercise 21, Section

6.3). Thus, because a sphere of radius R has volume 4π R3/3,

2
∫∫∫

W
(1 + y + z) dV = 2

∫∫∫
W

dV = 8π

3
.

You can convince yourself that direct computation of
∫∫

S F · n d S proves
unwieldy. ▲

example 4 Use the divergence theorem to evaluate
∫∫

∂W
(x2 + y + z) d S,

where W is the solid ball x2 + y2 + z2 ≤ 1.
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s o l u t i o n To apply Gauss’ divergence theorem, we find a vector field F = F1i + F2j + F3k on W
with F · n = x2 + y + z. At any point (x , y, z) ∈ ∂W , the outward unit normal n to ∂W
is

n = x i + yj + zk,

because on ∂W, x2 + y2 + z2 = 1 and the radius vector r = x i + yj + zk is normal to
the sphere ∂W (Figure 8.4.6).

xi + yjyy + zk

(0, 1, 0)

y

x

z

(0, 0, 1)

(1, 0, 0)

(x, y, z)

figure 8.4.6 n is the unit normal to ∂W, the
boundary of the ball W.

Therefore, if F is the desired vector field, then

F · n = F1x + F2 y + F2z.

We set

F1x = x2, F2 y = y, F3z = z

and solve for F1, F2, and F3 to find that F = x i + j + k. Computing div F, we get

div F = 1 + 0 + 0 = 1.

Thus, by Gauss’ divergence theorem,

∫∫
∂W

(x2 + y + z) d S =
∫∫∫

W
dV = volume (W ) = 4

3
π. ▲

The Divergence as the Flux per Unit Volume
The physical meaning of divergence is that at a point P, div F(P) is the rate of net outward
flux at P per unit volume. This follows from Gauss’ theorem and the mean-value theorem
for integrals: If Wρ is a ball in R3 of radius ρ centered at P, then there is a point Q ∈ Wρ

such that
∫∫

∂Wρ

F · n d S =
∫∫∫

Wρ

div F dV = div F(Q) · volume (Wρ)

and so

div F(P) = limit
ρ→0

div F(Q) = limit
ρ→0

1

V (Wρ)

∫∫
∂Wρ

F · n d S.
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This is analogous to the limit formulation of the curl given at the end of Section 8.2.
Thus, if div F(P) > 0, we consider P to be a source, for there is a net outward flow near
P. If div F(P) < 0, P is called a sink for F.

A C1 vector field F defined on R3 is said to be divergence-free if div F = 0. If F is
divergence-free, we have

∫∫
S F · dS = 0 for all closed surfaces S. The converse can also

be demonstrated readily using Gauss’ theorem: If
∫∫

S F · dS = 0 for all closed surfaces
S, then F is divergence-free. If F is divergence-free, we thus see that the flux of F across
any closed surface S is 0, so that if F is the velocity field of a fluid, the net amount of
fluid that flows out of any region will be 0. Thus, exactly as much fluid must flow into
the region as flows out (in unit time). A fluid with this property is therefore described
as incompressible.

example 5 Evaluate
∫∫

S F · dS, where F(x , y, z) = xy2i + x2 yj + yk and S is the surface of the
cylinder x2 + y2 = 1, bounded by the planes z = 1 and z = −1, and including the
portions x2 + y2 ≤ 1 when z = ±1.

solut ion We can compute this integral directly, but it is easier to use the divergence theorem.
Now S is the boundary of the region W given by x2 + y2 ≤ 1, −1 ≤ z ≤ 1. Thus,∫∫

S F · dS = ∫∫∫
W (div F) dV . Moreover,

∫∫∫
W

(div F) dV =
∫∫∫

W
(x2 + y2) dx dy dz =

∫ 1

−1

(∫
x2+y2≤1

(x2 + y2) dx dy

)
dz

= 2
∫∫

x2+y2≤1
(x2 + y2) dx dy.

Before evaluating the double integral, we note that the surface integral satisfies

∫∫
∂W

F · n d S = 2
∫∫

x2+y2≤1
(x2 + y2) dx dy > 0.

This means that
∫∫

∂W F · dS, the net flux of F out of the cylinder, is positive.
We change variables to polar coordinates to evaluate the double integral:

x = r cos θ , y = r sin θ , 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

Hence, we have ∂(x , y)/∂(r, θ ) = r and x2 + y2 = r 2. Thus,

∫∫
x2+y2≤1

(x2 + y2) dx dy =
∫ 2π

0

(∫ 1

0
r 3 dr

)
dθ = 1

2
π.

Therefore,
∫∫∫

W div F dV = π . ▲

Gauss’ Law
As we remarked earlier, Gauss’ divergence theorem can be applied to regions in space
more general than symmetric elementary regions. To conclude this section, we shall use
this observation in the proof of the following important results.
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Theorem 10 Gauss’ Law Let M be a symmetric elementary region in R3.

Then if (0, 0, 0) �∈ ∂M, we have
∫∫

∂M

r · n

r 3
d S =

{
4π if (0, 0, 0) ∈ M
0 if (0, 0, 0) �∈ M,

where

r(x , y, z) = x i + yj + zk

and

r (x , y, z) = ‖r(x , y, z)‖ = √
x2 + y2 + z2.

proof of Gauss’ law First suppose (0, 0, 0) �∈ M . Then r/r 3 is a C1 vector field
on M and ∂M , and so by the divergence theorem,

∫∫
∂M

r · n

r 3
d S =

∫∫∫
M

∇ ·
( r

r 3

)
dV .

But ∇ · (r/r 3) = 0 for r �= 0, as you can easily verify (see Exercise 38, Section 4.4).
Thus,

∫∫
∂M

r · n

r 3
d S = 0.

Now let us suppose (0, 0, 0) ∈ M . We can no longer use the preceding method,
because r/r3 is not smooth on M , due to the zero denominator at r = (0, 0, 0). Because
(0, 0, 0) ∈ M and (0, 0, 0) �∈ ∂M , there is an ε > 0 such that the ball N of radius ε

centered at (0, 0, 0) is contained completely inside M . Let W be the region between M
and N . Then W has boundary ∂N ∪ ∂M = S. But the orientation on ∂N induced by the
outward normal on W is the opposite of that obtained from N (see Figure 8.4.7).

Now ∇ · (r/r 3) = 0 on W , and so, by the divergence theorem applied to the (nonele-
mentary) region W ,

∫∫
S

r · n

r 3
d S =

∫∫∫
W

∇ ·
( r

r 3

)
dV = 0.

N

W
(0, 0, 0)

n

M n

N

M

figure 8.4.7 Induced outward orientation on
S; W is M minus the ball N.
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Because

∫∫
S

r · n

r 3
d S =

∫∫
∂M

r · n

r 3
d S +

∫∫
∂N

r · n

r 3
d S,

where n is the outward normal to S, we have
∫∫

∂M

r · n

r 3
d S = −

∫∫
∂N

r · n

r 3
d S.

However, on ∂N , n = −r/r and r = ε, because ∂N is a sphere of radius ε, so that

−
∫∫

∂N

r · n

r 3
d S =

∫∫
∂N

ε2

ε4
d S = 1

ε2

∫∫
∂N

d S.

But
∫∫

∂N d S = 4πε2, the surface area of the sphere of radius ε. This proves the
result. ■

example 6 Gauss’ law has the following physical interpretation. The potential due to a point charge
Q at (0, 0, 0) is given by

φ(x , y, z) = Q

4πr
= Q

4π
√

x2 + y2 + z2
,

and the corresponding electric field is

E = −∇φ = Q

4π

( r

r 3

)
.

Thus, Theorem 10 states that the total electric flux
∫∫

∂M E · dS (i.e., the flux of E out
of a closed surface ∂M) equals Q if the charge lies inside M and zero otherwise. Note
that even if (0, 0, 0) �∈ M, E will still be nonzero on M .

For a continuous charge distribution described by a charge density ρ in a region W ,
the field E is related to the density ρ by

div E = ∇ · E = ρ.

Thus, by Gauss’ theorem,
∫∫

∂W
E · dS =

∫∫∫
W

ρ dV = Q;

that is, the flux out of a surface is equal to the total charge inside. ▲

Divergence in Spherical Coordinates
We next use Gauss’ theorem to derive the formula

div F = 1

ρ2

∂

∂ρ
(ρ2 Fρ) + 1

ρ sin φ

∂

∂φ
(sin φ Fφ) + 1

ρ sin φ

∂Fθ

∂θ
(8)

for the divergence of a vector field F in spherical coordinates, which was stated in
Section 8.2. (Again, the subscripts here denote components, not partial derivatives.)
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φ dφ
ρdφ

ρd

ρ φsin

dθ

ρ sin dθφ

y

x

z

ρ

ρ sin dθφ

θ

W

figure 8.4.8 Infinitesimal volume
determined by dρ, dθ , dφ at (ρ, θ , φ).

The method is to use the formula

div F(P) = limit
W→P

1

V (W )

∫∫
∂W

F · n d S, (9)

where W is a region with volume V (W ), which shrinks down to a point P (in the main
text we use a ball, but we can use regions of any shape). Let W be the shaded region in
Figure 8.4.8.

For the two faces orthogonal to the radial direction, the surface integral in equation (9)
is, approximately,

Fρ(ρ + dρ , φ , θ ) × (area of outer face) − Fρ(ρ , φ , θ ) × (area of inner face)
≈ Fρ(ρ + dρ , φ , θ )(ρ + dρ)2 sin φ dφ dθ − Fρ(ρ , φ , θ )ρ2 sin φ dφ dθ

≈ ∂

∂ρ
(Fρρ

2 sin φ) dρ dφ dθ (10)

by the one-variable mean-value theorem. Dividing by the volume of the region W ,
namely, ρ2 sin φ dρ dφ dθ , we see that the contribution to the right-hand side of equation
(9) is

1

ρ2

∂

∂ρ
(ρ2 Fρ) (11)

for these faces. Likewise, the contribution from the faces orthogonal to the φ direction
is

1

ρ sin φ

∂

∂φ
(sin φFφ), and for the θ direction,

1

ρ sin φ

∂Fθ

∂θ
.

Substituting (11) and these expressions in equation (9) and taking the limit gives
equation (8).

Maxwell’s Equations and the Prediction of Radio
Waves: The Communication Revolution Begins
We now discuss Maxwell’s equations, which govern the propagation of electromagnetic
fields. The form of these equations depends on the physical units one is employing, and
changing units introduces factors like 4π and the velocity of light. We shall choose the
system in which Maxwell’s equations are simplest.
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Let E and H be C1 functions of (t , x , y, z) that are vector fields for each t. They
satisfy (by definition) Maxwell’s equation with charge density ρ(t , x , y, z) and current
density J(t , x , y, z) when the following conditions hold:

∇ · E = ρ (Gauss’ law), (12)

∇ · H = 0 (no negative sources), (13)

∇ × E + ∂H

∂t
= 0 (Faraday’s law), (14)

and

∇ × H − ∂E

∂t
= J (Ampère’s law). (15)

Of these laws, equations (4) and (6) were described in integral form in Sections 8.2 and
8.4; historically, they arose in these forms as physically observed laws. Ampère’s law
was mentioned for a special case in Section 7.2, Example 12.

Physically, we interpret E as the electric field and H as the magnetic field. According
to the preceding equations, as time t progresses, these fields interact with each other,
and with any charges and currents that are present. For example, the propagation of
electromagnetic waves (TV signals, radio waves, light from the sun, etc.) in a vacuum
is governed by these equations with J = 0 and ρ = 0.

Because ∇ · H = 0, we can apply Theorem 8 (from Section 8.3) to conclude that
H = ∇ × A for some vector field A. (We are assuming that H is defined on all of R3 for
each time t.) The vector field A is not unique, and we can use A′ = A + ∇ f equally
well for any function f (t , x , y, z), because ∇ × ∇ f = 0. (This freedom in the choice
of A is called gauge freedom.) For any such choice of A, we have, by equation (6),

0 = ∇ × E + ∂H

∂t
= ∇ × E + ∂

∂t
∇ × A

= ∇ × E × ∇ × ∂A

∂t

= ∇ ×
(

E + ∂A

∂t

)
.

Applying Theorem 7 (from Section 8.3), there is a real-valued function φ on R3 such that

E + ∂A

∂t
= −∇φ.

Substituting this equation and H = ∇×A into equation (7), and using the vector identity
(whose proof we leave as an exercise)

∇ × (∇ × A) = ∇(∇ · A) − ∇2A,

we get

J = ∇ × H − ∂E

∂t
= ∇ × (∇ × A) − ∂

∂t

(
−∂A

∂t
− ∇φ

)

= ∇(∇ · A) − ∇2A + ∂2A

∂t2
+ ∂

∂t
(∇φ).
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Thus,

∇2A − ∂2A

∂t2
= −J + ∇(∇ · A) + ∂

∂t
(∇φ).

That is,

∇2A − ∂2A

∂t2
= −J + ∇

(
∇ · A + ∂φ

∂t

)
. (16)

Again using the equation E + ∂A/∂t = −∇φ and the equation ∇ · E = ρ, we obtain

ρ = ∇ · E = ∇ ·
(

−∇φ − ∂A

∂t

)
= −∇2φ − ∂(∇ · A)

∂t
.

That is,

∇2φ = −ρ − ∂(∇ · A)

∂t
. (17)

Now let us exploit the freedom in our choice of A. We impose the “condition”

∇ · A + ∂φ

∂t
= 0. (18)

We must be sure we can do this. Supposing we have a given A0 and a corresponding φ0,
can we choose a new A = A0 + ∇ f and then a new φ such that ∇ · A + ∂φ/∂t = 0?
With this new A, the new φ is φ0 − ∂ f/∂t ; we leave verification as an exercise for the
reader. Condition (10) on f then becomes

0 = ∇ · (A0 + ∇ f ) = ∂(φ0 − ∂ f/∂t)

∂t
= ∇ · A0 + ∇2 f + ∂φ0

∂t
− ∂2 f

∂t2

or

∇2 f − ∂2 f

∂t2
= −

(
∇ · A0 + ∂φ0

∂t

)
. (19)

Thus, to be able to choose A and φ satisfying ∇ · A + ∂φ/∂t = 0, we must be able
to solve equation (11) for f. We can indeed do this under general conditions, although
we do not prove it here. Equation (11) is called the inhomogeneous wave equation.

If we accept that A and φ can be chosen to satisfy ∇ · A+∂φ/∂t = 0, then equations
(8) and (9) for A and φ become

∇2A − ∂2A

∂t2
= −J; (8′)

∇2φ − ∂2φ

∂t2
= −ρ. (9′)

Conversely, if A and φ satisfy the equations ∇ · A + ∂φ/∂t = 0, ∇2φ − ∂2φ/∂t2 =
−ρ, and ∇2A − ∂2A/∂t2 = −J, then E = −∇φ − ∂A/∂t and H = ∇ × A satisfy
Maxwell’s equations. This procedure then “reduces” Maxwell’s equations to a study of
the wave equation.7

7There are variations on this procedure. For further details, see, for example, Differential Equations of
Applied Mathematics, by G. F. D. Duff and D. Naylor, Wiley, New York, 1966, or books on electromag-
netic theory, such as Classical Electrodynamics, by J. D. Jackson, Wiley, New York, 1962.
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Since the eighteenth century, solutions to the wave equation have been well studied
(one learns these in most courses on differential equations). To indicate the wavelike
nature of the solutions, for example, observe that for any function f,

φ(t , x , y, z) = f (x − t)

solves the wave equation ∇2φ − (∂2φ/∂t2) = 0. This solution just propagates the graph
of f like a wave; thus, we might conjecture that solutions of Maxwell’s equations are
wavelike in nature. Historically, all of this was Maxwell’s great achievement, and it soon
led to Hertz’s discovery of radio waves.

Mathematics again shows its uncanny ability not only to describe but to predict
natural phenomena.

exercises

In Exercises 1 to 4, verify the divergence theorem for the given region W , boundary ∂W oriented outward, and vector field F.

1. W = [0, 1] × [0, 1] × [0, 1]
F = x i + yj + zk

2. W as in Exercise 1, and F = zyi + xzj + xyk

3. W = {(x , y, z) : x2 + y2 + z2 ≤ 1} (the unit ball),
F = x i + yj + zk

4. W as in Exercise 3, and F = −yi + xj + zk

5. Use the divergence theorem to calculate the flux of
F = (x − y)i + ( y − z)j + (z − x)k out of the unit
sphere.

6. Let F = x3i + y3j + z3k. Evaluate the surface integral
of F over the unit sphere.

7. Evaluate
∫∫

∂W F · dS, where F = x i + yj + zk and W is
the unit cube (in the first octant). Perform the calculation
directly and check by using the divergence theorem.

8. Repeat Exercise 7 for

(a) F = i + j + k

(b) F = x2i + x2j + z2k

9. Let F = yi + zj + xzk. Evaluate
∫∫

∂W F · dS for each of
the following regions W :

(a) x2 + y2 ≤ z ≤ 1

(b) x2 + y2 ≤ z ≤ 1 and x ≥ 0

(c) x2 + y2 ≤ z ≤ 1 and x ≤ 0

10. Repeat Exercise 9 for F = (x − y)i + ( y − z)j +
(z − x)k. [The solution to part (b) only is in the Study
Guide to this text.]

11. Find the flux of the vector field F = (x − y2)i + yj + x3k
out of the rectangular solid [0, 1] × [1, 2] × [1, 4].

12. Evaluate
∫∫

S F · dS, where F = 3xy2i + 3x2 yj + z3k
and S is the surface of the unit sphere.

13. Let W be the pyramid with top vertex (0, 0, 1), and base
vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0). Let
S be the two-dimensional closed surface bounding W ,
oriented outward from W . Use Gauss’ theorem to
calculate

∫∫
S F · dS, where:

F(x , y, z) = (x2 y, 3y2z, 9z2x).

14. Let W be the three-dimensional solid enclosed by the
surfaces x = y2, x = 9, z = 0, and x = z. Let S be the
boundary of W . Use Gauss’ theorem to find the flux of
F(x , y, z) = (3x − 5y)i + (4z − 2y) j + (8yz)k across
S:

∫∫
S F · dS.

15. Evaluate
∫∫

∂W F · n d A, where F(x , y, z) =
x i + yj − zk and W is the unit cube in the first octant.
Perform the calculation directly and check by using the
divergence theorem.

16. Evaluate the surface integral
∫∫

∂S F · n d A, where

F(x , y, z) = i + j + z(x2 + y2)2k and ∂S is the surface
of the cylinder x2 + y2 ≤ 1, 0 ≤ z ≤ 1.

17. Prove that

∫∫∫
W

(∇ f ) · F dx dy dz =
∫∫

∂W
f F · n d S

−
∫∫∫

W
f ∇ · F dx dy dz.
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18. Prove the identity

∇ · (F × G) = G · (∇ × F) − F · (∇ × G).

19. Show that
∫∫∫

W (1/r2) dx dy dz = ∫∫
∂W (r · n/r2) d S,

where r = x i + yj + zk.

20. Fix vectors v1, . . . , vk ∈ R3 and numbers (“charges”)
q1, . . . , qk . Define the function φ by φ(x , y, z) = ∑k

i=1
qi/(4π ‖r − vi‖), where r = (x , y, z). Show that for a
closed surface S and E = −∇φ,

∫∫
S

E · dS = Q,

where Q is the total charge inside S. (Assume that
Gauss’ law from Theorem 10 applies and that none of
the charges are on S.)

21. Prove Green’s identities

∫∫
∂W

f ∇g · n d S =
∫∫∫

W
( f ∇2g + ∇ f · ∇g) dV

and

∫∫
∂W

( f ∇g−g∇ f ) · n d S =
∫∫∫

W
( f ∇2g−g∇2 f ) dV .

22. Suppose F satisfies div F = 0 and curl F = 0 on all of
R3. Show that we can write F = ∇ f , where ∇2 f = 0.

23. Let ρ be a continuous function on R3 such that
ρ(q) = 0 except for q in some region W . Let q ∈ W be
denoted by q = (x , y, z). The potential of ρ is defined
to be the function

φ(p) =
∫∫∫

W

ρ(q)

4π‖p − q‖ dV (q),

where ‖p − q‖ is the distance between p and q.

(a) Using the method of Theorem 10, show that∫∫
∂W

∇φ · n d S = −
∫∫∫

W
ρ dV

for those regions W that can be partitioned into a
finite union of symmetric elementary regions.

(b) Show that φ satisfies Poisson’s equation

∇2φ = −ρ.

[HINT: Use part (a).] (Notice that if ρ is a charge density,
then the integral defining φ may be thought of as the
sum of the potential at p caused by point charges
distributed over W according to the density ρ.)

24. Suppose F is tangent to the closed surface S = ∂W of a
region W . Prove that∫∫∫

W
(div F) dV = 0.

25. Use Gauss’ law and symmetry to prove that the electric
field due to a charge Q evenly spread over the surface of
a sphere is the same outside the surface as the field from
a point charge Q located at the center of the sphere.
What is the field inside the sphere?

26. Reformulate Exercise 25 in terms of gravitational fields.

27. Show how Gauss’ law can be used to solve part (b) of
Exercise 29 in Section 8.3.

28. Let S be a closed surface. Use Gauss’ theorem to show
that if F is a C2 vector field, then we have∫∫

s (∇ × F) · dS = 0.

29. Let S be the surface of region W . Show that

∫∫
S

r · n d S = 3 volume (W ).

Explain this geometrically.

30. For a steady-state charge distribution and
divergence-free current distribution, the electric and
magnetic fields E(x , y, z) and H(x , y, z) satisfy

∇ × E = 0, ∇ · H = 0, ∇ · J = 0, ∇ · E = ρ ,
and ∇ × H = J.

Here ρ = ρ(x , y, z) and J(x , y, z) are assumed to be
known. The radiation that the fields produce through a
surface S is determined by a radiation flux density
vector field, called the Poynting vector field,

P = E × H.

(a) If S is a closed surface, show that the radiation
flux—that is, the flux of P through S—is given by∫∫

S
P · dS = −

∫∫∫
V

E · J dV ,

where V is the region enclosed by S.

(b) Examples of such fields are

E(x , y, z) = zj + yk and
H(x , y, z) = −xyi + xj + yzk.

In this case, find the flux of the Poynting vector
through the hemispherical shell shown in
Figure 8.4.9. (Notice that it is an open surface.)
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z

x2 + y2 + z2 = 25

y

x

figure 8.4.9 The surface for Exercise 30.

(c) The fields of part (b) produce a Poynting vector
field passing through the toroidal surface shown in
Figure 8.4.10. What is the flux through this torus?

x

z

a

b y

figure 8.4.10 The surface for Exercise 30(c).

8.5 Differential Forms

The theory of differential forms provides an elegant way of formulating Green’s, Stokes’,
and Gauss’ theorems as one statement, the fundamental theorem of calculus. The birth
of the concept of a differential form is another dramatic example of how mathematics
speaks to mathematicians and drives its own development. These three theorems are, in
reality, generalizations of the fundamental theorem of calculus of Newton and Leibniz
for functions of one variable,

∫ b

a
f ′(x) dx = f (b) − f (a)

to two and three dimensions.
Recall that Bernhard Riemann created the concept of n-dimensional spaces. If the

fundamental theorem of calculus was truly fundamental, then it should generalize to
arbitrary dimensions. But wait! The cross product, and therefore the curl, does not
generalize to higher dimensions, as we remarked in footnote 3, in Section 1.3. Thus,
some new idea is needed.

Recall that Hamilton searched for almost 15 years for his quaternions, which ulti-
mately led to the discovery of the cross product. What is the nonexistence of a cross
product in higher dimensions telling us? If the fundamental theorem of calculus is the
core concept, this suggests the existence of a mathematical language in which it can be
formulated in n-dimensions. In order to achieve this, mathematicians realized that they
were forced to move away from vectors and on to the discovery of dual vectors and an
entirely new mathematical object, a differential form. In this new language, all of the
theorems of Green, Stokes, and Gauss have the same elegant and extraordinarily simple
form.

Simply and very briefly stated, an expression of the type P dx + Q dy is a 1-form, or
a differential one-form on a region in the xy plane, and F dx dy is a 2-form. Analogously,
we can define the notion of an n-form. There is an operation d, which takes n-forms to
n +1-forms. It is like a generalized curl and has the property that for ω = P dx+ Q dy,
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we have

dω =
(

∂Q

∂x
− ∂P

∂y

)
dx dy

and so in this notation, Green’s theorem becomes

∫
∂D

ω =
∫

D
dω,

which, interestingly, just switches the boundary operator ∂ with the d operator. How-
ever, differential forms are more than just notation. They create a beautiful theory that
generalizes to n-dimensions.

In general, if M is an oriented surface of dimension n with an (n − 1)-dimensional
boundary ∂M and if ω is an (n − 1)-form on M, then the fundamental theorem of
calculus (also called the generalized Stokes’ theorem) reads

∫
∂M

ω =
∫

M
dω.

A useful thing for you to contemplate at this stage is the sense in which the funda-
mental theorem of calculus becomes a special instance of this result.

In this section, we shall give a very elementary exposition of the theory of forms.
Because our primary goal is to show that the theorems of Green, Stokes, and Gauss can be
unified under a single theorem, we shall be satisfied with less than the strongest possible
version of these theorems. Moreover, we shall introduce forms in a purely axiomatic and
nonconstructive manner, thereby avoiding the tremendous number of formal algebraic
preliminaries that are usually required for their construction. To the purist our approach
will be far from complete, but to the student it may be comprehensible. We hope that
this will motivate some students to delve further into the theory of differential forms.

We shall begin by introducing the notion of a 0-form.

0-Forms
Let K be an open set in R3. A 0-form on K is a real-valued function f : K → R. When
we differentiate f once, it is assumed to be of class C1, and C2 when we differentiate
twice.

Given two 0-forms f1 and f2 on K , we can add them in the usual way to get a new
0-form f1 + f2 or multiply them to get a 0-form f1 f2.

example 1 f1(x , y, z) = xy + yz and f2(x , y, z) = y sin xz are 0-forms on R3:

( f1 + f2)(x , y, z) = xy + yz + y sin xz

and

( f1 f2)(x , y, z) = y2x sin xz + y2z sin xz. ▲
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1-Forms
The basic 1-forms are the expressions dx, dy, and dz. At present we consider these to
be only formal symbols. A 1-form ω on an open set K is a formal linear combination

ω = P(x , y, z) dx + Q(x , y, z) dy + R(x , y, z) dz,

or simply

ω = P dx + Q dy + R dz,

where P, Q, and R are real-valued functions on K . By the expression P dx we mean
the 1-form P dx + 0 · dy + 0 · dz, and similarly for Q dy and R dz. Also, the order of
P dx, Q dy, and R dz is immaterial, and so

P dx + Q dy + R dz = R dz + P dx + Q dy, etc.

Given two 1-forms ω1 = P1 dx + Q1dy + R1 dz and ω2 = P2 dx + Q2dy + R2 dz, we
can add them to get a new 1-form ω1 + ω2 defined by

ω1 + ω2 = ( P1 + P2) dx + (Q1 + Q2) dy + (R1 + R2) dz,

and given a 0-form f , we can form the 1-form f ω1 defined by

f ω1 = ( f P1) dx + ( fQ1) dy + ( fR1) dz.

example 2 Let ω1 = (x + y2) dx + (zy) dy + (exyz) dz and ω2 = sin y dx + sin xdy be 1-forms.
Then

ω1 + ω2 = (x + y2 + sin y) dx + (zy + sin x) dy + (exyz) dz.

If f (x , y, z) = x , then

f ω2 = x sin y dx + x sin xdy. ▲

2-Forms
The basic 2-forms are the formal expressions dx dy, dy dz, and dz dx. These expressions
should be thought of as products of dx and dy, dy and dz, and dz and dx.

A 2-form η on K is a formal expression

η = F dx dy + G dy dz + H dz dx,

where F, G, and H are real-valued functions on K . The order of F dx dy, G dy dz, and
H dz dx is immaterial; for example,

F dx dy + G dy dz + H dz dx = H dz dx + F dx dy + G dy dz, etc.

At this point it is useful to note that in a 2-form the basic 1-forms dx, dy, and dz always
appear in cyclic pairs (see Figure 8.5.1), that is, dx dy, dy dz, and dz dx.

dx

dydz

figure 8.5.1 The
cyclic order of dx,
dy, and dz.
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By analogy with 0-forms and 1-forms, we can add two 2-forms

ηi = Fi dx dy + Gi dy dz + Hi dz dx,

i = 1 and 2, to obtain a new 2-form,

η1 + η2 = (F1 + F2) dx dy + (G1 + G2) dy dz + (H1 + H2) dz dx.

Similarly, if f is a 0-form and η is a 2-form, we can take the product

fη = ( fF) dx dy + ( fG) dy dz + ( fH ) dz dx.

Finally, by the expression F dx dy we mean the 2-form F dx dy + 0 · dy dz + 0 · dz dx.

example 3 The expressions

η1 = x2 dx dy + y3x dy dz + sin zy dz dx

and

η2 = y dy dz

are 2-forms. Their sum is

η1 + η2 = x2 dx dy + ( y3x + y) dy dz + sin zy dz dx.

If f (x , y, z) = xy, then

f η2 = xy2dy dz. ▲

3-Forms
A basic 3-form is a formal expression dx dy dz (in this specific cyclic order, as in
Figure 8.5.1). A 3-form ν on an open set K ⊂ R3 is an expression of the form ν =
f (x , y, z) dx dy dz, where f is a real-valued function on K .

We can add two 3-forms and we can multiply them by 0-forms in the obvious way.
There seems to be little difference between a 0-form and a 3-form, because both involve
a single real-valued function. But we distinguish them for a purpose that will become
clear when we multiply and differentiate forms.

example 4 Let ν1 = y dx dy dz, ν2 = ex2
dx dy dz, and f (x , y, z) = xyz. Then ν1 + ν2 =

( y + ex2
) dx dy dz and f ν1 = y2xz dx dy dz. ▲

Although we can add two 0-forms, two 1-forms, two 2-forms, or two 3-forms, we do
not need to add a k-form and a j-form if k �= j . For example, we shall not need to write

f (x , y, z) dx dy + g (x , y, z) dz.

Now that we have defined these formal objects (forms), we can legitimately ask what
they are good for, how they are used, and, perhaps most important, what they mean. The
answer to the first question will become clear as we proceed, but we can immediately
describe how to use and interpret them.

A real-valued function on a domain K in R3 is a rule that assigns a real number
to each point in K . Differential forms are, in some sense, generalizations of the real-
valued functions we have studied in calculus. In fact, 0-forms on an open set K are just
functions on K . Thus, a 0-form f takes points in K to real numbers.
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K

x

z

y

R

C

C´

S figure 8.5.2 The four geometric types
of subsets of an open set K ⊂ R3 to
which the theory of forms applies.

We should like to interpret differential k-forms (for k ≥ 1) not as functions on
points in K , but as functions on geometric objects such as curves and surfaces. Many
of the early Greek geometers viewed lines and curves as being made up of infinitely
many points, and planes and surfaces as being made up of infinitely many curves.
Consequently, there is at least some historical justification for applying this geometric
hierarchy to the interpretation of differential forms.

Given an open subset K ⊂ R3, we shall distinguish four types of subsets of K (see
Figure 8.5.2):

(i) points in K ,

(ii) oriented simple curves and oriented simple closed curves, C , in K ,

(iii) oriented surfaces, S ⊂ K ,

(iv) elementary subregions, R ⊂ K .

The Integral of 1-Forms Over Curves
We shall begin with 1-forms. Let

ω = P(x , y, z) dx + Q(x , y, z) dy + R(x , y, z) dz

be a 1-form on K and let C be an oriented simple curve as in Figure 8.5.2. The real
number that ω assigns to C is given by the formula∫

C
ω =

∫
C

P(x , y, z) dx + Q(x , y, z) dy + R(x , y, z) dz. (1)

Recall (see Section 7.2) that this integral is evaluated as follows. Suppose that
c: [a, b] → K , c(t) = (x(t), y(t), z(t)) is an orientation-preserving parametrization
of C . Then∫

C
ω =

∫
c
ω =

∫ b

a

[
P(x(t), y(t), z(t)) · dx

dt

+ Q(x(t), y(t), z(t)) · dy

dt
+ R(x(t), y(t), z(t)) · dz

dt

]
dt.

Theorem 1 of Section 7.2 guarantees that
∫

C ω does not depend on the choice of the
parametrization c.

We can thus interpret a 1-form ω on K as a rule assigning a real number to each
oriented curve C ⊂ K ; a 2-form η will similarly be seen to be a rule assigning a real
number to each oriented surface S ⊂ K ; and a 3-form ν will be a rule assigning a real
number to each elementary subregion of K . The rules for associating real numbers with
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curves, surfaces, and regions are completely contained in the formal expressions we
have defined.

example 5 Let ω = xy dx + y2dy + dz be a 1-form on R3 and let C be the oriented simple curve
in R3 described by the parametrization c(t) = (t2, t3, 1), 0 ≤ t ≤ 1. C is oriented by
choosing the positive direction of C to be the direction in which c(t) traverses C as t
goes from 0 to 1. Then, by formula (1),∫

C
ω =

∫ 1

0
[t5(2t) + t6(3t2) + 0] dt =

∫ 1

0
(2t6 + 3t8) dt = 13

21
.

Thus, this 1-form ω assigns to each oriented simple curve and each oriented simple
closed curve C in R3 the number

∫
C ω. ▲

The Integral of 2-Forms Over Surfaces
A 2-form η on an open set K ⊂ R3 can similarly be interpreted as a function that
associates a real number with each oriented surface S ⊂ K . This is accomplished by
means of the notion of integration of 2-forms over surfaces. Let

η = F(x , y, z) dx dy + G(x , y, z) dy dz + H (x , y, z) dz dx

be a 2-form on K , and let S ⊂ K be an oriented surface parametrized by a function
�: D → R3, D ⊂ R2, �(u, v) = (x(u, v), y(u, v), z(u, v)) (see Section 7.3).

Definition If S is such a surface and η is a 2-form on K , we define
∫∫

S η by the
formula ∫∫

S
η =

∫∫
S

F dx dy + G dy dz + H dz dx

=
∫∫

D

[
F(x(u, v), y(u, v), z(u, v)) · ∂(x , y)

∂(u, v)

+ G(x(u, v), y(u, v), z(u, v)) · ∂( y, z)

∂(u, v)

+ H (x(u, v), y(u, v), z(u, v)) · ∂(z, x)

∂(u, v)

]
du dv,

(2)

where

∂(x , y)

∂(u, v)
=

∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
,

∂( y, z)

∂(u, v)
=

∣∣∣∣∣∣∣∣

∂y

∂u

∂y

∂v

∂z

∂u

∂z

∂v

∣∣∣∣∣∣∣∣
,

∂(z, x)

∂(u, v)
=

∣∣∣∣∣∣∣∣

∂z

∂u

∂z

∂v

∂x

∂u

∂x

∂v

∣∣∣∣∣∣∣∣
.

If S is composed of several pieces Si , i = 1, . . . , k, as in Figure 8.4.4, each with
its own parametrization �i , we define

∫∫
S
η =

k∑
i=1

∫∫
Si

η.

We must verify that
∫∫

S η does not depend on the choice of parametrization �.
This result is essentially (but not obviously) contained in Theorem 4, Section 7.6.
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example 6 Let η = z2 dx dy be a 2-form on R3, and let S be the upper unit hemisphere in R3. Find∫∫
S η.

solut ion Let us parametrize S by

�(u, v) = (sin u cos v, sin u sin v, cos u),

where (u, v) ∈ D = [0, π/2] × [0, 2π ]. By formula (2),

∫∫
S
η =

∫∫
D

cos2 u

[
∂(x , y)

∂(u, v)

]
du dv,

where

∂(x , y)

∂(u, v)
=

∣∣∣∣
cos u cos v −sin u sin v

cos u sin v sin u cos v

∣∣∣∣
= sin u cos u cos2 v + cos u sin u sin2 v = sin u cos u.

Therefore,

∫∫
S
η =

∫∫
D

cos2 u cos u sin u du dv

=
∫ 2π

0

∫ π/2

0
cos3 u sin u du dv =

∫ 2π

0

[
−cos4 u

4

]π/2

0

dv = π

2
. ▲

example 7 Evaluate
∫∫

S x dy dz + y dx dy, where S is the oriented surface described by the
parametrization x = u + v, y = u2 − v2, z = uv, where (u, v) ∈ D = [0, 1] × [0, 1].

solut ion By definition, we have

∂( y, z)

∂(u, v)
=

∣∣∣∣
2u −2v

v u

∣∣∣∣ = 2 (u2 + v2);

∂(x , y)

∂(u, v)
=

∣∣∣∣
1 1

2u −2v

∣∣∣∣ = −2 (u + v).

Consequently,
∫∫

S
x dy dz + y dx dy =

∫∫
D

[(u + v)(2)(u2 + v2) + (u2 − v2)(−2)(u + v)] du dv

= 4
∫∫

D
(v3 + uv2) du dv = 4

∫ 1

0

∫ 1

0
(v3 + uv2) du dv

= 4
∫ 1

0

[
uv3 + u2v2

2

]1

0

dv = 4
∫ 1

0

(
v3 + v2

2

)
dv

=
[
v4 + 2v3

3

]1

0

= 1 + 2

3
= 5

3
. ▲
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The Integral of 3-Forms Over Regions
Finally, we must interpret 3-forms as functions on the elementary subregions of K . Let
v = f (x , y, z) dx dy dz be a 3-form and let R ⊂ K be an elementary subregion of K .
Then to each such R ⊂ K we assign the number

∫∫∫
R
v =

∫∫∫
R

f (x , y, z) dx dy dz, (3)

which is just the ordinary triple integral of f over R, as described in Section 5.5.

example 8 Suppose v = (x + z) dx dy dz and R = [0, 1] × [0, 1] × [0, 1]. Evaluate
∫∫∫

R v.

solut ion We compute:

∫∫∫
R
v =

∫∫∫
R
(x + z) dx dy dz =

∫ 1

0

∫ 1

0

∫ 1

0
(x + z) dx dy dz

=
∫ 1

0

∫ 1

0

[
x2

2
+ zx

]1

0

dy dz =
∫ 1

0

∫ 1

0

(
1

2
+ z

)
dy dz =

∫ 1

0

(
1

2
+ z

)
dz

=
[

z

2
+ z2

2

]1

0

= 1. ▲

The Algebra of Forms
We now discuss the algebra (or rules of multiplication) of forms that, together with
differentiation of forms, will enable us to state Green’s, Stokes’, and Gauss’ theorems
in terms of differential forms.

If ω is a k-form and η is an l-form on K , 0 ≤ k + l ≤ 3, there is a product called the
wedge product ω ∧ η of ω and η that is a k + l form on K . The wedge product satisfies
the following laws:

(i) For each k there is a zero k-form 0 with the property that 0 + ω = ω for all k-
forms ω and 0 ∧ η = 0 for all l-forms η if 0 ≤ k + l ≤ 3.

(ii) (Distributivity) If f is a 0-form, then

( f ω1 + ω2) ∧ η = f (ω1 ∧ η) + (ω2 ∧ η).

(iii) (Anticommutativity) ω ∧ η = (−1)kl(η ∧ ω).

(iv) (Associativity) If ω1, ω2, ω3 are k1, k2, k3 forms, respectively, with k1+k2+k3 ≤ 3,
then

ω1 ∧ (ω2 ∧ ω3) = (ω1 ∧ ω2) ∧ ω3.

(v) (Homogeneity with respect to functions) If f is a 0-form, then

ω ∧ ( f η) = ( f ω) ∧ η = f (ω ∧ η).

Notice that rules (ii) and (iii) actually imply rule (v).
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(vi) The following multiplication rules for 1-forms hold:

dx ∧ dy = dx dy

dy ∧ dx = − dx dy = (−1)( dx ∧ dy)

dy ∧ dz = dy dz = (−1)( dz ∧ dy)

dz ∧ dx = dz dx = (−1)( dx ∧ dz)

dx ∧ dx = 0, dy ∧ dy = 0, dz ∧ dz = 0

dx ∧ (dy ∧ dz) = ( dx ∧ dy) ∧ dz = dx dy dz.

(vii) If f is a 0-form and ω is any k-form, then f ∧ ω = f ω.

Using laws (i) to (vii), we can now find a unique product of any l-form η and any k-form
ω, if 0 ≤ k + l ≤ 3.

example 9 Show that dx ∧ dy dz = dx dy dz.

solut ion By rule (vi), dy dz = dy ∧ dz. Therefore,

dx ∧ dy dz = dx ∧ (dy ∧ dz) = dx dy dz. ▲

example 10 If ω = x dx + y dy and η = zy dx + xz dy + xy dz, find ω ∧ η.

solut ion Computing ω ∧ η, to get

ω ∧ η = (x dx + y dy) ∧ (zy dx + xz dy + xy dz)

= [(x dx + y dy) ∧ (zy dx)] + [(x dx + y dy) ∧ (xz dy)]

+ [(x dx + y dy) ∧ (xy dz)]

= xyz(dx ∧ dx) + zy2(dy ∧ dx) + x2z(dx ∧ dy) + xyz(dy ∧ dy)

+ x2 y(dx ∧ dz) + xy2(dy ∧ dz)

= −zy2 dx dy + x2z dx dy − x2 y dz dx + xy2dy dz

= (x2z − y2z) dx dy − x2 y dz dx + xy2dy dz. ▲

example 11 If ω = x dx − y dy and η = x dy dz + z dx dy, find ω ∧ η.

solut ion ω ∧ η = (x dx − y dy) ∧ (x dy dz + z dx dy)

= [(x dx − y dy) ∧ (x dy dz)] + [(x dx − y dy) ∧ (z dx dy)]

= (x2 dx ∧ dy dz) − (xy dy ∧ dy dz) + (xz dx ∧ dx dy)

− ( yz dy ∧ dx dy)

= [x2 dx ∧ (dy ∧ dz)] − [xy dy ∧ (dy ∧ dz)] + [xz dx ∧ (dx ∧ dy)]

− [ yz dy ∧ (dx ∧ dy)]

= x2 dx dy dz − [xy(dy ∧ dy) ∧ dz] + [xz(dx ∧ dx) ∧ dy]

− [ yz(dy ∧ dx) ∧ dy]

= x2 dx dy dz − xy(0 ∧ dz) + xz(0 ∧ dy) + [ yz(dy ∧ dy) ∧ dx]

= x2 dx dy dz. ▲

The last major step in the development of this theory is to show how to differentiate
forms. The derivative of a k-form is a (k + 1)-form if k < 3, and the derivative of a
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3-form is always zero. If ω is a k-form, we shall denote the derivative of ω by dω. The
operation d has the following properties:

(1) If f : K → R is a 0-form, then

d f = ∂ f

∂x
dx + ∂ f

∂y
dy + ∂ f

∂z
dz.

(2) (Linearity) If ω1 and ω2 are k-forms, then

d(ω1 + ω2) = dω1 + dω2.

(3) If ω is a k-form and η is an l-form,

d(ω ∧ η) = (dω ∧ η) + (−1)k(ω ∧ dη).

(4) d(dω) = 0 and d(dx) = d(dy) = d(dz) = 0 or, simply, d2 = 0.

Properties (1) to (4) provide enough information to allow us to uniquely differentiate
any form.

example 12 Let ω = P(x , y, z) dx+ Q(x , y, z) dy be a 1-form on some open set K ⊂ R3. Find dω.

solut ion d[P(x , y, z) dx + Q(x , y, z) dy]
= d[P(x , y, z) ∧ dx] + d[Q(x , y, z) ∧ dy] (using 2)
= (d P ∧ dx) + [P ∧ d(dx)] + (d Q ∧ dy) + [Q ∧ d(dy)] (using 3)
= (d P ∧ dx) + (d Q ∧ dy) (using 4)

=
(

∂P

∂x
dx + ∂P

∂y
dy + ∂P

∂z
dz

)
∧ dx

+
(

∂Q

∂x
dx + ∂Q

∂y
dy + ∂Q

∂z
dz

)
∧ dy (using 1)

=
(

∂P

∂x
dx ∧ dx

)
+

(
∂P

∂y
dy ∧ dx

)
+

(
∂P

∂z
dz ∧ dx

)

+
(

∂Q

∂x
dx ∧ dy

)
+

(
∂Q

∂y
dy ∧ dy

)
+

(
∂Q

∂z
dz ∧ dy

)

= − ∂P

∂y
dx dy + ∂P

∂z
dz dx + ∂Q

∂x
dx dy − ∂Q

∂z
dy dz

=
(

∂Q

∂x
− ∂P

∂y

)
dx dy + ∂P

∂z
dz dx − ∂Q

∂z
dy dz. ▲

example 13 Let f be a 0-form. Using only differentiation rules (1) to (3) and the fact that d(dx) =
d(dy) = d(dz) = 0, show that d(d f ) = 0.

solut ion By rule (1),

d f = ∂ f

∂x
dx + ∂ f

∂y
dy + ∂ f

∂z
dz,

and so

d(d f ) = d

(
∂ f

∂x
dx

)
+ d

(
∂ f

∂y
dy

)
+ d

(
∂ f

∂z
dz

)
.
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Working only with the first term, using rule (3), we get

d

(
∂ f

∂x
dx

)
= d

(
∂ f

∂x
∧ dx

)
= d

(
∂ f

∂x

)
∧ dx + ∂ f

∂x
∧ d(dx)

=
(

∂2 f

∂x2
dx + ∂2 f

∂y ∂x
dy + ∂2 f

∂z ∂x
dz

)
∧ dx + 0

= ∂2 f

∂y ∂x
dy ∧ dx + ∂2 f

∂z ∂x
dz ∧ dx

= − ∂2 f

∂y ∂x
dx dy + ∂2 f

∂z ∂x
dz dx.

Similarly, we find that

d

(
∂ f

∂y
dy

)
= ∂2 f

∂x ∂y
dx dy − ∂2 f

∂z ∂y
dy dz

and

d

(
∂ f

∂z
dz

)
= − ∂2 f

∂x ∂z
dz dx + ∂2 f

∂y ∂z
dy dz.

Adding these up, we get d(d f ) = 0 by the equality of mixed partial derivatives. ▲

example 14 Show that d( dx dy), d(dy dz), and d( dz dx) are all zero.

solut ion To prove the first case, we use property (3):

d(dx dy) = d(dx ∧ dy) = [d(dx) ∧ dy − dx ∧ d(dy)] = 0.

The other cases are similar. ▲

example 15 If η = F(x , y, z) dx dy + G(x , y, z) dy dz + H (x , y, z) dz dx, find dη.

solut ion By property (2),

dη = d(F dx dy) + d(G dy dz) + d(H dz dx).

We shall compute d(F dx dy). Using property (3) again, we get

d(F dx dy) = d(F ∧ dx dy) = d F ∧ (dx dy) + F ∧ d(dx dy).

By Example 14, d(dx dy) = 0, so we are left with

d F ∧ (dx dy) =
(

∂F

∂x
dx + ∂F

∂y
dy + ∂F

∂z
dz

)
∧ (dx ∧ dy)

=
[
∂F

∂x
dx ∧ (dx ∧ dy)

]
+

[
∂F

∂y
dy ∧ (dx ∧ dy)

]

+
[
∂F

∂z
dz ∧ (dx ∧ dy)

]
.
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Now

dx ∧ (dx ∧ dy) = (dx ∧ dx) ∧ dy = 0 ∧ dy = 0,
dy ∧ (dx ∧ dy) = −dy ∧ (dy ∧ dx)

= −(dy ∧ dy) ∧ dx = 0 ∧ dx = 0,

and

dz ∧ (dx ∧ dy) = (−1)2(dx ∧ dy) ∧ dz = dx dy dz.

Consequently,

d(F dx dy) = ∂F

∂z
dx dy dz.

Analogously, we find that

d(G dy dz) = ∂G

∂x
dx dy dz and d(H dz dx) = ∂H

∂y
dx dy dz.

Therefore,

dη =
(

∂F

∂z
+ ∂G

∂x
+ ∂H

∂y

)
dx dy dz.

▲

We have now developed all the concepts needed to reformulate Green’s, Stokes’, and
Gauss’ theorems in the language of forms.

Theorem 11 Green's Theorem Let D be an elementary region in the xy
plane, with ∂D given the counterclockwise orientation. Suppose ω = P(x , y) dx+
Q(x , y) dy is a 1-form on some open set K in R3 that contains D. Then∫

∂D
ω =

∫∫
D

dω.

Here dω is a 2-form on K and D is in fact a surface in R3 parametrized by �: D →
R3, �(x , y) = (x , y, 0). Because P and Q are explicitly not functions of z, then ∂P/∂z
and ∂Q/∂z = 0, and by Example 12, dω = (∂Q/∂x − ∂P/∂y) dx dy. Consequently,
Theorem 13 means nothing more than that

∫
∂D

P dx + Q dy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy,

which is precisely Green’s theorem. Hence, Theorem 13 holds. Likewise, we have the
following theorems.

Theorem 12 Stokes' Theorem Let S be an oriented surface in R3 with a
boundary consisting of a simple closed curve ∂S (Figure 8.5.3) oriented as the
boundary of S (see Figure 8.2.1). Suppose that ω is a 1-form on some open set K
that contains S. Then ∫

∂S
ω =

∫∫
S

dω.
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x
y

z

S

S

n

figure 8.5.3 An oriented surface to which Stokes' theorem
applies.

Theorem 13 Gauss’ Theorem Let W ⊂ R3 be an elementary region with
∂W given the outward orientation (see Section 8.4). If η is a 2-form on some region
K containing W, then

∫∫
∂W

η =
∫∫∫

W
dη.

The reader has probably noticed the strong similarity in the statements of these theo-
rems. In the vector-field formulations, we used divergence for regions in R3 (Gauss’ the-
orem) and the curl for surfaces in R3 (Stokes’ theorem) and regions in R2 (Green’s
theorem). Here we just use the unified notion of the derivative of a differential form for
all three theorems; and, in fact, we can state all theorems as one by introducing a little
more terminology.

By an oriented 2-manifold with boundary in R3 we mean a surface in R3 whose
boundary is a simple closed curve with orientation as described in Section 8.2. By an
oriented 3-manifold in R3 we mean an elementary region in R3 (we assume its boundary,
which is a surface, is given the outward orientation discussed in Section 8.4). We call
the following unified theorem “Stokes’ theorem,” according to the current convention.

Theorem 14 General Stokes’ Theorem Let M be an oriented k-manifold
in R3 (k = 2 or 3) contained in some open set K . Suppose ω is (k − 1)-form on
K . Then

∫
∂M

ω =
∫

M
dω.

Here the integral is interpreted as a single, double, or triple integral, as is appropri-
ate. In fact, it is this form of Stokes’ theorem that generalizes to spaces of arbitrary
dimension.
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exercises

1. Evaluate ω ∧ η if

(a) ω = 2x dx + y dy
η = x3 dx + y2dy

(b) ω = x dx − y dy
η = y dx + x dy

(c) ω = x dx + y dy + z dz
η = z dx dy + x dy dz + y dz dx

(d) ω = xy dy dz + x2 dx dy
η = dx + dz

(e) ω = exyz dx dy
η = e−xyz dz

2. Prove that

(a1 dx + a2 dy + a3 dz) ∧ (b1 dy dz + b2 dz dx + b3 dx dy)

=
(

3∑
i=1

ai bi

)
dx dy dz.

3. Find dω in the following examples:

(a) ω = x2 y + y3

(b) ω = y2 cos x dy + xy dx + dz

(c) ω = xy dy + (x + y)2 dx

(d) ω = x dx dy + z dy dz + y dz dx

(e) ω = (x2 + y2) dy dz

(f) ω = (x2 + y2 + z2) dz

(g) ω = −x

x2 + y2 dx + y

x2 + y2 dy

(h) ω = x2 y dy dz

4. Let C be the line segment from the point (−2, 0, 1) to
(3, 6, 9). Let ω1 = y dx + x dy + xy dz,
ω2 = z dx + y dy + 2x dz, and f (x , y, z) = xy.
Calculate the following:

(a)

∫
C

f ω1 (b)

∫
C

f ω2 (c)

∫
C

ω1 + ω2

5. Let C be parameterized by c(t) = (t2 + 4t , t + 1),
t ∈ [0, π ]. Let ω1 = y dx + x dy, ω2 = y2dx + x2dy,
and f (x , y) = x . Calculate the following:

(a)

∫
C

f ω1 (b)

∫
C

f ω2 (c)

∫
C

ω1 + ω2

6. Let V: K → R3 be a vector field defined by
V(x , y, z) = G(x , y, z)i + H (x , y, z)j + F(x , y, z)k,
and let η be the 2-form on K given by

η = F dx dy + G dy dz + H dz dx.

Show that dη = (div V) dx dy dz.

7. If V = A(x , y, z)i + B(x , y, z)j + C(x , y, z)k is a
vector field on K ⊂ R3, define the operation Form2:
Vector Fields → 2-forms by

Form2(V) = A dy dz + B dz dx + C dx dy.

(a) Show that
Form2(αV1 + V2) = α Form2 (V1) + Form2(V2),
where α is a real number.

(b) Show that Form2(curl V) = dω, where
ω = A dx + B dy + C dz.

8. Using the differential form version of Stokes’ theorem,
prove the vector field version in Section 8.2. Repeat for
Gauss’ theorem.

9. Interpret Theorem 16 in the case k = 1.

10. Let ω = (x + y) dz + ( y + z) dx + (x + z) dy, and let S
be the upper part of the unit sphere; that is, S is the set of
(x , y, z) with x2 + y2 + z2 = 1 and z ≥ 0. ∂S is the unit
circle in the xy plane. Evaluate

∫
∂S ω both directly and

by Stokes’ theorem.

11. Let T be the triangular solid bounded by the xy plane,
the xz plane, the yz plane, and the plane
2x + 3y + 6z = 12. Compute

∫∫
∂T

F1 dx dy + F2 dy dz + F3 dz dx

directly and by Gauss’ theorem, if

(a) F1 = 3y, F2 = 18z, F3 = −12; and

(b) F1 = z, F2 = x2, F3 = y.

12. Evaluate
∫∫

S ω, where ω = z dx dy + x dy dz + y dz dx
and S is the unit sphere, directly and by Gauss’ theorem.

13. Let R be an elementary region in R3. Show that the
volume of R is given by the formula

v(R) = 1

3

∫∫
∂R

x dy dz + y dz dx + z dx dy.
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14. In Section 4.2, we saw that the length l(c) of a curve
c(t) = (x(t), y(t), z(t)), a ≤ t ≤ b, was given by the
formula

l(c) =
∫

ds =
∫ b

a

( ds

dt

)
dt

where, loosely speaking,
(ds)2 = (dx)2 + (dy)2 + (dz)2, that is,

ds

dt
=

√( dx

dt

)2
+

(dy

dt

)2
+

( dz

dt

)2
.

Now suppose a surface S is given in parametrized form
by �(u, v) = (x(u, v), y(u, v), z(u, v)), where

(u, v) ∈ D. Show that the area of S can be expressed as

A(S) =
∫∫

D
d S,

where formally (d S)2 = (dx ∧ dy)2 + (dy ∧ dz)2 +
(dz ∧ dx)2, a formula requiring interpretation. [HINT:

dx = ∂x

∂u
du + ∂x

∂v
dv,

and similarly for dy and dz. Use the law of forms for the
basic 1-forms du and dv. Then d S turns out to be a
function times the basic 2-form du dv, which we can
integrate over D.]

review exercises for chapter 8

1. Let F = 2yzi + (−x + 3y + 2)j + (x2 + z)k. Evaluate∫∫
S (∇ × F) · dS, where S is the cylinder x2 + y2 = a2,

0 ≤ z ≤ 1 (without the top and bottom). What if the top
and bottom are included?

2. Let W be a region in R3 with boundary ∂W . Prove the
identity

∫∫
∂W

[F × (∇ × G)] · d S =
∫∫∫

W
(∇ × F) · (∇ × G) dV

−
∫∫∫

W
F · (∇ × ∇ × G) dV .

3. Let F = x2 yi + z8j − 2xyzk. Evaluate the integral of F
over the surface of the unit cube.

4. Verify Green’s theorem for the line integral

∫
C

x2 y dx + y dy,

when C is the boundary of the region between the curves
y = x and y = x3, 0 ≤ x ≤ 1.

5. (a) Show that F = (x3 − 2xy3)i − 3x2 y2j is a gradient
vector field.

(b) Evaluate the integral of F along the path
x = cos3 θ , y = sin3 θ , 0 ≤ θ ≤ π/2.

6. Can you derive Green’s theorem in the plane from
Gauss’ theorem?

7. (a) Show that
F = 6xy(cos z)i + 3x2(cos z)j − 3x2 y(sin z)k is
conservative (see Section 8.3).

(b) Find f such that F = ∇ f .

(c) Evaluate the integral of F along the curve
x = cos3 θ , y = sin3 θ , z = 0, 0 ≤ θ ≤ π/2.

8. Let r(x , y, z) = (x , y, z), r = ‖r‖. Show that
∇2(log r ) = 1/r2 and ∇2(rn) = n(n + 1)rn−2.

9. Let the velocity of a fluid be described by
F = 6xzi + x2 yj + yzk. Compute the rate at which
fluid is leaving the unit cube.

10. Let F = x2i + (x2 y − 2xy)j − x2zk. Does there exist a
G such that F = ∇ × G?

11. Let a be a constant vector and F = a × r [as usual,
r(x , y, z) = (x , y, z)]. Is F conservative? If so, find a
potential for it.

12. Show that the fields F in (a) and (b) are conservative and
find a function f such that F = V f .

(a) F = (
y2exy2)

i + (
2y exy2)

j

(b) F = (sin y)i + (x cos y)i + (ez)k

13. (a) Let f (x , y, z) = 3xyez2
. Compute ∇ f .

(b) Let c(t) = (3 cos3 t , sin2 t , et ), 0 ≤ t ≤ π .
Evaluate

∫
c
∇ f · ds.

(c) Verify directly Stokes’ theorem for gradient vector
fields F = ∇ f .
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14. Using Green’s theorem, or otherwise, evaluate∫
C x3dy − y3 dx, where C is the unit circle

(x2 + y2 = 1).

15. Evaluate the integral
∫∫

S F · dS, where
F = x i + yj + 3k and where S is the surface of the unit
sphere x2 + y2 + z2 = 1.

16. (a) State Stokes’ theorem for surfaces in R3.

(b) Let F be a vector field on R3 satisfying ∇ × F = 0.
Use Stokes’ theorem to show that

∫
C F · ds = 0

where C is a closed curve.

17. Use Green’s theorem to find the area of the loop of the
curve x = a sin θ cos θ , y = a sin2 θ , for a > 0 and
0 ≤ θ ≤ π .

18. Evaluate
∫

C yz dx + xz dy + xy dz, where C is the curve

of intersection of the cylinder x2 + y2 = 1 and the
surface z = y2.

19. Evaluate
∫

C (x + y) dx + (2x − z) dy + ( y + z) dz,
where C is the perimeter of the triangle connecting
(2, 0, 0), (0, 3, 0), and (0, 0, 6), in that order.

20. Which of the following are conservative fields on R3?
For those that are, find a function f such that F = ∇ f .

(a) F(x , y, z) = 3x2 yi + x3j + 5k

(b) F(x , y, z) = (x + z)i − ( y + z)j + (x − y)k

(c) F(x , y, z) = 2xy3i + x2z3j + 3x2 yz2k

21. Consider the following two vector fields in R3:

(i) F(x , y, z) = y2i − z2j + x2k
(ii) G(x , y, z) = (x3 − 3xy2)i + ( y3 − 3x2 y)j + zk

(a) Which of these fields (if any) are conservative on
R3? (That is, which are gradient fields?) Give
reasons for your answer.

(b) Find potential for the fields that are conservative.

(c) Let α be the path that goes from (0, 0, 0) to (1, 1, 1)
by following edges of the cube 0 ≤ x ≤ 1,
0 ≤ y ≤ 1, 0 ≤ z ≤ 1 from (0, 0, 0) to (0, 0, 1) to
(0, 1, 1) to (1, 1, 1). Let β be the path from (0, 0, 0)
to (1, 1, 1) directly along the diagonal of the cube.
Find the values of the line integrals∫

α

F · ds,

∫
α

G · ds,

∫
β

F · ds,

∫
β

G · ds.

22. Consider the constant vector field
F(x , y, z) = i + 2j − k in R3.

(a) Find a scalar field φ(x , y, z) in R3 such that
∇φ = F in R3 and φ(0, 0, 0) = 0.

(b) On the sphere � of radius 2 about the origin, find all
the points at which

(i) φ is a maximum, and
(ii) φ is a minimum.

(c) Compute the maximum and minimum values of φ

on �.

23. Let F be a C1 vector field and suppose
∇ · F(x0, y0, z0) > 0. Show that for a sufficiently small
sphere S centered at (x0, y0, z0), the flux of F out of S is
positive.

24. Let B ⊂ R3 be a planar region, and let O ∈ R3 be a
point. If we connect all points in B to O, we get a cone,
say C, with vertex O and base B. Show that

Volume (C) = 1

3
area (B) h,

where h is the distance of O from the plane of B, using
the following steps.

h

B

O

figure 8.R.1

1. Let O be the origin of the coordinate system. Define
r(x , y, z): = (x , y, z). Evaluate the flux of r through
the boundary of C, that is,

∫∫
∂C r · n dA, where n is

the outward unit normal to ∂C.

2. Evaluate the total divergence
∫∫∫

C ∇ · r dV .

3. Use Gauss’ theorem, which states that the total
divergence of a vector field within a region enclosed
by a surface is equal to the flux of that vector field
through the surface:

∫∫∫
C

∇ · r dV =
∫∫

∂C
r · n dA.
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Some solutions requiring proofs may be incomplete or be omitted.

Chapter 1

Section 1.1

1. 4; 17

3. (−104 + 16a, −24 − 4b, −22 + 26c)

5.

−v
v − w

w
v + w

v

x

y

7.
−v 

x

y

v + w

v − w

v 

w

z

9.

1 2 3

1

2

3

y

x
v

w v - w

v + w

11. x = 0, z = 0, y ∈ R; x = 0, y = 0, z ∈ R;
y = 0, x , z ∈ R; x = 0, y, z ∈ R

13. {(2s, 7s + 2t , 7t) | s ∈ R, t ∈ R}

15. l(t) = −i + (t − 1)j − k

17. l(t) = (2t − 1)i − j + (3t − 1)k

19. {si + 3sk − 2tj | 0 ≤ s ≤ 1, 0 ≤ t ≤ 1}

21. Yes.

23. 0

25. If (x , y, z) lies on the line, then x = 2 + t , y = −2 + t ,
and z = −1 + t . Therefore,
2x − 3y + z − 2 = 4 + 2t + 6 − 3t − 1 + t − 2 = 7,
which is not zero. Hence, no (x , y, z) satisfies both
conditions.

27. Yes.

29. The set of vectors of the form

v = pa + qb + rc,

where 0 ≤ p ≤ 1, 0 ≤ q ≤ 1, and 0 ≤ r ≤ 1.

31. All points of the form
(x0 + t (x1 − x0) + s(x2 − x0), y0 + t ( y1 − y0)
+ s( y2 − y0), z0 + t (z1 − z0) + s(z2 − z0))
for real numbers t and s.

33. If one vertex is placed at the origin and the two adjacent
sides are u and v, the new triangle has sides bu, bv, and
b(u − v).

35. (1, 0, 1) + (0, 2, 1) = (0, 2, 0) + (1, 0, 2)

37. Two such lines (there are many others) are
x = 1, y = t , z = t and x = 1, y = t , z = −t .

Section 1.2

1. 6

3. 99◦

493
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5. No, it is 75.7; it would be zero only if the vectors were
parallel.

7. ‖u‖ = √
5, ‖v‖ = √

2, u · v = −3

9. ‖u‖ = √
11, ‖v‖ = √

62, u · v = −14

11. ‖u‖ = √
14, ‖v‖ = √

26, u · v = −17

13. b = 5/4, c = −5/2

15. They point in opposite directions.

17. In Exercise 9, cos−1 (−14/
√

11
√

62); in Exercise 10,
π/2; and in Exercise 11, cos−1 (−17/

√
14

√
26).

19. x = 3, 7

21. −4(−i + j + k)/3

23. 1/2

25. Any (x , y, z) with x + y + z = 0;
for example, (1, −1, 0) and (0, 1, −1).

27. Draw a right triangle. Label the two legs v and w, so that
the hypotenuse is v–w. By hypothesis, we have
‖v‖2 + ‖w‖2 = ‖v − w‖2 = ‖v‖2 − 2v · w + ‖w‖2.
This implies v · w = 0, so v and w are orthogonal.

29. i + 4j, θ ≈ 0.24 radian east of north

31. (a) 12:03 P.M. (b) 4.95 km

33.

F = 50 lb

F  = 50 sin (50°) lby

50°

y

x

F  = 50 cos (50°) lbx

35. (4.9, 4.9, 4.9) and (−4.9, −4.9, 4.9) N.

37. (a) F = (3
√

2i + 3
√

2j) (b) ≈0.322 radian or
18.4◦ (c) 18

√
2

39. Draw a rectangle. Label two of the nonparallel sides v
and w, so the two diagonals are v + w and v − w. Then
these diagonals are perpendicular if and only if
0 = (v + w) · (v − w) = ‖v‖2 − ‖w‖2, which holds if
and only if ‖v‖ = ‖w‖.

Section 1.3

1.

∣∣∣∣∣
1 2 1
3 0 1
2 0 2

∣∣∣∣∣ = −8,

∣∣∣∣∣
3 0 1
1 2 1
2 0 2

∣∣∣∣∣ = 8

3. −3i + j + 5k

5.
√

35

7. 10

9. ±k

11. ±(113i + 17j − 103k)/
√

23, 667

13. u + v = 3i − 3j + 3k; u · v = 6; ‖u‖ = √
6;

‖v‖ = 3; u × v = −3i + 3k

15. (a) x + y + z − 1 = 0

(b) x + 2y + 3z − 6 = 0

(c) 5x + 2z = 25

(d) x + 2y − 3z = 13

17. Show (0, −2, −1) − (1, 4, 0) is parallel to
(1, 4, 0) − (2, 10, 1), so that the three points lie on a line.

19. (a) The parallel planes Ax + By + Cz + D = 0 and
σAx + σBy + σCz + D′ = 0 are identical when
D′ = σD and otherwise never intersect.

(b) In a line.

21. The line x = t , y = 2t , z = −5t .

23. (a) Do the first by working out each side in coordinates,
and then use that and a × (b × c) = −(b × c) × a
to get the second.

(b) Use the identities in part (a) to write the quantity in
terms of inner products.

(c) Use the identities in part (a) and collect terms.

25. Compute the results of Cramer’s rule and check that they
satisfy the equation.

27. v × w = (i + j) × (2j − k) = 2(i × j) − i × k
+ 2(j × j) − j × k = (−1, 1, 2)

29. x − 2y + 3z + 12 = 0

31. 4x − 6y − 10z = 14

33. 10x − 2y − 2z = 8

35. 10x − 17y + z + 25 = 0
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37. For Exercise 25, note that (2, −3, 1) · (1, 1, 1) = 0, and
so the line and plane are parallel and (2, −2, −1) does
not lie in the plane. For Exercise 26, the line and plane
are parallel and (1, −1, 2) does lie in the plane.

39.
√

2/13

41. (a) Show that M satisfies the geometric properties of
R × F. (b) 2

√
3

43. Show that n1(N × a) and n2(N × b) have the same
magnitude and direction.

45. One method is to write out all terms in the left-hand side
and see that the terms involving λ all cancel. Another
method is to first observe that the determinant is linear
in each row or column and that if any row or column is
repeated, the answer is zero. Then∣∣∣∣∣

a1 b1 c1

a2 + λa1 b2 + λb1 c2 + λc1

a3 b3 c3

∣∣∣∣∣

=
∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣ + λ

∣∣∣∣∣
a1 b1 c1

a1 b1 c1

a3 b3 c3

∣∣∣∣∣ =
∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣ .

Section 1.4

1. (ρ , θ , φ) = (4, 5π/3, 3π/4)

3. (a)

Cylindrical Rectangular

r θ z x y z

1 45◦ 1
√

2/2
√

2/2 1

2 π/2 −4 0 2 −4

0 45◦ 10 0 0 10

3 π/6 4 3
√

3/2 3/2 4

1 π/6 0
√

3/2 1
2 0

2 3π/4 −2 −√
2

√
2 −2

Spherical

ρ θ φ√
2 45◦ 45◦

2
√

5 π/2 π − arccos (2
√

5/5)

10 45◦ 0

5 π/6 arccos 4
5

1 π/6 π/2

2
√

2 3π/4 3π/4

(b) Rectangular

x y z

2 1 −2

0 3 4√
2 1 1

−2
√

3 −2 3

Spherical

ρ θ φ

3 arctan 1
2 π − arccos (2/3)

5 π/2 arccos (4/5)

2 arctan (
√

2/2) π/3

5 7π/6 arccos 3
5

Cylindrical

r θ z
√

5 arctan 1
2 −2

3 π/2 4√
3 arctan (

√
2/2) 1

4 7π/6 3

5. (a) Rotation by π around the z axis.

(b) Reflection across the xy plane with a radial
expansion by a factor of 2.

(c) Rotation by π/2 about the z axis together.

7.

y

x

z

z = x  + y 
2        2

(a)

y

x

z

x = 4

(b)
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y

x

z

4

x  + (y – 2) = 4
2                  2

(c)

y

x

z

2

x  + y = 4
2        2

(d)

9. No; (ρ , θ , φ) and (−ρ , θ + π, π − φ) represent the
same point.

11. r2 + z2 = R2

13. (a) eρ = (x i + yj + zk)/
√

x2 + y2 + z2

= (x i + yj + zk)/ρ

eθ = (−yi + xj)/
√

x2 + y2 = (−yi + xj)/r

eφ = (xzi + yzj − (x2 + y2)k)/rρ
(b) eθ × j = −yk/

√
x2 + y2, eφ × j

= (xz/rρ)k + (r/ρ)i

15. (a) The length of x i + yj + zk is (x2 + y2 + z2)1/2 = ρ.

(b) cos φ = z/(x2 + y2 + z2)1/2

(c) cos θ = x/(x2 + y2)1/2

17. 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π means that (r, θ , z) is inside the
cylinder with radius a centered on the z axis, and |z| ≤ b
means that it is no more than a distance b from the xy
plane.

19. −d/(6 cos φ) ≤ ρ ≤ d/2, 0 ≤ θ ≤ 2π, and

π − cos−1( 1
3 ) ≤ φ ≤ π .

21. This is a surface whose cross section with each surface
z = c is a four-petaled rose. The petals shrink to zero as
|c| changes from 0 to 1.

Section 1.5

1. 7

3. |x · y| = 10 = √
5
√

20 = ‖x‖‖y‖, so |x · y| ≤ ‖x‖‖y‖ is
true.

‖x + y‖ = 3
√

5 = ‖x‖ + ‖y‖, so ‖x + y‖ ≤ ‖x‖ + ‖y‖
is true.

5. |x · y| = 5 <
√

65 = ‖x‖‖y‖, so |x · y| ≤ ‖x‖‖y‖ is true.
‖x + y‖ = √

28 <
√

5 + √
13 = ‖x‖ + ‖y‖, so

‖x + y‖ ≤ ‖x‖ + ‖y‖ is true.

7. We assume ‖v‖ = ‖w‖. Then ‖v‖2 = ‖w‖2, so
(v + w) · (v − w) = v · v − w · w = ‖v‖2 − ‖w‖2 = 0.

9. AB =
[−1 −1 3
−1 11 3
−6 5 8

]
, det A = −5, det B = −24,

det AB = 120(= det A det B), det ( A + B) =
−61( 	= det A + det B)

11. B

13. HINT: For k = 2 use the triangle inequality to show that
‖x1 + x2‖ ≤ ‖x1‖ + ‖x2‖; then for k = i + 1 note that
‖x1 +x2 +· · ·+xi+1‖ ≤ ‖x1 +x2 +· · ·+xi‖+‖xi+1‖.

15. (a) Check n = 1 and n = 2 directly. Then reduce an
n × n determinant to a sum of (n − 1) × (n − 1)
determinants and use induction.

(b) The argument is similar to that for part (a). Suppose
the first row is multiplied by λ. The first term of the
sum will be λa11 times an (n − 1) × (n − 1)
determinant with no factors of λ. The other terms
obtained (by expanding across the first row) are
similar.

17. Not necessarily. Try A =
[

0 1
0 0

]
and B =

[
1 0
0 0

]
.

19. (a) The sum of two continuous functions and a scalar
multiple of a continuous function are continuous.

(b) (i) (α f + βg) · h =
∫ 1

0
(α f + βg)(x)h(x) dx

=
∫ 1

0
f (x)h(x) dx + β

∫ 1

0
g(x)h(x) dx

= α f · h + βg · h

(ii) f · g =
∫ 1

0
f (x)g(x) dx

=
∫ 1

0
g(x) f (x) dx = g · f

In conditions (iii) and (iv), the integrand is a perfect
square. Therefore, the integral is nonnegative and
can be 0 only if the integrand is 0 everywhere. If
f (x) 	= 0 for some x , then it would be positive in a
neighborhood of x by continuity, and the integral
would be positive.
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21. Compute the matrix product in both orders and check
that you get the identity.

23. (det A)(det A−1) = det ( AA−1) = det ( I ) = 1

Review Exercises for Chapter 1

1. v + w = 4i + 3j + 6k; 3v = 9i + 12j + 15k;
6v + 8w = 26i + 16j + 38k; −2v = −6i − 8j −10k;
v · w = 4; v × w = 9i + 2j − 7k.
Your sketch should display v, w, 3v, 6v, 8w,
6v + 8w, v · w as the projection of v along w and v × w
as a vector perpendicular to both v and w.

3. (a) l(t) = −i + (2 + t)j − k

(b) l(t) = (3t − 3)i + (t + 1)j − tk

(c) −2x + y + 2z = 9

5. 10x + 4y − 2z = 26

7. (a) 0

(b) 5

(c) −10

9. (a) π/2

(b) 5/(2
√

15)

(c) −10/(
√

6
√

17)

11. {sta + s(1 − t)b | 0 ≤ t ≤ 1 and 0 ≤ s ≤ 1}

13. Let v = (a1, a2, a3), w = (b1, b2, b3), and apply the
CBS inequality.

15. AB =
[

11 23 3
8 18 3
6 8 3

]
, B A =

[
3 10 6
1 11 11
3 18 18

]

17. The area is the absolute value of∣∣∣∣a1 a2

b1 b2

∣∣∣∣ =
∣∣∣ a1 a2

b1 + λa1 b2 + λa2

∣∣∣.
(A multiple of one row of a determinant can be added to
another row without changing its value.) Your sketch
should show two parallelograms with the same base and
height.

19. The cosines of the two parts of the angle are equal,
because

a · v/‖a‖‖v‖ = (a · b + ‖a‖‖b‖)/‖v‖ = b · v/‖b‖‖v‖.
21. The triangle inequality gives

‖v‖ = ‖(v − w) + w‖ ≤ ‖v − w‖ + ‖w‖, which implies
‖v‖ − ‖w‖ ≤ ‖v − w‖. A similar argument gives
‖w‖ − ‖v‖ ≤ ‖v − w‖.

23. i × j =
∣∣∣∣
i j k
1 0 0
0 1 0

∣∣∣∣ = k; etc.

25. (a) HINT: The length of the projection of the vector
connecting any pair of points, one on each line, onto
(a1 × a2)/‖a1 × a2‖ is d.

(b)
√

2

27. (a) Note that

1

2

∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣ = 1

2

∣∣∣∣∣
1 0 0
x1 x2 − x1 x3 − x1

y1 y2 − y1 y3 − y1

∣∣∣∣∣

= 1

2

∣∣∣x2 − x1 x3 − x1

y2 − y1 y3 − y1

∣∣∣.

(b) 1
2

29. (Plot omitted)

Rectangular Spherical

(a) (
√

2/2,
√

2/2, 1) (a) (
√

2, π/4, π/4)

(b) (3
√

3/2, 3/2, −4) (b) (5, π/6, arccos (−4/5))
(c) (0, 0, 1) (c) (1, π/4, 0)

(d) (0, −2, 1) (d) (
√

5, 3π/2, arccos (
√

5/5))

(e) (0, 2, 1) (e) (
√

5, π/2, arccos (
√

5/5))

31. z = r2 cos 2θ ; cos φ = ρ sin2 φ cos 2θ

33. |x · y| = 6 <
√

98 = ‖x‖‖y‖; ‖x + y‖ = √
33 <√

14 + √
7 = ‖x‖ + ‖y‖

35. (a) The associative law for matrix multiplication may
be checked as follows:

[( AB)C]ij =
n∑

k=1

( AB)ikCkj =
n∑

k=1

n∑
l=1

Ail BlkCkj

=
n∑

l=1

Ai (BC)lj = [A(BC)]ij.

Use this with C taken to be a column vector.

(b) The matrix for the composition is the product
matrix.

37. Rn is spanned by the vectors e1, e2, . . . , en . If v ∈ Rn ,
then

T v = T

[ n∑
i=1

(v · ei )ei

]
=

n∑
i=1

(v · ei )T ei .
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Let aij = (T e j · ei ), so that

T e j =
n∑

j=1

aijei .

Then

T v · ek =
n∑

i=1

(v · ei )aki.

That is, if

v =

⎡
⎢⎣

v1
...

vn

⎤
⎥⎦ , then T v =

⎡
⎢⎣

a11 · · · a1n
...

an1 · · · ann

⎤
⎥⎦

⎡
⎢⎣

v1
...

vn

⎤
⎥⎦ ,

as desired.

39. (a) 70 cos θ + 20 sin θ

(b) (21
√

3 + 6) ft · lb

41. Each side equals 2xy − 7yz + 5z2 − 48x + 54y−
5z − 96. (Or switch the first two columns and then
subtract the first row from the second.)

43. Add the last row to the first and subtract it from the
second.

45. (a) Scalar.

(b) Vector.

(c) Vector.

(d) Scalar.

47. (a)
A−1 =

[
1 −1
0 1

]
, B−1 =

[
1 0

−2 1

]
,

( AB)−1 =
[

1 −1
−2 3

]

(b) A−1 B−1 =
[

3 −1
−2 1

]
	= ( AB)−1,

B−1 A−1 =
[

1 −1
−2 3

]
= ( AB)−1

49. (a)
1

6

∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣
(b) 1/3

51. Use the fact that ‖a‖2 = a · a, expand both sides, and
use the definition of c.

53. (1/
√

38)i − (6/
√

38)j + (1/
√

38)k

55. (2/
√

5)i − (1/
√

5)j

57. (
√

3/2)i + (1/2
√

2)j + (1/2
√

2)k

Chapter 2

Section 2.1

1. (a) Scalar-valued.

(b) Vector-valued.

(c) Vector-valued.

3. (a) c = 0 corresponds to (iii) c = 1 corresponds to
(ii) c = −1 corresponds to (i).

(b) c = 12 corresponds to (iv) c = 6 corresponds to (v).

5.
y

x

(a)

1–1

1

–1

c = 1

c = 0

c = –1

y

x

(b)

1 e0

3

5

–3

c = 3

c = –3

c = 0

y

x

(c)

c = 1

c = 2

c = 00

2

1

–1

–2
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y

x

(d)

c = –2

c = 4

c = 0

1
4

– 1
4

1
8

7. The level curves and graphs are sketched below. The
graph in part (c) is a hyperbolic paraboloid like that of
Example 4, but rotated 45◦ and vertically compressed by
a factor of 1/4. To see this, use the variables u = x + y
and v = x − y. Then z = (v2 − u2)/4.

y

x

z = −1

z = 2

z = 5
...

...

(3, 0)

...

...

...

(a)

Intersection
with xy plane

Intersection
with xz plane

Intersection
with zy plane

x

y

z

z = 1
z = 4

z = 9

x

y

z = 0

...

(b)

...

x

1 2 3

Section
z = 4y  ,
x = 0

2

Section
z = x  ,
y = 0

2

y

z

(c) z = −xy

z = 2

z = 1
z = 0

z = 1
z = 2

z = −1

z = −2

z = −2

z = −1

x

y
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Section x = −y

z = 2

z = 1
z = 1

z = 2

z = −1

z = −2

z = −1

x

y

z

z = −2

Section x = y

9. (a) f (x , y, z) = x2 y6 − 2z, c = 3

(b) g(x , y) = (x2 y6 − 3)/2

11. For Example 2, z = r (cos θ + sin θ ) + 2, shape depends
on θ ; for Example 3, z = r2, shape is independent of θ ;
for Example 4, z = r2(cos2 θ − sin2 θ ), shape depends
on θ .

13. The level curves are circles x2 + y2 = 100 − c2 when
c ≤ 10. The graph is the upper hemisphere of
x2 + y2 + z2 = 100.

x

c = 0

c = 2
c = 4

c = 6
c = 8
c = 10

y

x

y

z

10

10

10

15. The level curves are circles, and the graph is a
paraboloid of revolution. See Example 3 of this
section.

17. If c = 0, the level curve is the straight line y = −x
together with the line x = 0. If c 	= 0, then
y = −x + (c/x). The level curve is a hyperbola with the
y axis and the line y = −x as asymptotes. The graph is
a hyperbolic paraboloid. Sections along the line y = ax
are the parabolas z = (1 + a)x2.

19. If c > 0, the level surface f (x , y, z) = c is empty. If
c = 0, the level surface is the point (0, 0, 0). If c < 0,
the level surface is the sphere of radius

√−c centered at
(0, 0, 0). A section of the graph determined by z = a is
given by t = −x2 − y2 − a2, which is a paraboloid of
revolution opening down in xyt space.

c

c− x

y

|c|

|c|

|c|2

−

−

|c|2

x

y

21. If c < 0, the level surface is empty. If c = 0, the level
surface is the z axis. If c > 0, it is the right-circular
cylinder x2 + y2 = c of radius

√
c, whose axis is the z

axis. A section of the graph determined by z = a is the
paraboloid of revolution t = x2 + y2. A section
determined by x = b is a “trough” with parabolic cross
section t ( y, z) = y2 + b2.
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23. Setting u = (x − z)/
√

2 and v = (x + z)/
√

2 gives the
u and v axes rotated 45◦ around the y axis from the x
and z axes. Because f = vy

√
2, the level surfaces

f = c are “cylinders” perpendicular to the vy plane
(z = −x) whose cross sections are the hyperbolas
vy = c/

√
2, so the section Sx=a ∩ graph f is the

hyperbolic paraboloid t = (z + a)y in yzt space [see
Exercise 7(c)]. The section Sy=b ∩ graph f is the plane
t = bx + bz in xzt space. The section Sz=b ∩ graph f
is the hyperbolic paraboloid t = y(x + b) in xyt space.

25. If c < 0, the level curve is empty. If c = 0, the level
curve is the x axis. If c > 0, it is the pair of parallel lines
|y| = c. The sections of graph with x constant are
V-shaped curves z = |y| in yz space. The graph is
shown in the accompanying figure.

z

y

x

(Exercise 25)

27. The value of z does not matter, so we get a “cylinder” of
elliptic cross section parallel to the z axis and
intersecting the xy plane in the ellipse 4x2 + y2 = 16.

x

y

z

2

− 2

4− 4

29. The value of x does not matter, so we get a “cylinder”
parallel to the x axis of hyberbolic cross section
intersecting the yz plane in the hyperbola z2 − y2 = 4.

31. An elliptic paraboloid with axis along the x axis.

1

4

9

16 9y2 + 4z2 = 144

y

z

x

9y2 + 4z2 = 81

9y2 + 4z2 = 36

9y2 + 4z2 = 4

33. The value of y does not matter, so we get a “cylinder” of
parabolic cross section.

x

y

z

35. This is a saddle surface similar to that of Example 4, but
the hyperbolas, which are level curves, no longer have
perpendicular asymptotes.

3 |c|

2 |c|

c < 0

c > 0

Level curves

y

x
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x

z

y

37. A double cone with axis along the y axis and elliptical
cross sections.

−1−2 1 2

6 = 2x   + z2 2

3 = 4x   + 2z2 2

x

z

y

39. Complete the square to get
(x + 2)2 + ( y − b/2)2 + (z + 9

2 )2 = (b2 + 4b + 97)/4.
This is an ellipsoid with center at (−2, b/2, − 9

2 ) and
axes parallel to the coordinate axes.

41. Level curves are described by cos 2θ = cr2. If c > 0,
then −π/4 ≤ θ ≤ π/4 or 3π/4 ≤ θ ≤ 5π/4. If c < 0,
then π/4 ≤ θ ≤ 3π/4 or 5π/4 ≤ θ ≤ 7π/4. In either
case you get a figure-eight shape, called a lemniscate,
through the origin. (Such shapes were first studied by
Jacques Bernoulli and are sometimes called Bernoulli’s
lemniscates.)

x

y

1
|c|

1
c

c < 0

c > 0

Section 2.2

1. Nothing.

3. (a) 0 (b) −1/2 (c) 1

5. (a) 5 (b) 0 (c) 2x

7. e3/10

9. (a) 0 (b) −1/2 (c) 0

11. (a) Compose f (x , y) = xy with g(t) = (sin t)/t for
t 	= 0 and g(0) = 1.

(b) 0 (c) 0

13. (a) 1

(b) ‖x0‖
(c) (1, e)

(d) Limit doesn’t exist (look at the limits for x = 0 and
y = 0 separately).

15. Everywhere except (0, 0).

17. 0

19. If (x0, y0) ∈ A, then |x0| < 1 and |y0| < 1. Let
r = min(1 − |x0|, 1 − |y0|). Prove that Dr (x0, y0) ⊂ A
either analytically or by drawing a figure.

21. Let r = min(2 −
√

x2
0 + y2

0 ,
√

x2
0 + y2

0 − √
2).

23. Use parts (ii) and (iii) of Theorem 4.

25. (a) Let the value of the function be 1 at (0, 0).
(b) No.

27. For |x − 2| < δ = √
ε + 4 − 2, we have

|x2 − 4| = |x − 2‖x + 2| < δ(δ + 4) = ε. By
Theorem 3(iii), limit x→2 x2 = (limit x→2 x)2 = 22 = 4.

29. Let r = ‖x − y‖/2. If ‖z − y‖ ≤ r , let
f (z) = ‖z − y‖/r . If ‖z − y‖ > r , let f (z) = 1.

31. (a) limitx→b+ f (x) = L if for every ε > 0 there is a
δ > 0 such that x > b and 0 < x − b < δ imply
| f (x) − L| < ε.

(b) limitx→0− (1/x) = −∞, limitt→−∞ et = 0, and so
limitx→0− e1/x = 0. Hence
limitx→0− 1/(1 + e1/x ) = 1. The other limit is 0.
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(c)

1

1
2

1 + e1/x
1

x

y

33. If ε > 0 and x0 are given, let δ = (ε/K )1/α . Then
‖ f (x) − f (x0)‖ < K δα = ε whenever ‖x − x0‖ < δ.
Notice that the choice of δ does not depend on x0. This
means that f is uniformly continuous.

35. (a) Choose δ < 1/500.

(b) Choose δ < 0.002.

Section 2.3

1. (a) ∂ f/∂x = y; ∂ f/∂y = x

(b) ∂ f/∂x = yexy ; ∂ f/∂y = xexy

(c) ∂ f/∂x = cos x cos y − x sin x cos y;
∂ f/∂y = −x cos x sin y

(d) ∂ f/∂x = 2x[1 + log (x2 + y2)];

∂ f/∂y = 2y[1 + log (x2 + y2)]; (x , y) 	= (0, 0)

3. (a) ∂w/∂x = (1 + 2x2) exp (x2 + y2);

∂w/∂y = 2xy exp (x2 + y2)
(b) ∂w/∂x = −4xy2/(x2 − y2)2;

∂w/∂y = 4yx2/(x2 − y2)2

(c) ∂w/∂x = yexy log (x2 + y2) + 2xexy/(x2 + y2);

∂w/∂y = xexy log (x2 + y2) + 2yexy/(x2 + y2)

(d) ∂w/∂x = 1/y; ∂w/∂y = −x/y2

(e) ∂w/∂x = −y2exy sin yexy sin x + cos yexy cos x ;
∂w/∂y = (xyexy + exy)(− sin yexy sin x)

5. z = 6x + 3y − 11

7. z = x − y + 1

9. (a)
[

1 0
0 1

]

(b)

[
ey xey − sin y
1 0
1 ey

]

(c)
[

1 1 ez

2xy x2 0

]

(d)

⎡
⎣(y + xy2)exy (x + x2 y)exy

sin y x cos y
5y2 10xy

⎤
⎦

11. z = 2(x − 4) + 4(y − 3) + 10

13. At z = 1.

15. Both are xyexy .

17. (2, 6, −36)

19. (a) ∇ f = (e−x2−y2−z2
(−2x2 + 1),

−2xye−x2−y2−z2
, −2xze−x2−y2−z2

)

(b) ∇ f = (x2 + y2 + z2)−2(yz( y2 + z2 − x2),

xz(x2 + z2 − y2), xy(x2 + y2 − z2))

(c) ∇ f = (z2ex cos y, −z2ex sin y, 2zex cos y)

21. 2x + 6y − z = 5

23. l(t) = (1, 3, 20) + t (−1, 2, 8)

25. −2k

27. They are constant. Show that the derivative is the zero
matrix.

Section 2.4

1. This curve is the ellipse ( y2/16) + x2 = 1:

y

x

3. This curve is the straight line through (−1, 2, 0) with
direction (2, 1, 1):

z

y

x

(−5, 0, −2)

(−1, 2, 0)



Marsden-3620111 VC September 27, 2011 10:50 504

504 Answers to Odd-Numbered Exercises

5. (a) c(t) = (2 cos(t), 2 sin(t)), t ∈ [0, 2π ]

(b) c(t) = (2 sin(t), 2 cos(t)), t ∈ [0, 2π ]

(c) c(t) = (2 cos(t) + 4, 2 sin(t) + 7), t ∈ [0, 2π ]

7. 6i + 6tj + 3t2k

9. (−2 cos t sin t , 3 − 3t2, 1)

11. c′(t) = (et , − sin t)

13. c′(t) = (t cos t + sin t , 4)

15. Horizontal when t = (R/v)nπ, n an integer; speed is
zero if n is even; speed is 2v if n is odd.

17. (sin 3, cos 3, 2) + (3 cos 3, −3 sin 3, 5)(t − 1)

19. (8, 8, 0)

21. (8, 0, 1)

23. (a)
√

1 + 64π2

(b) Yes, when t = 0.

(c) l(t) = (1, 0, 16π2) + t (0, 1, 8π )

(d) (1, −2π, 0)

25. (a) ( f ◦ c)(t) = (t6 − t4, 2t5, 4t2)

(b) l(t) = (0, 2, 4) + t (2, 10, 8)

Section 2.5

1. Use parts (i), (ii), and (iii) of Theorem 10. The derivative
at x is 2( f (x) + 1)Df (x).

3. Compute each in two ways; the answers are

(a) ( f ◦ c)′(t) = et (cos t − sin t)

(b) ( f ◦ c)′(t) = 15t4 exp (3t5)

(c) ( f ◦ c)′(t) = (e2t − e−2t )[1 + log (e2t + e−2t )]

(d) ( f ◦ c)′(t) = (1 + 4t2) exp (2t2)

5. Use Theorem 10(iii) and replace matrices by vectors.

7. ( f ◦g)(x , y) = (tan (ex−y−1)−ex−y , e2(x−y)−(x−y)2)

and D( f ◦ g)(1, 1) =
[

0 0
2 −2

]
.

9.
1

2
cos (1) cos (log

√
2)

11. (a) p(t) = (3 sin(t) + 2, 1, cos(t) + t2),
p′(π ) = (−3, 0, 2π)

(b) c(π ) = (−1, 0, π ), c′(π ) = (0, −1, 1),

D f (−1, 0, π ) =
[

0 3 0
−2 0 0

1 0 2π

]

(c) (−3, 0, 2π)

13. −2 cos t sin tesin t + sin4 t + cos3 tesin t − 3 cos2 t sin2 t
for both (a) and (b).

15. (2, 0)

17. (a) h(x , y) = f (x , u(x , y)) = f ( p(x), u(x , y)). We
use p here solely as notation: p(x) = x .

Written out:
∂h

∂x
= ∂ f

∂p

dp

dx
+ ∂ f

∂u

∂u

∂x
= ∂ f

∂p
+ ∂ f

∂u

∂u

∂x

because
dp

dx
= dx

dx
= 1

JUSTIFICATION: Call ( p, u) the variables of f . To
use the chain rule we must express h as a
composition of functions; that is, first find g such
that h(x , y) = f (g(x , y)). Let g(x , y) = ( p(x),
u(x , y)). Therefore, Dh = (Df )(Dg). Then

[
∂h

∂x

∂h

∂y

]
=

[
∂ f

∂p

∂ f

∂u

]
⎡
⎢⎣

∂g1

∂x

∂g1

∂y
∂g2

∂x

∂g2

∂y

⎤
⎥⎦

=
[
∂ f

∂p

∂ f

∂u

][ 1 0

∂u

∂x

∂u

∂y

]

=
[
∂ f

∂p
+ ∂ f

∂u

∂u

∂x

∂ f

∂u

∂u

∂y

]
,

and so
∂h

∂x
= ∂ f

∂p
+ ∂ f

∂u

∂u

∂x
. You may see

∂h

∂x
= ∂ f

∂x
+ ∂ f

∂u

∂u

∂x
as an answer. This requires

careful interpretation because of possible ambiguity
about the meaning of ∂ f/∂x , which is why the name
p was used.

(b)
∂h

∂x
= ∂ f

∂x
+ ∂ f

∂u

du

dx
+ ∂ f

∂v

dv

dx

(c)
∂h

∂x
= ∂ f

∂u

∂u

∂x
+ ∂ f

∂v

∂v

∂x
+ ∂ f

∂w

dw

dx

19. (a) G(x , y(x)) = 0 and so
∂G

∂x
+ ∂G

∂y

dy

dx
= 0.

(b)

⎡
⎢⎣

dy1

dx
dy2

dx

⎤
⎥⎦ = −

⎡
⎢⎣

∂G1

∂y1

∂G1

∂y2

∂G2

∂y1

∂G2

∂y2

⎤
⎥⎦

−1 ⎡
⎢⎣

∂G1

∂x
∂G2

∂x

⎤
⎥⎦

where −1 means the inverse matrix.
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The first component of this equation reads

dy1

dx
=

−∂G1

∂x

∂G2

∂y2
+ ∂G2

∂x

∂G1

∂y2

∂G1

∂y1

∂G2

∂y2
− ∂G2

∂y1

∂G1

∂y2

.

(c)
dy

dx
= −2x

3y2 + ey

21. Apply the chain rule to ∂G/∂T , where G(t (T , P),
p(T , P), V (T , P)) = P(V − b)ea/RV T − RT is
identically 0; t (T , P) = T ; and p(T , P) = P .

23. Define R1(h) = f (x0 + h) − f (x0) − [Df (x0)]h.

25. Let g1 and g2 be C1 functions from R3 to R such that
g1(x) = 1 for ‖x‖ <

√
2/3; g1(x) = 0 for ‖x‖ > 2

√
2/3;

g2(x) = 1 for ‖x − (1, 1, 0)‖ <
√

2/3; and g2(x) = 0
for ‖x − (1, 1, 0)‖ > 2

√
2/3. (See Exercise 24.) Let

h1(x) =
[

1 0 0
0 −1 0
0 0 0

][
x1

x2

x3

]
+

[
1
1
0

]

and h2(x) =
[

0 0 −1
0 0 0
0 0 1

][
x1

x2

x3

]
,

and put f (x) = g1(x)h1(x) + g2(x)h2(x).

27. Proof of rule (iii) follows:

|h(x) − h(x0) − [ f (x0)Dg(x0) + g(x0)Df (x0)](x − x0)|
‖x − x0‖

≤ | f (x0)| |g(x) − g(x0) − Dg(x0)(x − x0)|
‖x − x0‖

+ |g(x0)| | f (x) − f (x0) − Df (x0)(x − x0)|
‖x − x0‖

+ | f (x) − f (x0)|
‖x − x0‖

|g(x) − g(x0)|
‖x − x0‖ ‖x − x0)‖.

As x → x0, the first two terms go to 0 by the
differentiability of f and g. The third does so because
| f (x) − f (x0)|/‖x − x0‖ and |g(x) − g(x0)|/‖x − x0‖
are bounded by a constant, say M , on some ball Dr (x0).
To see this, choose r small enough that [ f (x) − f (x0)]/
‖x − x0‖ is within 1 of Df (x0)(x − x0)/‖x − x0‖ if
‖x − x0‖ < r . Then we have | f (x) − f (x0)|/‖x − x0‖ ≤
1+|Df (x0)(x−x0)|/‖x−x0‖ = 1+|∇ f (x0) · (x−x0)|/
‖x − x0‖ ≤ 1 + ‖∇ f (x0)‖ by the Cauchy–Schwarz
inequality.

The proof of rule (iv) follows from rule (iii) and the
special case of the quotient rule, with f identically 1;
that is, D(1/g)(x0) = [−1/g(x0)2]Dg(x0). To obtain

this answer, note that on some small ball
Dr (x0), g(x) > m > 0. Use the triangle inequality and
the Schwarz inequality to show that

∣∣∣∣ 1

g(x)
− 1

g(x)
+ 1

g(x0)2 Dg(x0)(x − x0)

∣∣∣∣
‖x − x0‖

≤ 1

|g(x)|
1

|g(x0)|
|g(x) − g(x0) − Dg(x0)(x − x0)|

‖x − x0‖

+ |g(x) − g(x0)|
|g(x)|g(x0)2

|Dg(x0)(x − x0)|
‖x − x0‖

≤ 1

m2

|g(x) − g(x0) − Dg(x0)(x − x0)|
‖x − x0‖

+ ‖∇g(x0)‖
m3 |g(x) − g(x0)|.

These last two terms both go to 0, because g is
differentiable and continuous.

29. First find formula for (∂/∂x)(F(x , x)) using the chain
rule. Let F(x , z) = ∫ x

0 f (z, y) dy and use the
fundamental theorem of calculus.

31. By Exercise 28 and Theorem 10(iii) (Exercise 27), each
component of k is differentiable and Dki (x0) = f (x0)
Dgi (x0) + gi (x0)Df (x0). Because [Dgi (x0)]y is the i th
component of [Dg(x0)]y and [Df (x0)]y is the number
∇ f (x0) · y, we get [Dk(x0)]y = f (x0)[Dg(x0)]y +
[Df (x0)]y[g(x0)] = f (x0)[Dg (x0)]y + [∇ f (x0) · y]g(x0).

33. 4

35. Let g(x , y) = x − y, so that z = f ◦ g. Then the chain

rules implies
∂z

∂x
= ∂ f

∂g

∂g

∂x
= ∂ f

∂g
and

∂z

∂y
= ∂ f

∂g

∂g

∂y
= −∂ f

∂g
.

Section 2.6

1. ∇ f (1, 1, 2) · v = (4, 3, 4) · (1/
√

5, 2/
√

5, 0) = 2
√

5

3. (a) 17ee/13

(b) e/
√

3

(c) 0

5. (a) Since ∇ f (x0) points in the direction of fastest
increase (Theorem 13), the maximum value of the

directional derivative is D f (x0)
∇ f (x0)

‖∇ f (x0)‖ =

∇ f (x0) · ∇ f (x0)

‖∇ f (x0)‖ = ‖∇ f (x0)‖.

(b) 21
√

2



Marsden-3620111 VC September 27, 2011 10:50 506

506 Answers to Odd-Numbered Exercises

7. 9/
√

29

9. (a) z + 9x = 6y − 6

(b) z + y = π/2

(c) z = 1

11. (a) − 1

3
√

3
(i + j + k)

(b) 2i + 2j + 2k

(c) − 2
9 (i + j + k)

13. k

15. The graph of f is the level surface
0 = F(x , y, z) = f (x , y) − z. Therefore, the tangent
plane is given by

0 = ∇F(x0, y0, z0) · (x − x0, y − y0, z − z0)

=
(

∂ f

∂x
(x0, y0),

∂ f

∂y
(x0, y0), −1

)

· (x − x0, y − y0, z − z0).

Because z0 = f (x0, y0), this is z = f (x0, y0) +
(∂ f/∂x)(x0, y0)(x − x0) + (∂ f/∂y)(x0, y0)(y − y0).

17. (a) ∇ f = (z + y, z + x , x + y),
g′(t) = (et , − sin t , cos t),
( f ◦ g)′(1) = 2e cos 1 + cos2 1 − sin2 1

(b) ∇ f = (yzexyz , xzexyz , xyexyz), g′(t) = (6, 6t , 3t2),
( f ◦ g)′(1) = 108e18

(c) ∇ f = [1 + log (x2 + y2 + z2)](x i + yj + zk), g′ =
(et , −e−t , 1),
( f ◦g)′(1) = [1+ log (e2 + e−2 +1)](e2 − e−2 +1)

19. (a) (0, 0)

(b) ∇ f (0, 0) = (−4x , −6y)|(0,0) = (0, 0)

21. Let f (x , y, z) = 1/r = (x2 + y2 + z2)−1/2;
r = (x , y, z). Then we calculate ∇ f = −
(x2 + y2 + z2)−3/2(x , y, z) = −(1/r3)r.

23. ∇ f = (g′(x), 0)

25. Df (0, 0, . . . , 0) = [0, . . . , 0]

27. d1 = [−(0.03 + 2by1)/2a]i + y1j, d2 =
[−(0.03 + 2by2)/2a]i + y2j, where y1 and y2 are the

solutions of (a2 + b2)y2 + 0.03by + (0.032

4 − a2
) = 0.

x

z

y
c/b

c/a

c

29. ∇V = λ

2πε0[(
x + x0

r2
2

− x − x0

r2
1

)
i + 2y

(
1

r2
2

− 1

r2
1

)
j

]

31. Crosses at (2, 2, 0),
√

5/10 seconds later.

Review Exercises for Chapter 2

1. (a) Elliptic paraboloid.

(b) Let y′ = y + 3 and write z = xy′. This is a (shifted)
hyperbolic paraboloid.

3. (a) Df (x , y) =
[

2xy x2

−ye−xy −xe−xy

]

(b) Df (x) =
[

1
1

]

(c) Df (x , y, z)] = [ex ey ez]

(d) Df (x , y, z) =
[

1 0 0
0 1 0
0 0 1

]

5.
[

0 0 0
1 −2π 0

]

7.

[−12 28
−5 17
−4 −5

]

9. (0, 25π, 0)

11. The plane tangent to a sphere at (x0, y0, z0) is normal to
the line from the center to (x0, y0, z0).

13. (a) z = x − y + 2

(b) z = 4x − 8y − 8

(c) x + y + z = −1

(d) 10x + 6y − 4z = 6 − π

(e) 2z = √
2x + √

2y

(f) x + 2y − z = 2
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15. (a) The level curves are hyperbolas xy = 1/c:

y

c = 1

c = 4

c = 1

c = 4

c = −4

c = −1

c = −4

c = −1

1−1
−2

2

2 x

−2

1

−1

(b) c = x2 − xy − y2

=
(

x − 1 + √
5

2
y

)(
x − 1 − √

5

2
y

)

−1

−2

−3

−3 −2
−1

1

2

3

1 2 3

c = −1

c = 1

x

y

c = −1

c = 1

17. (a) 0 (b) Limit does not exist.

19. (1 + 2x2) exp (1 + x2 + y2)

21.
40√

5
e−15

23. (a) The line L(t) = (x0, y0, f (x0, y0)) + t (a, b, c) lies
in the plane z = f (x0, y0) if c = 0 and is per-
pendicular to ∇ f (x0, y0) if a(∂ f/∂x)(x0, y0) +
b(∂b/∂y)(x0, y0) = 0. On L, we have

f (x0, y0) +
[
∂ f

∂x
(x0, y0)

]
(x − x0) +

[
∂ f

∂y
(x0, y0)

]
(y − y0)

= f (x0, y0) + at
[
∂ f

∂x
(x0, y0)

]
+ bt

[
∂ f

∂y
(x0, y0)

]

= f (x0, y0) = z.

Therefore, L lies in the tangent plane. An upward
unit normal to the tangent plane is p = (1 + ‖∇ f ‖−1/2

(−(∂ f/∂x)(x0, y0), −(∂ f/∂y)(x0, y0), 1). Therefore,
cos θ = p · k = (1 + ‖∇ f ‖2)−1/2, and tan θ = sin θ/

cos θ = {‖∇ f ‖2/(1+‖∇ f ‖2)}1/2/(1+‖∇ f ‖2)−1/2

= ‖∇ f ‖ as claimed.

(b) The tangent plane contains the horizontal line
through (1, 0, 2) perpendicular to
∇ f (1, 0) = (5, 0), that is, parallel to the y axis. It
makes an angle of arctan (‖∇ f (1, 0)‖) =
arctan 5 ≈ 78.7◦ with respect to the xy plane.

25. (1/
√

2, 1/
√

2) or (−1/
√

2, −1/
√

2)

27. A unit normal is (
√

2/10)(3, 5, 4). The tangent plane is
3x + 5y + 4z = 18.

29. 4i + 16j

31. (a) Because g is the composition λ �→ λx �→ f (λx),
the chain rule gives

g′(λ) = Df (λx)

⎡
⎢⎣

x1
...

xn

⎤
⎥⎦ .

Thus,

g′(1) = Df (x)

⎡
⎢⎣

x1
...

xn

⎤
⎥⎦ = ∇ f (x) · x.

But also g(λ) = λp f (x), so g′(λ) = pλp−1 f (x)
and g′(1) = p f (x).

(b) p = 1

33. Differentiate directly using the chain rule, or use
Exercise 31(a) with p = 0.

35. (a) If (x , y) 	= (0, 0), then we calculate for (i) that
∂ f/∂x = (y3 − yx2)/(x2 + y2)2 and ∂ f/∂y =
(x3 − xy2)/(x2 + y2)2. If x = y = 0, use the
definition directly to find that both partial derivatives
are 0. For (ii), if (x , y) 	= (0, 0), then ∂ f/∂x = 2xy6/

(x2 + y4)2 and ∂ f/∂y = (2x4 y − 2x2 y5)/
(x2 + y4)2. The partials at the origin are zero.

(b) The function (i) is not continuous at (0, 0); the
function (ii) is differentiable, but the derivative is
not continuous.

37. (a)
√

2π/8

(b) − sin
√

2

(c) −2
√

2e−2
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39. (−4e−1, 0)

41. (a) See Theorem 11.

(b)

g(u) = (sin 3u)2 + cos 8u ∇ f = (2x , 1)
g′(u) = 6 sin 3u cos 3u − 8 sin 8u ∇ f (h(0)) = ∇ f (0, 1) = (0, 1)
g′(0) = 0 h′(u) = (3 cos 3u, −8 sin 8u)

g′(0) = ∇ f (h(0)) · h′(0)
= (0, 1) · (3, 0) = 0

43. t = √
14(−3 + √

359)/70 = (−3 + √
359)/5

√
14

45. ∂z/∂x = 4(e−2x−2y+2xy)(1 + y)/(e−2x−2y − e2xy)2

∂z/∂y = 4(e−2y−2x+2xy)(1 + x)/(e−2x−2y − e2xy)2

47. Notice that y = x2, so that if y is constant, x cannot be a
variable.

49. [ f ′(t)g(t) + f (t)g′(t)] exp [ f (t)g(t)]

51. d[ f (c(t))]/dt = 2t/[(1 + t2 + 2 cos2 t)(2 − 2t2 + t4)]

−4t (t2 − 1) ln(1 + t2 + 2 cos2 t)/(2 − 2t2 + t4)2

−4 cos t sin t/[(1 + t2 + 2 cos2 t)(2 − 2t2 + t4)]

53. Let x = f (t), y = t , and use the chain rule to
differentiate u(x , y) with respect to t .

55. (a) n = PV/RT ; P = n RT/V ;
T = PV/n R; V = n RT/P .

(b) ∂V/∂T = n R/P; ∂T/∂ P = V/n R;
∂ P/∂V = −n RT/V 2.
Multiply, remembering that PV = n RT .

57. (a) We can solve for any of the variables in terms of the
other two.

(b) ∂T/∂ P = (V − β)/R;

∂ P/∂V = −RT/(V − β)2 + 2α/V 3;

∂V/∂T = R/[(V − β)(RT/(V − β)2 − 2α/V 3)]

(c) Multiply and cancel factors.

59. (a) (1/
√

2, 1/
√

2)

(b) The directional derivative is 0 in the direction

(x0i + y0j)/
√

x2
0 + y2

0 .

(c) The level curve through (x0, y0) must be tangent to
the line through (0, 0) and (x0, y0). The level curves
are lines or half-lines emanating from the origin.

61. G(x , y) = x − y

Chapter 3

Section 3.1

1.
∂2 f

∂x2 = 24
x3 y − xy3

(x2 + y2)4 ,
∂2 f

∂y2 = 24
−x3 y + xy3

(x2 + y2)4 ,

∂2 f

∂x∂y
= ∂2 f

∂y∂x
= −6x4 + 36x2 y2 − 6y4

(x2 + y2)4

3.
∂2 f

∂x2 = −y4 cos(xy2),

∂2 f

∂y2 = −2x sin (xy2) − 4x2 y2 cos (xy2),

∂2 f

∂x ∂y
= ∂2 f

∂y∂x
= −2y sin (xy2) − 2xy3 cos (xy2)

5.
∂2 f

∂x2 = 2(cos2 x + e−y) cos 2x + 2 sin2 2x

(cos2 x + e−y)3 ,

∂2 f

∂y2 = e−y − cos2 x

ey(cos2 x + e−y)3

∂2 f

∂x ∂y
= ∂2 f

∂y ∂x
= 2 sin 2x

ey(cos2 x + e−y)3

7. (a) fx = −1, fy = −π, fxx = 0, fyy = 0,
fxy = fyx = −1

(b) fx = 5, fy = −18, fxx = 2, fyy = 42,
fxy = fyx = −8

(c) All second partial derivatives are zero.

9. No.

11. (a) c2 ∂2 f

∂x2 = −c2 sin(x − ct) = ∂2 f

∂t2

(b) c2 ∂2 f

∂x2 = −c2 sin(x) sin(ct) = ∂2 f

∂t2

(c) c2 ∂2 f

∂x2 = 30c2(x − ct)4 + 30c2(x + ct)4 = ∂2 f

∂t2

13. (a) ∂2z/∂x2 = 6, ∂2z/∂y2 = 4,

∂2z/∂x ∂y = ∂2z/∂y ∂x = 0

(b) ∂2z/∂x2 = 0, ∂2z/∂y2 = 4x/3y3,

∂2z/∂x ∂y = ∂2z/∂y ∂x = −2/3y2

15. fxy = 2x + 2y, fyz = 2z, fzx = 0, fxyz = 0

17. Because f and ∂ f/∂z are both of class C2, we have

∂3 f

∂x ∂y ∂z
= ∂2

∂x ∂y

∂ f

∂z
= ∂2

∂y ∂x

∂ f

∂z
= ∂

∂y

(
∂2 f

∂x ∂z

)

= ∂

∂y

(
∂2 f

∂z ∂x

)
= ∂3 f

∂y ∂z ∂x
.
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19. fxzw = fzw x = exyz[2xy cos (xw) +
x2 y2z cos (xw) − x2 yw sin (xw)]

21. (a)
∂ f

∂x
= arctan

x

y
+ xy

x2 + y2

∂ f

∂y
= −x2

x2 + y2

∂2 f

∂x2 = 2y3

(x2 + y2)2 ,
∂2 f

∂y2 = 2x2 y

(x2 + y2)2

∂2 f

∂x ∂y
= ∂2 f

∂y ∂x
= −2xy2

(x2 + y2)2

(b) ∂ f

∂x
= −x sin

√
x2 + y2√

x2 + y2
,
∂ f

∂y
= −y sin

√
x2 + y2√

x2 + y2

∂2 f

∂x2 = x2 sin
√

x2 + y2

(x2 + y2)3/2 − x2 cos
√

x2 + y2

x2 + y2

− sin
√

x2 + y2

(x2 + y2)1/2

∂2 f

∂y2 = y2 sin
√

x2 + y2

(x2 + y2)3/2 − y2 cos
√

x2 + y2

x2 + y2

− sin
√

x2 + y2

(x2 + y2)1/2

∂2 f

∂x ∂y
= ∂2 f

∂y ∂x

= xy

[
sin

√
x2 + y2

(x2 + y2)3/2 − cos
√

x2 + y2

x2 + y2

]

(c)
∂ f

∂x
= −2x exp (−x2 − y2),

∂ f

∂y
= −2y exp(−x2 − y2),

∂2 f

∂x2 = (4x2 − 2) exp (−x2 − y2),

∂2 f

∂y2 = (4y2 − 2) exp (−x2 − y2),

∂2 f

∂x ∂y
= ∂2 f

∂y ∂x
= 4xy exp (−x2 − y2)

23.
∂2 f

∂x2

(dx

dt

)2
+ 2

∂2 f

∂x ∂y

dx

dt

dy

dt
+ ∂2 f

∂y2

(dy

dt

)2

+ ∂ f

∂x

d2x

dt2
+ ∂ f

∂y

d2 y

dt2
,

where c(t) = (x(t), y(t))

25. Evaluate the derivatives ∂2u/∂x2 and ∂2u/∂y2 and add.

27. (a) The first function is harmonic, the second is not.

(b) Any polynomial of degree 1 or 0 is harmonic.

29. (a) Evaluate the derivatives and compare.

(b)

x

t

x = t

φ

31. V = −GmM/r = −GmM(x2 + y2 + z2)−1/2. Check
that

∂2V

∂x2 + ∂2V

∂y2 + ∂2V

∂z2 = GmM(x2 + y2 + z2)−3/2

[3 − 3(x2 + y2 + z2)(x2 + y2 + z2)−1] = 0.

Section 3.2

1. (a) f (h1, h2) = 1 + h1 + h2 + R1(0, h)

(b) f (h1, h2) = 1 + h1 + h2 + 1
2 h2

1 + h1h2 + 1
2 h2

2 +
R2(0, h)

3. f (h1, h2) = h2
1 + 2h1h2 + h2

2 [R2(0, h) = 0, in this case].

5. f (h1, h2) = 1 + h1 + h2 + h2
1

2
+ h1h2 + h2

2

2
+ R2(0, h)

7. f (h1, h2) = 1 + h1h2 + R2(0, h)

9. g(x , y) = −1 + 1

2
(x − π )2 + 1

2

(
y − π

2

)2

11. p(x , y) = 2 − 3π2

4
(y − 1) − 1

2

(
x − π

2

)2

+ π2

4
(y − 1)2 − 7π

2

(
x − π

2

)
(y − 1)

13. (a) Show that |Rk (x , a)| ≤ ABk+1/(k + 1)! for
constants A, B, and x in a fixed interval [a, b].
Prove that Rk → 0 as k → ∞. (Use convergence
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of the series
∑

ck/k! = ec and use Taylor’s
theorem.)

(b) The only possible trouble is at x = 0. Use
L’Hôpital’s rule to show that

limit
t→∞ p(t)et = ∞

for every polynomial p(t). Using this, establish that
limitx→0+ p(x)e−1/x = 0 for every rational function
p(x), and conclude that f (k)(0) = 0 for every k.

(c) f : Rn → R is analytic at x0 if the series

f (x0) +
n∑

i=1

hi
∂ f

∂xi
(x0) + 1

2

n∑
i, j=1

hi h j
∂2 f

∂xi ∂x j
(x0) + · · ·

+ 1

k!

n∑
i1,...,ik=1

hi1 hi2 · · · hik

∂k f

∂xi1 · · · ∂xik

(x0) + · · ·

converges to f (x0 + h) for all h = (h1, . . . , hn) in
some sufficiently small disc ‖h‖ < ε. The function
f is analytic if for every R > 0 there is a constant
M such that |(∂k f/∂xi1 · · · ∂xik )(x)| < Mk for each
kth-order derivative at every x satisfying ‖x‖ ≤ R.

(d) f (x , y) = 1 + x + y + 1
2 (x2 + 2xy + y2) + · · ·

+ 1

k!

k∑
j=0

( k

j

)
x j yk− j + · · ·

Section 3.3

1. (0, 0); saddle point.

3. The critical points are on the line y = −x ; they are local
minima, because f (x , y) = (x + y)2 ≥ 0, equaling zero
only when x = −y.

5. (0, 0); saddle point.

7.
(

−1

4
, −1

4

)
; local minimum.

9. (0, 0); local maximum. (The tests fail, but use the fact
that cos z ≤ 1.)

(
√

π/2,
√

π/2), local minimum

(0,
√

π ), local minimum.

11. No critical points.

13. (1, 1) is a local minimum.

15. (0, nπ ); critical points, no local maxima or minima.

17. Local minimum at (1, 1).

19. Local maximum at (0, 3), local minimum at (1, 2),
saddles at (0, 2) and (1, 3).

21. Minimum at (0, 0) and maxima at (0, ±1) [and saddles
at (±1, 0)].

23. (a) ∂ f/∂x and ∂ f/∂y vanish at (0, 0).

(b) Show that f (g(t)) = 0 at t = 0 and that
f (g(t)) ≥ 0 if |t | < |b|/3a2.

(c) f is negative on the parabola y = 2x2.

25. The critical points are on the line y = x and they are
local minima (see Exercise 1).

27. Saddle.

29. Minimize S = 2xy + 2yz + 2xz with z = V/xy, V the
constant volume.

31. 40, 40, 40

33. (a) ∇ f (0, 0) = (6x5 + 2x , 6y5)|(0,0) = (0, 0), so f
has a critical point at (0,0). The Hessian matrix of f

at (0,0) is

[
30x4 + 2 0
0 30y

]
(0,0)

=
[

2 0
0 0

]
, which

has determinant zero. Similarly for g and h.

(b) f has a local minimum at (0,0) since f (0, 0) = 0
and f (x , y) > 0 for all other (x , y). g has a local
maximum at (0,0) since g(0, 0) = 0 and
g(x , y) < 0 for all other (x , y). h has a saddle at
(0,0) since h(0, y) ≥ 0, but h(x , 0) < 0 for x near
zero. This shows that there are points arbitrarily
close to the origin on which h takes both positive
and negative values.

35. The only critical point is (0, 0, 0). It is a minimum,
because

f (x , y, z) ≥ x2 + y2

2
+ z2 + xy = 1

2
(x + y)2 + z2 ≥ 0.

37.
(

1,
3

2

)
is a saddle point;

(
5,

27

2

)
is a local minimum.

39.
3

2
is the absolute maximum and 0 is the absolute

minimum.

41. −2 is the absolute minimum; 2 is the absolute maximum.

43. Absolute maximum of 3 at (−1, 2), absolute minimum
of 0 at (−2, 5) and (2, 1).
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45.
(

1

2
, 4

)
is a local minimum.

47. If un(x , y) = u(x , y) + (1/n)ex , then ∇2un =
(1/n)ex > 0. Thus, un is strictly subharmonic and can
have its maximum only on ∂ D, say, at pn = (xn , yn). If
(x0, y0) ∈ D, check that this implies u(xn , yn) >

u(x0, y0) − e/n. Thus, there must be a point q = (x∞, y∞)
on ∂ D such that arbitrarily close to q we can find an
(xn , yn) for n as large as we like. Conclude from the
continuity of u that u(x∞, y∞) ≥ u(x0, y0).

49. Follow the methods of Exercise 47.

51. (a) If there were an x1 with f (x1) < f (x0), then the
maximum of f on the interval between x0 and x
would be another critical point.

(b) Verify (i) by the second derivative test; for (ii), f
goes to −∞ as y → ∞ and x = −y.

Section 3.4

1. (a) Maximum of 3, minimum of 1.

(b) Maximum of 3, minimum of 0.

3. Maximum at
√

2
3 (1, −1, 1), minimum at√

2
3 (−1, 1, −1).

5. Maximum at (
√

3, 0), minimum at (−√
3, 0).

7. Maximum at
(

9√
70

, 4√
70

)
, minimum at

(− 9√
70

, − 4√
70

)
.

9. The minimum value 4 is attained at (0, 2). Use a
geometric picture rather than Lagrange multipliers.

11. (0, 0, 2) is a minimum of f .

13. 3
2 is the absolute maximum and 0 is the absolute
minimum.

15. (a) Saddle at (0,0).

(b) Maximum of 14 at (3, 1), minimum of −14 at
(−3, −1).

17. Maximum of 1/3
√

3, minimum of −1/3
√

3.

19. (a) 3, 3, 3

(b) 9, 9, 9

21. The diameter should equal the height, 20/
3
√

2π cm.

23. Maximum value
√

3 at
(

1√
3

, 1√
3

, − 1√
3

)
and minimum

value −√
3 at

( − 1√
3

, − 1√
3

, 1√
3

)
.

25. Horizontal length is
√

q A/p, vertical length is
√

p A/q.

27. For Exercise 3, the bordered Hessians required are

|H̄2| =
∣∣∣∣∣
0 2x 2y
2x −2λ 0
2y 0 −2λ

∣∣∣∣∣ = 8λ(x2 + y2),

|H̄3| =

∣∣∣∣∣∣∣

0 2x 2y 2z
2x −2λ 0 0
2y 0 −2λ 0
2z 0 0 −2λ

∣∣∣∣∣∣∣
= −16λ(x2 + y2 + z2).

At
√

2
3 (1, −1, 1) the Lagrange multiplier is λ = √

6/4 > 0,

indicating a maximum at
√

2
3 (1, −1, 1), and λ =

−√
6/4 < 0 indicates a minimum at

√
2
3 (−1, 1, −1). In

Exercise 7, |H̄ | = 24λ(4x2 + 6y2), and so λ = √
70/12 > 0

indicates a maximum at (9/
√

70, 4/
√

70) and λ = −√
70/

12 < 0 indicates a minimum at (−9/
√

70, −4/
√

70).

29. 11,664 in3

31. (a) ∇ f (x) = Ax.

(b) S is defined by the constraint function
g(x) = x2

1 + x2
2 + x2

3 − 1. Because ∇g(x) = 2x is
not 0, Theorem 9 applies. At an x where f is
extreme, there is a λ/2 such that
∇ f (x) = (λ/2)/∇g(x). That is, Ax = λx.

33. Minimum is (−1/
√

2, 0), maximum is ( 1
4 , ±√

7/8),
local minimum at (1/

√
2, 0).

35. No critical points; no maximum or minimum.

37. (−1, 0, 1)

39. The point (K , L) = (αB/q, (1 − α)B/p) optimizes the
profit.

Section 3.5

1. Let F(x , y, z) = x + y − z + cos(xyz). Then
(∂ F/∂z)(0, 0, 0) = −1 	= 0. The implicit function
theorem then says that we can solve for z = g(x , y).
(∂g/∂x)(0, 0) = (∂g/∂y)(0, 0) = 1.

3. (a) If x < − 1
4 , we can solve for y in terms of x using

the quadratic formula.

(b) ∂ F/∂y = 2y + 1 is nonzero for {y | y < − 1
2 } and

{y | > − 1
2 }. These regions correspond to the upper

and lower halves of a horizontal parabola with
vertex at (− 1

4 , − 1
2 ) and to the choice of sign in the

quadratic formula. The derivative
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dy/dx = −3/(2y + 1) is negative on the top half of
the parabola, positive on the bottom.

5. Use the special implicit function theorem with n = 1.
(See Example 1.) Line (i) is given by
0 = (x − x0, y − y0) · ∇F(x0, y0) =
(x − x0)(∂ F/∂x)(x0, y0) + (y − y0)(∂ F/∂y)(x0, y0).
For line (ii), Theorem 11 gives dy/dx =
−(∂ F/∂x)/(∂ F/∂y), and so the lines agree and are
given by

y = y0 − (∂ F/∂x)(x0, y0)

(∂ F/∂y)(x0, y0)
(x − x0).

7. Let F(x , y, z) = x3z2 − z3 yx ;
∂ F/∂z = 2x3z − 3z2 yx 	= 0 at (1, 1, 1). Near the
origin, with x = y 	= 0, we get solutions z = 0 and
z = x , and so there is no unique solution. At (1, 1),
∂z/∂x = 2 and ∂z/∂y = −1.

9. With F1 = y + x + uv and F2 = uxy + v, the
determinant in the general implicit function theorem is

∣∣∣∂ F1/∂u ∂ F1/∂v

∂ F2/∂u ∂ F2/∂v

∣∣∣ = v − uxy,

which is 0 at (0, 0, 0, 0). Thus, the implicit function
theorem does not apply. If we try directly, we find that
v = −uxy, so x + y = u2xy. For a particular choice of
(x , y) near (0, 0), either there are no solutions for (u, v)
or else there are two.

11. No. f (x , y) = (−1, 0) has infinitely many solutions,
namely, (x , y) = (0, y) for any y.

13. (a) x2
0 + y2

0 	= 0

(b) f ′(z) = −z(x + 2y)/(x2 + y2);

g′(z) = z(y − 2x)/(x2 + y2)

15. (a) Solve the equation x3 − y2 = 0 for x . Then C is the
graph of f (y) = y2/3.

(b) Fx (0, 0) = 3x2|0,0 = 0. No; it contradicts the
converse of the implicit function theorem.

17. (a) Let F1 = x2 − y2 − u3 + v2 + 4, F2 =
2xy + y2 − 2u2 + 3v4 + 8. Compute (∂ F1/∂u)
(2, −1, 2, 1) = −12, (∂ F1/∂v)(2, −1, 2, 1) = 2,
(∂ F2/∂u)(2, −1, 2, 1) = −8, (∂ F2/∂v)(2, −1,
2, 1) = 12. Then  = −128 	= 0, so the implicit
function theorem says we can solve for u and v as
functions of x and y near (2, −1, 2, 1).

(b)
13

32

19. Multiply and equate coefficients to get a0, a1, and a2 as
functions of r1, r2, and r3. Then compute the Jacobian

determinant ∂(a0, a1, a2)/∂(r1, r2, r3) = (r3 − r2)
(r1 − r2)(r1 − r3). This is not zero if the roots are
distinct. Thus, the inverse function theorem shows that
the roots may be found as functions of the coefficients in
some neighborhood of any point at which the roots are
distinct. That is, if the roots r1, r2, r3 of x3 + a2x2 +
a1x + a0 are all different, then there are neighborhoods
V of (r1, r2, r3) and W of (a0, a1, a2) such that the roots
in V are smooth functions of the coefficients in W .

Review Exercises for Chapter 3

1. Let g(x , y) = y − kx , so u = f ◦ g. Then
(∂u/∂x) = (∂ f /∂g)(∂g/∂x) = (∂ f /∂g)(−k) and
(∂u/∂y) = (∂ f /∂g)(∂g/∂y) = (∂ f /∂g). The result
follows.

3. Saddle at (0,0).

5. p(x , y) = e−1 − 2e−1(x − 1) + 2e−1(y − 1) +
e−1(x − 1)2 − 4e−1(x − 1)(y − 1) + e−1(y − 1)2

7. (a) Saddle point.

(b) Saddle point for any C.

9. (a) 1

(b)
√

83/6

11. Use the second derivative test; (0, 0) is a local maximum;
(−1, 0) is a saddle point; (2, 0) is a local minumum.

13. Saddle points at (n, 0), n = integer.

15. Maximum ≈ 2.618, minimum ≈ 0.382.

17. Maximum 1, minimum cos 1.

19. z = 1/4

21. (0, 0, ±1)

23. If b ≥ 2, the minimum distance is 2
√

b − 1; if b ≤ 2,
the minimum distance is |b|.

25. Local maximum at (2, 0), local minimum at (0,1) and
(3, 1), saddles at (0,0), (3,0) and (2, 1).

27. Not stable.

29. f (− 3
2 , −√

3/2) = 3
√

3/4

31. x = (20/3) 3
√

3; y = 10 3
√

3; z = 5 3
√

3

33. The determinant required in the general implicit
function theorem is not zero, and so we can solve for u
and v; (∂u/∂x)(2, −1) = 13/32.
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35. A new orthonormal basis may be found with respect to
which the quadratic form given by the matrix

A =
[a b

b c

]

takes diagonal form. This change of basis defines new
variables ξ and η, which are linear functions of x and y.
Manipulations of linear algebra and the chain rule show
that Lv = λ(∂2v/∂ξ2) + μ(∂2v/∂η2). The numbers λ

and μ are the eigenvalues of A and are positive, because
the quadratic form is positive-definite. At a maximum,
∂v/∂ξ = ∂v/∂η = 0. Moreover, ∂2v/∂ξ2 ≤ 0 and ∂2v/

∂η2 ≤ 0, because if either were greater than 0, the cross
section of the graph in that direction would have a
minimum. Then Lv ≤ 0, thus contradicting strict
subharmonicity.

37. Reverse the inequalities in Exercises 35 and 36.

39. Let F1 = 2xu3v − yv − 1, F2 = y3v + x5u2 − 2.

Compute (∂ F1/∂u)(1, 1, 1, 1) = 6, (∂ F1/∂v)
(1, 1, 1, 1) = 1, (∂ F2/∂u)(1, 1, 1, 1) = 2, (∂ F2/∂v)
(1, 1, 1, 1) = 1. Then  = 4 	= 0, so the implicit
function theorem says we can solve for u and v as
functions of x and y near (1, 1, 1, 1).

D f (1, 1) =
[
−7/4 1
17/2 −5

]

41. The equations for a critical point, ∂s/∂m = ∂s/∂b = 0,
when solved for m and b give m = (y1 − y2)/(x1 − x2)
and b = ( y2x1 − y1x2)/(x1 − x2). The line y = mx + b
then goes through (x1, y1) and (x2, y2).

43. At a minimum of s, we have
0 = ∂s/∂b = −2

∑n
i=1(yi − mxi − b).

45. y = 9
10 x + 6

5

47. Let α = (ax − 4a3t). Compute ut = 8a3 tanh α and
ux = −2au tanh α so ut + 4a2ux = 0. Then compute
uxx = 4a2u − u2/2. Then uxxx = 4a2ux − uux , so we
obtain ut + uxxx + uux = ut + 4a2ux = 0.

49. T ′ + kc1T = 0, �′′ + c2� = 0, r2 R′′ + r R′ − c3 R = 0
for some constants c1, c2, and c3.

Chapter 4

Section 4.1

1. r′(t) = −(sin t)i + 2(cos 2t)j, r ′(0) = 2j,
a(t) = −(cos t)i − 4(sin 2t)j, a(0) = −i,
l(t) = i + 2tj

3. r′(t) = √
2i + et j − e−t k, r′(0) = √

2i + j − k,
a(t) = et j + e−t k, a(0) = j + k, l(t) =√

2t i + (1 + t)j + (1 − t)k

5. (et − e−t , cos t − sin t , −3t2)

7. [−3t2(2 sin t + cos t) − t3(2 cos t − sin t)]i +
[3t2(2et + e−t ) + t3(2et − e−t )]j
+ [et (cos t − sin t) − e−t (− sin t + cos t)]k

9. Compute v = (−a sin t , a cos t , b) so
a = (−a cos t , −a sin t , 0). Since the z-component of a
is identically zero, a is always parallel to the xy plane.

11. The paths in (a) and (c) are regular, while the path in (b)
is not.

13. (0, −12, −1) and (0, −26, −8)

15. m(0, 6, 0)

17. −24π2(cos(2π t/5), sin (2π t/5))/25

19.
d

dt
(‖v‖2) = d

dt
(v · v) = 2v · dv

dt
= 2v · a = 0

21. 6129 seconds

23. c(t) =
( t2

2
, et − 6,

t3

3
+ 1

)

25. (a) c(t) = (t , et ), −∞ < t < ∞. The image of this
path is the graph y = ex .

(b) c(t) = ( 1
2 cos t , sin t), 0 ≤ t ≤ 2π , an ellipse.

(c) c(t) = (at , bt , ct)

(d) c(t) = ( 2
3 cos t , 1

2 sin t), 0 ≤ t ≤ 2π , an ellipse.

27. c(t) × c′(t) is normal to the plane of the orbit at time t .
As in Exercise 26, its derivative is 0, and so the orbital
plane is constant.

Section 4.2

1. 2
√

5π

3. 2(2
√

2 − 1)

5.
6 − √

3√
2

+ 1

2
log

[
2
√

2 + 3√
2 + √

3

]

7. 2
√

2

9. (a) c(t) = (1 − t , 2 − t , −t), t ∈ [0, 1]

(b)
√

3 (c)
√

3
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11. 2π(
√

5 + √
2)

13. 3 + log 2

15. (a) Because α is strictly increasing, it maps [a, b]
one-to-one onto [α(a), α(b)]. By definition, v is the
image of c if and only if there is a t in [a, b] with
c(t) = v. There is one point s in [α(a), α(b)] with
s = α(t), so d(s) = c(t) = v. Therefore, the image
of c is contained in that of d. Use α−1 similarly for
the opposite inclusion.

(b)
ld =

∫ α(b)

α(a)
‖d′(s)‖ ds =

∫ s=α(b)

s=α(a)
‖d′(α(t))‖α′(t) dt

=
∫ t=b

t=a
‖d′(α(t))α′(t)‖ dt =

∫ b

a
‖c′(t)‖ dt = lc

(c) Differentiate d using the chain rule.

17. (a) lc = ∫ b
a ‖c′(s)‖ ds = ∫ b

a ds = b − a

(b) T(s) = c′(s)/‖c′(s)‖ = c′(s), so T′(s) = c′′(s).
Then k = ‖T′‖ = ‖c′′(s)‖.

(c) Show that if v and w are in R3,
‖v × w‖ = ‖w − (v · w/‖v‖2)v‖·‖v‖. Use this to
show that if ρ(t) = (x(t), y(t), z(t)) is never
(0, 0, 0) and f(t) = ρ(t)/‖ρ(t)‖, then

df

dt
= 1

‖ρ(t)‖

[
ρ′(t) − ρ(t) · ρ′(t)

‖ρ(t)‖2 ρ(t)

]

and
df

dt
= ‖ρ(t) × ρ′(t)‖

‖ρ(t)‖2 .

With ρ(t) = c′(t), this gives

T′(t) = c′′(t)
‖c′(t)‖ − c′(t) · c′′(t)

‖c′(t)‖3 c′(t)

and ‖T′(t)‖ = ‖c′(t) × c′′(t)‖
‖c′(t)‖2 .

If s is the arc length of c, ds/dt = ‖c′(t)‖, and
therefore

∥∥∥dT

dt

∥∥∥ =
∥∥∥dT

ds

ds

dt

∥∥∥ = k‖c′(t)‖.

Thus,

k = 1

‖c′(t)‖
dT

dt
= ‖c′(t) × c′′(t)‖

‖c′(t)‖3 .

(This result is useful in Exercise 21.)

(d) 1/
√

2

19. (a) ‖c′(t)‖ = ‖(− sin t , cos t)‖ = 1

(b) k = ‖T′(t)‖ = ‖(− cos t , − sin t)‖ = 1

21. (a) Because c is parametrized by arc length,
T(s) = c′(s), and N(s) = c′′(s)/‖c′′(s)‖. Use
Exercise 17 to show that

dB

ds
=

(
c′′ × c′′

‖c′′‖

)
+ c′ ×

(
c′′′

‖c′′‖ − c′′ · c′′′

‖c′′‖3 c′′
)

and

τ = −dB

ds
· N = − (c′ × c′′′) · c′′

‖c′′‖2 = (c′ × c′′) · c′′′

‖c′′‖2 .

(b) Obtain T′(t) and ‖T′(t)‖ as in Exercise 17. B is a
unit vector in the direction of c′ × T′ = (c′ × c′′)/
‖c′‖, so B = (c′ × c′′)/‖c′ × c′′‖. Use the solution
of Exercise 17 with ρ = c′ × c′′ to obtain

dB/dt = (c′ × c′′′)/‖c′ × c′′‖
−{[(c′ × c′′) · (c′ × c′′′)]/‖c′ × c′′‖3}(c′ × c′′),

and the values of T′ and ‖T′‖ to get

N = (‖c′‖/‖c′ × c′′‖)(c′′ − (c′ × c′′)/‖c′‖2).

Finally, use the chain rule and the inner product of
these to obtain

τ = −
[dB

ds
(s(t))

]
· N(s(t))

= − 1

|ds/dt|
dB

dt
· N = (c′ × c′′) · c′′′

‖c′ × c′′‖2 .

(c)
√

2/2

23. (a) N is defined as T′/‖T′‖, so T′ = ‖T′‖N = kN.
Because T · T′ = 0, T, N, and B are an orthonormal
basis for R3. Differentiating B(s) · B(s) = 1 and
B(s) · T(s) = 0 shows that B′ · B = 0 and
B′ · T + B · T′ = 0. But T′ · B = ‖T′‖N · B = 0, so
B′ · T = 0 also. Thus, B′ = (B′ · T)T + (B′ · N)N +
(B′ · B)B = (B′ · N)N = −τN. Also, N′ · N = 0,
because N · N = 1. Thus, N′ = (N′ · T)T + (N′ · B)B.
But differentiating N · T = 0 and N · B = 0 gives
N′ · T = −N · T′ = −k and N′ · B = −N · B′ = τ ,
and so the middle equation follows.

(b) ω = τT + kB

25. Follow the hint in the text.
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Section 4.3

1.
y

x

3.
y

x

5. F = (2y, x):
y

x

7.
y

x

9. (a) corresponds to (i).

(b) corresponds to (ii).

11. The flow lines are concentric circles:

x

y

13. The flow lines for t > 0:

x

y

15. c′(t) = (2e2t , 1/t , −1/t2) = F(c(t))

17. c′(t) = (cos t , − sin t , et ) = F(c(t))

19. (F ◦ c)(t) =
(

1

(1 − t)2 , 0,
et

1 − t
+ et

(1 − t)2

)
= c′(t)

21. (a) f (x , y, z) = xyz

(b) f (x , y, z) = x2

2
+ y2

2
+ z2

2

23. Compare 1
2 mv2 for the escape velocity ve = √

2gR0

and the velocity in an orbit of radius R0 given in Section
4.1. (Ignore the rotation of the earth.)

25. Use the fact that −∇T is perpendicular to the surface
T = constant.

27. x ′(t) = x(t)ey(t) , y′(t) = (y(t))2(z(t))2,
z′(t) = x(t)y(t)z(t)

Section 4.4

1. yexy − xexy + yeyz

3. 3

5. div V > 0 in the first and third quadrants,
div V < 0 in the second and fourth quadrants.
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7. ∇ · F = 0; if F represents a fluid, there is neither
expansion nor compression; the area of a small rectangle
remains the same.

x

y

9. 3x2 − x2 cos (xy)

11. y cos (xy) + x2 sin (x2 y)

13. 0

15. (10y − 8z)i + (6z − 10x)j + (8x − 6y)k

17. − sin x

19. x

21. (a) ∇ · (∇ × F) = ∇ · (0, −z, 2xy) = 0

(b) No, since ∇ × F 	= 0.

23. (a) zexz + x cos(xy) + 2x5 y3z

(b) (3x5 y2z2, xexz − 5x4 y3z2, y cos(xy))

25. (a) Nonsense. (b) Nonsense.

(c) Nonsense. (d) Vector field.

(e) Nonsense. (d) Scalar function.

27. ∇ · F = ∂ f

∂x
+ ∂g

∂y
+ ∂h

∂z
= 0 since f, g, and h do not

depend on x , y, and z, respectively.

29. ∇ × ∇ f = 0

31. ∇ × ∇ f = 0

33. ∇ × F 	= 0

35. Let F = F1i + F2j + F3k and compute both sides of the
identity.

37. (a) 2xyi + x2j (c) (−y3zx3, 2x2 y4z, 2x3z2 − 2xy)

(b) (3y2xz, 4xz − y3z, 0) (d) 4x2 yz2 + x2

39. No.

41. Separate each expression into its real and imaginary
parts and then treat the resulting quantity as a vector
field on R2. Directly calculate its curl and divergence.
In (a), F = (x2 − y2)i − 2xyj; in (b),

F = (x3 − 3xy2)i + (y3 − 3x2 y)j; and in (c),
F = (ex cos y)i − (ex sin y)j. Show that ∇ · F = 0 and
∇ × F = 0 in each case.

Review Exercises for Chapter 4

1. v(1) = (3, −e−1, −π/2); a(1) = (6, e−1, 0);

s(1) =
√

9 + e−2 + π2

4
; l(t)

= (2, e−1, 0) + (t − 1)(3, −e−1, −π/2)

3. v(0) = (1, 1, 0); a(0) = (1, 0, −1);
s = √

2; l(t) = (1, 0, 1) + t (1, 1, 0)

5. Tangent vector: v = −(1/
√

2)i + (1/
√

2)j + k.
Acceleration vector: a = −(1/

√
2)(i + j).

7. m(2, 0, −1)

9. (a) v = (− sin t , cos t ,
√

3), a = (− cos t , − sin t , 0)

(b) l(t) = (1, 0, 0) + t (0, 1,
√

3)

(c) 4π

11. ∇ × F =
( 4Ayz√

x2 + y2 + z2
− 4Ayz√

x2 + y2 + z2
,

4Axz√
x2 + y2 + z2

− 4Axz√
x2 + y2 + z2

,

4Axy√
x2 + y2 + z2

− 4Axy√
x2 + y2 + z2

)
= (0, 0, 0)

13.
∫ 4

1

√
1 + 4

9 t−2/3 + 4
25 t−6/5 dt

15. (a) v = (−2t sin(t2), 2t cos(t2), 0); s = 2t

(b)

(
1

2
, −

√
3

2
, 0

)

(c)
√

5π/3

(d) v = 2
√

5π/3(
√

3/2, 1/2, 0); s = 2
√

5π/3

(e)
(3

2
+ 5π√

3

)/√
5π

17. x = 1 + t , y = −1

2
+ t

2
, z = −2

3
+ t

3

19. Compute c′(t) and check that it equals F(c(t)).

21. 9; 0

23. 3; −i − j − k

25. 0; −i − j − k

27. ∇ f = ( yexy − y sin xy, xexy − x sin xy, 0); verify that
∇ × ∇ f = 0 in this case.
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29. ∇ f = (2xex2 + y2 sin xy2, 2xy sin xy2, 0); check that
∇ × ∇ f = 0 from this.

31. (a) ( yz2, xz2, 2xyz);

(b) (z − y, 0, −x)

(c) (2xyz3 − 3xy2z2, 2x2 y2z − y2z3, y2z3 − 2x2 yz2)

33. div F = 0; curl F =
(0, 0, 2(x2 + y2) f ′(x2 + y2) + 2 f (x2 + y2))

35. (a) A cone about i′ making an angle of π/3 with i′.
(b) ∇g = (3x2, 5z, 5y + 2z)

37. (a) [∂ P/∂x)2 + (∂ P/∂y)2]1/2

(b) A small packet of air would obey F = ma.

(c)

H

L

E

N

G

Wind direction

(d)

H
L

W

S

G

Wind direction

39. (a)

√
R2 + ρ2

ρ
(z0 − z1)

(b)

√
2(R2 + ρ2)z0

gρ2

41. 680 miles per hour

Chapter 5

Section 5.1

1. (a) 1

(b) 2

(c) ln 128 + ln
√

2

(d)
1

2
ln 2 = ln

√
2

3. (a)
13

15
(b) π + 1

2

(c) 1 (d) log 2 − 1

2

5. To show that the volumes of the two cylinders are equal,
show that their area functions are equal.

7. 2r3(tan θ )/3

9.
26

9

11. (2/π )(e2 + 1)

13.
35795

8

15.
196

15

Section 5.2

1. (a)
7

12
(b) e − 2

(c)
1

9
sin 1 (d) 2 ln 4 − 2

3. 0

5.
z

y

x

5

7. 1/4
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9. Use Fubini’s theorem to write

∫∫
R

[ f (x)g(y)] dx dy =
∫ d

c
g(y)

[∫ b

a
f (x) dx

]
dy,

and notice that
∫ b

a f (x) dx is a constant and so may be
pulled out.

11. 11/6

13. By Exercise 2(a), we have:

f (m, n) =
∫∫

R
xm yndx dy =

(
1

m + 1

)(
1

n + 1

)
.

Then, as m, n → ∞, we see that lim f (m, n) = 0.

15. Because
∫ 1

0 dy = ∫ 1
0 2y dy = 1, we have∫ 1

0 [
∫ 1

0 f (x , y) dy] dx = 1. In any partition of

R = [0, 1] × [0, 1], each rectangle R jk contains points
c(1)

jk with x rational and c(2)
jk with x irrational. If in the

regular partition of order n, we choose c jk = c(1)
jk in

those rectangles with 0 ≤ y ≤ 1
2 and c jk = c(2)

jk when

y > 1
2 , the approximating sums are the same as those for

g(x , y) =
{

1 0 ≤ y ≤ 1
2

2y 1
2 < y < 1.

Because g is integrable, the approximating sums must
converge to

∫
R g d A = 7/8. However, if we had picked

all ci j = c(1)
jk , all approximating sums would have the

value 1.

17. Fubini’s theorem does not apply because the integrand is
not continuous nor bounded at (0, 0).

Section 5.3

1. (a) (iii) (b) (iv)

(c) (ii) (d) (i)

3. (a) 1/3, both.

(b) 5/2, both.

(c) (e2 − 1)/4, both.

(d) 1/35, both.

5. A = ∫ r
−r

∫ √
r2−x2

−√
r2−x2 dy dx = 2

∫ r
−r

√
r2 − x2 dx =

r2[arcsin 1 − arcsin(−1)] = πr2

7. 28,000 ft3

9. 0

11. y-simple; π/2.

13.
2

3

15. 50 π

17. π/24

19. Compute the integral with respect to y first. Split that
into integrals over [−φ(x), 0] and [0, φ(x)] and change
variables in the first integral, or use symmetry.

21. Let {Ri j } be a partition of a rectangle R containing D
and let f be 1 on D. Thus, f ∗ is 1 on D and 0 on R\D.
Let c jk ∈ R\D if Ri j is not wholly contained in D. The
approximating Riemann sum is the sum of the areas of
those rectangles of the partition that are contained in D.

Section 5.4

1. (a)
∫ 4

0

∫ 2x
0 dy dx

(b)
∫ 3

0

∫ 9
y2 dx dy

(c)
∫ 4

−4

∫ √
16−x2

0 dy dx

(d)
∫ 1

0

∫ arcsin y
π
2

dx dy

3. (a) 1/8 (b) π/4 (c) 17/12

(d) G(b) − G(a), where dG/dy = F(y, y) − F(a, y)
and ∂ F/∂x = f (x , y).

5.
1

3
(e − 1)

7. Note that the maximum value of f on D is e and the
minimum value of f on D is 1/e. Use the ideas in the
proof of Theorem 4 to show that

1

e
≤ 1

4π2

∫∫
f (x , y) dA ≤ e.

9. The smallest value of f (x , y) = 1/(x2 + y2 + 1) on D

is
1

6
, at (1, 2), and so

∫∫
D

f (x , y) dx dy ≥ 1

6
· area D = 1.

The largest value is 1, at (0, 0), and so

∫∫
D

f (x , y) dx dy ≤ 1 · area D = 6.

11.
4

3
πabc
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13. π(20
√

10 − 52)/3

15.
√

3/4

17. D looks like a slice of pie.

∫ 1

0

[∫ x

0
f (x , y) dy

]
dx+

∫ √
2

1

[∫ √
2−x2

0
f (x , y) dy

]
dx

19. Use the chain rule and the fundamental theorem of
calculus.

Section 5.5

1. (a) (ii) (b) (i) (c) (iii) (d) (iv)

3. 1/3

5. 10

7. x2 + y2 ≤ z ≤
√

x2 + y2,

−
√

1 − y2 ≤ x ≤
√

1 − y2, −1 ≤ y ≤ 1

9. 0 ≤ z ≤
√

1 − x2 − y2,

−
√

1 − y2 ≤ x ≤
√

1 − y2, −1 ≤ y ≤ 1

11. 50π/
√

6

13. 1/2

15. 0

17. a5/20

19. 0

21. 3/10

23. 1/6

25.
∫ 1

−1

∫ √
1−x2

−√
1−x2

∫ 1

√
x2+y2

f (x , y, z) dz dy dx

27.
∫ 1

−1

∫ √
1−x2

−√
1−x2

∫ √
4−x2−y2

0
f (x , y, z) dz dy dx

29.
∫∫

D

∫ f (x , y)

0
dz dx dy =

∫∫
D

f (x , y) dx dy

31. Let Mε and mε be the maximum and minimum of f on
Bε . Then we have the inequality mε vol (Bε) ≤ ∫∫∫

Bε

f dV ≤ Mε vol (Bε). Divide by vol (Bε), let ε → 0 and
use continuity of f .

Review Exercises for Chapter 5

1. 81/2

3.
1

4
e2 − e + 9

4

5. 81/2

7.
1

4
e2 − e + 9

4

9. 7/60

11. 1/2

13. In the notation of Figure 5.3.1,

∫∫
D

dx dy =
∫ b

a
[φ2(x) − φ1(x)] dx.

15. (a) 0 (b) π/24 (c) 0

17. y-simple; 2π + π2.

3

1

y

x

19. x-simple; 73/3.

1

9
−1

−1 x

y

4

21. y-simple; 33/140.

y

x

1
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23. y-simple; 71/420.

1

1

y

x

y = x

y = x 2

0

25. 1/3

27. 19/3

29. 7/12

1

1

x

y

31. The function f (x , y) = x2 + y2 + 1 lies between 1 and
22 + 1 = 5 on D, and so the integral lies between these
values times 4π, the area of D.

33. Interchange the order of integration (the reader should
draw a sketch in the (u, t) plane):

∫ x

0

∫ t

0
F(u) du dt =

∫ x

0

∫ x

u
F(u) dt du

=
∫ x

0
(x − u)F(u) du.

35. π/12

37. The region is the shaded region W in the figure.

(1, 0, 1)

(0, 1, 1)

(1, 1, 1)

(0, 1, 0)

(1, 1, 0)
(1, 0, 0)

x

y

z

D

W

The integral in the order dy dx dz, for example, is

∫ 1

0

∫ 1

z

∫ 1

1−x
f (x , y, z) dy dx dz.

Chapter 6

Section 6.1

1. (a) One-to-one, Onto.

(b) Neither.

(c) One-to-one, Onto.

(d) Neither.

3. An appropriate linear function T is given by
T (x , y) = (

x , − x
3 + 2y

3

)
, or in matrix form, as:

T (v) = Av =
(

1 0
− 1

3
2
3

)
v.

5. S = the unit disc minus its center.

7. D = [0, 3] × [0, 1]; yes.

9. The image is the triangle with vertices (0, 0), (0, 1), and
(1, 1). T is not one-to-one, but becomes so if we
eliminate the portion x∗ = 0.

11. D is the set of (x , y, z) with x2 + y2 + z2 ≤ 1 (the
unit ball). T is not one-to-one, but is one-to-one on
(0, 1] × (0, π ) × (0, 2π ].

13. Showing that T is onto is equivalent in the 2 × 2 case to
showing that the system ax + by = e, cx + dy = f can
always be solved for x and y, where

A =
[

a b

c d

]
.

When you do this by elimination or by Cramer’s rule, the
quantity by which you must divide is det A. Thus, if det
A 	= 0, the equations can always be solved.

15. Suppose that T (x) = T (y). Then

Ax + v = Ay + v
Ax = Ay.

By Exercise 12, this implies that x = y if and only if
det A 	= 0.
Showing that T (x) = Ax + v is equivalent to showing
that

T (x) = Ax + v = y

or

Ax = y − v



Marsden-3620111 VC September 27, 2011 10:50 521

Answers to Odd-Numbered Exercises 521

has a solution for any choice of y ∈ R2. This happens if
and only if det A 	= 0, by Exercise 13. Finally, verifying
that T takes parallelograms to parallelograms follows
exactly as in Exericse 14, by simply applying T to both
sides of the given equation and simplifying.

17. We can show that T is not globally one-to-one by
example. A simple choice is to compare the point (1, 0)
with (−1, 0), which correspond to the polar coordinates
r = 1, θ = 0 and r = 1, θ = π , respectively. We note:

T (1 cos 0, 1 sin 0) = (12 cos 0, 12 sin 0)
= (12 cos 2π, 12 sin 2π ) = T (1 cos π, 1 sin π ).

Since T (1, 0) = T (−1, 0), T is not one-to-one.

Section 6.2

1. A good substitution might be u = 3x + 2y, v = x − y,

which has Jacobian
∂(x , y)

∂(u, v)
= 1

5
.

3.
π

2
(e − 1)

5. D is the region 0 ≤ x ≤ 4,
1

2
x + 3 ≤ y ≤ 1

2
x + 6.

(a) 140 (b) −42

7. D∗ is the region 0 ≤ u ≤ 1, 0 ≤ v ≤ 2;
2

3
(9 − 2

√
2 − 3

√
3).

9. π

11.
64π

5

13. 3π/2

15.
5π

2
(e4 − 1)

17. 2a2

19.
21

2

(
e − 1

e

)

21.
100π

3

23. 4π [
√

3/2 − log (1 + √
3) + log

√
2]

25. 4π log(a/b)

27. 0

29. 2π [(b2 + 1)e−b2 − (a2 + 1)e−a2
]

31. 24

33. (a)
4

3
πabc (b)

4

5
πabc

35. (a) Check that if T (u1, v1) = T (u2, v2), then u1 = u2

and v1 = v2.

(b) 160/3

37.
4

9
a2/3

∫∫
D∗

[ f ((au2)1/3, (av2)1/3)u−1/3v−1/3] du dv

Section 6.3

1.
(

1,
1

3
a

)

3. [π2 − sin(π2)]/π3

5.
(

11

18
,

65

126

)

7. $503.64

9. (a) δ, where δ is the (constant) mass density.
(b) 37/12

11. 500π

(
10 − 1

3

)

13.
(

1

2
,

1

2
,

1

2

)

15. 1/4

17. Letting δ be density, the moment of inertia is

δ

∫ k

0

∫ 2π

0

∫ a sec φ

0
(ρ4 sin3 φ) dρ dθ dφ.

19. (1.00 × 108)m

21. (a) The only plane of symmetry for the body of an
automobile is the one dividing the left and right
sides of the car.

(b) z̄ ·
∫∫∫

W δ(x , y, z) dx dy dz is the z coordinate
of the center of mass times the mass of W .
Rearrangement of the formula for z̄ gives the first
line of the equation. The next step is justified by the
additivity property of integrals. By symmetry, we
can replace z by −z and integrate in the region
above the xy plane. Finally, we can factor the minus
sign outside the second integral, and because
δ(x , y, z) = δ(u, v, −w), we are subtracting the
second integral from itself. Thus, the answer is 0.
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(c) In part (b), we showed that z̄ times the mass of W is
0. Because the mass must be positive, z̄ must be 0.

(d) By part (c), the center of mass must lie in both
planes.

23. V = −(4.71 × 1019)Gm/R ≈ −(3.04 × 109)m/R,
where m is the mass of a test particle at distance R from
the planet’s center.

25. In the x , y-plane, the circle D given by
(x − a)2 + y2 = r2 has center (and center of mass)
(a, 0). Also, the area of the circle has area A(D) = πr2.
Therefore, by Exercise 24 we have:

Vol(W ) = 2π(a)(πr2).

Section 6.4

1. 4

3. 3/16

5. 1
(1−α)(1−β)

7. (a) 3π

(b) λ < 1

9. Integration of
∫∫

e−xy dx dy with respect to x first and
then y gives log 2. Reversing the order gives the integral
on the left side of the equality stated in the exercise.

11. Integrate over [ε, 1] × [ε, 1] and let ε → 0 to show the
improper integral exists and equals 2 log 2.

13.
2π

9
[(1 + a3)3/2 − a9/2 − 1]

15. Use the fact that

sin2 (x − y)√
1 − x2 − y2

≤ 1√
1 − x2 − y2

.

17. Use the fact that ex2+y2
/(x − y) ≥ 1/(x − y) on the

given region.

19. Each integral equals 1/4, and Theorem 3 (Fubini’s
theorem) does apply.

21. Here, we let D1 = [0, 1] × [0, 1], and D2 = [1, ∞] ×
[1, ∞], as in the hint. On D1, let g(x , y) = 1

xα yβ and

f (x , y) = 1
xα yβ+xγ yρ . Since x , y ≥ 0, it is clear that

0 ≤ f (x , y) ≤ g(x , y) for all points in D1. Therefore,

since
∫∫

D1
g(x , y) dx dy exists by Exercise 5, we know

that
∫∫

D1
f (x , y) dx dy must also exist.

You may use a similar argument for the region D2 by
choosing a different g(x , y) and applying the result of
Exercise 6. Once

∫∫
f (x , y) dx dy exists over both the

regions D1 and D2, it will exist also over their union
D = D1 ∪ D2.

Review Exercises for Chapter 6

1. (a) T
( u

v

) = ( 2
0

1
2

) ( u
v

) = ( 2u+v
2v

) = ( x
y

)
(b)

∫∫
P f (x , y) dx dy = 4

∫∫
S f (2u + v, 2v) du dv

3. 3 (Use the change of variables u = x2 − y2, v = xy.)

5.
1

3
π(4

√
2 − 7

2 )

7. (5π/2)
√

15

9. abc/6

11. Cut with the planes x + y + z = 3
√

k/n ,
1 ≤ k ≤ n − 1, k an integer.

13. (25 + 10
√

5)π/3

15. (e − e−1)/4 (Use the change of variables
u = y − x , v = y + x .)

17. (9.92 × 106)π grams

19. (a) 32

(b) This occurs at the point of the unit sphere
x2 + y2 + z2 = 1 inscribed in the cube.

21. (0, 0, 3a4/8)

23. 4π ln(a/b)

25. π/2

27. (a) 9/2 (b) 64π

29. Work the integral with respect to y first on the region
Dε, L = {(x , y)|ε ≤ x ≤ L , 0 ≤ y ≤ x} to obtain
Iε, L = ∫∫

Dε, L
f dx dy = ∫ L

ε
x−3/2(1 − e−x ) dx. The

integrand is positive, and so Iε, L increases as ε → 0 and
L → ∞. Bound 1 − e−x above by x for 0 < x < 1 and
by 1 for 1 < x < ∞ to see that Iε, L remains bounded
and so must converge. The improper integral does exist.

31. (a) 1/6 (b) 16π/3

33. 2π
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Chapter 7

Section 7.1

1. γ (t) =
{

(3 cos π t , 3 sin π t), t ∈ [0, 1]
(6t − 9, 0), t ∈ [1, 2]

3. γ (t) =
{

(t , sin π t), t ∈ [0, 1]
(2π − π t , 0), t ∈ [1, 2]

5. γ (t) = (3 cos 2π t , 4 sin 2π t , 3), t ∈ [0, 1]

7. γ (t) = (t , t , t3), t ∈ [−3, 2], or
γ (t) = (5t − 3, 5t − 3, (5t − 3)3), t ∈ [0, 1]

9.
∫

c
f (x , y, z) ds =

∫
I

f (x(t), y(t), z(t))‖c′(t)‖ dt

=
∫ 1

0
0 · 1 dt = 0

11. (a) 2 (b) 52
√

14

13. −1

3
(1 + 1/e2)3/2 + 1

3
(23/2)

15. (a) The path follows the straight line from (0, 0) to
(1, 1) and back to (0, 0) in the xy plane. Over the
path, the graph of f is a straight line from (0, 0, 0)
to (1, 1, 1). The integral is the area of the resulting
triangle covered twice and equals

√
2.

(b) s(t) =
{√

2(1 − t4) when −1 ≤ t ≤ 0
√

2(1 + t4) when 0 < t ≤ 1.

The path is

c(s) =
{

(1 − s/
√

2)(1, 1) when 0 ≤ s ≤ √
2

(s/(
√

2 − 1))(1, 1) when
√

2 ≤ s ≤ 2
√

2

and
∫

c f ds = √
2.

17. 2a/π

19. (a) [2
√

5 + log(2 + √
5)]/4

(b) (5
√

5 − 1)/[6
√

5 + 3 log(2 + √
5)]

21. Since the graph g is parameterized by γ (t) = (t , g(t)),
we have γ ′(t) = (1, g′(t)), and thus:

‖γ ′(t)‖ =
√

1 + (g′(t))2.

23. 2

25.
π

√
2

8

27.
√

2

3
t3
0

29. (a)

√
2

g

(b) Solving for y, we have:

y = −
√

2x − x2 + 1.

(Note that the negative square root was chosen for
y.) Therefore our formula becomes:

∫ 1

0

1

−2g(
√

2x − x2 + 1)
dx.

Section 7.2

1. −1

3. (a) 3/2 (b) 0 (c) 0 (d) 147

5. 9

7. By the Cauchy–Schwarz inequality,
|F(c(t)) · c′(t)| ≤ ‖F(c(t))‖ ‖c′(t)‖ for every t . Thus,

∣∣∣
∫

c
F · ds

∣∣∣ =
∣∣∣
∫ b

a
F(c(t)) · c′(t) dt

∣∣∣

≤
∫ b

a
|F(c(t)) · c′(t)| dt

≤
∫ b

a
‖F(c(t))‖ ‖c′(t)‖ dt

≤ M

∫ b

a
‖c′(t)‖ dt = Ml.

9.
3

4
− (n − 1)/(n + 1)

11. 0

13. The length of c.

15. If c′(t) is never 0, then the unit vector T(t) =
c′(t)/‖c′(t)‖ is a continuous function of t and so is a
smoothly turning tangent to the curve. The answer is no.

17. 7

19. Use the fact that F is a gradient to show that the work

done is
1

R2
− 1

R1
, independent of the path.

21. (a) ‖c′(x)‖
(b) f has a positive derivative; it is one-to-one and onto

[0, L] by the mean-value and intermediate-value
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theorems. It has a differentiable inverse by the
inverse function theorem.

(c) g′(s) = 1/‖c′(x)‖, where s = f (x).

(d) By the chain rule, b′(s) = c′(x) · g′(s), which has
unit length by part (c).

Section 7.3

1. z = 2( y − 1) + 1

3. 18(z − 1) − 4( y + 2) − (x − 13) = 0

or 18z − 4y − x − 13 = 0.

5. Not regular when u = 0.

7. (a) (iii) (b) (i) (c) (ii) (d) (iv)

9. The vector n = (cos v sin u, sin v sin u, cos u) = (x , y, z).
The surface is the unit sphere centered at the origin.

11. n = −(sin v)i − (cos v)k; the surface is a cylinder.

13. (a) x = x0 + ( y − y0)(∂h/∂y)( y0, z0) + (z − z0)
(∂h/∂z)( y0, z0) describes the plane tangent to
x = h( y, z) at (x0, y0, z0), x0 = h( y0, z0).

(b) y = y0 + (x − x0)(∂k/∂x)(x0, z0) + (z − z0)
(∂k/∂z)(x0, z0)

15. z − 6x − 8y + 3 = 0

17. (a) The surface is a helicoid. It looks like a spiral ramp
winding around the z axis. (See Figure 7.4.2.) It
winds twice around, since θ goes up to 4π .

(b) n = ±(1/
√

1 + r2)(sin θ , − cos θ , r )

(c) y0x − x0 y + (x2
0 + y2

0 )z = (x2
0 + y2

0 )z0.

(d) If (x0, y0, z0) = (r0, cos θ0, r0 sin θ0, θ0), then
representing the line segment in the form
{(r cos θ0, r sin θ0, θ0)|0 ≤ r ≤ 1} shows that the
line lies in the surface. Representing the line as
{(x0, t y0, z0)|0 ≤ t ≤ 1/(x2

0 + y2
0 )} and substituting

into the results of part (c) shows that it lies in the
tangent plane at (x0, y0, z0).

19. (a) Using cylindrical coordinates leads to the
parametrization

�(z, θ ) = (
√

25 + z2 cos θ ,
√

25 + z2 sin θ , z),

−∞ < z < ∞, 0 ≤ θ ≤ 2π

as one possible solution.

(b) n = (
√

25 + z2 cos θ ,
√

25 + z2 sin θ , −z)/
√

25 + 2z2

(c) x0x + y0 y = 25

(d) Substitute the coordinates along these lines into the
defining equation of the surface and the result of
part (c).

21. (a) u �→ u, v �→ v, u �→ u3, and v �→ v3 all map R

onto R.

(b) Tu × Tv = (0, 0, 1) for �1, and this is never 0. For
the surface �2, Tu × Tv = 9u2v2(0, 0, 1), and this
is 0 along the u and v axes.

(c) We want to show that any two parametrizations of a
surface that are smooth near a point will give the
same tangent plane there. Thus, suppose
�: D ⊂ R2 → R3 and �: B ⊂ R2 → R3 are
parametrized surfaces such that

�(u0, v0) = (x0, y0, z0) = �(s0, t0) (i)

and (
T�

u × T�
v

)∣∣
(u0,v0)

	= 0

and
(

T�
s × T�

t

)∣∣
(s0,t0)

	= 0, (ii)

so that � and � are smooth and one-to-one in
neighborhoods of (u0, v0) and (s0, t0), which we
may as well assume are D and B. Suppose further
that they “describe the same surface,” that is,
�(D) = �(B). To see that they give the same
tangent plane at (x0, y0, z0), show that they have
parallel normal vectors. To do this, show that there
is an open set C with (u0, v0) ∈ C ⊂ D and a
differentiable map f : C → B such that �(u, v) =
�( f (u, v)) for (u, v) ∈ C . Once you have done
this, computation shows that the normal vectors are
related by T�

u × T�
v = [∂(s, t)/∂(u, v)]T�

s × T�
t .

To see that there is such an f , notice that since
T�

s × T�
t 	= 0, at least one of the 2 × 2

determinants in the cross product is not zero.
Assume, for example, that

∣∣∣∣∣∣∣

∂x

∂s

∂y

∂s
∂x

∂t

∂y

∂t

∣∣∣∣∣∣∣
	= 0.

Now use the inverse function theorem to write (s, t)
as a differentiable function of (x , y) in some
neighborhood of (x0, y0).

(d) No.

23. (a) We plug the parametrization into the left hand side
of the equation, and simplify:

(
√

x2 + y2 − R)2 + z2

= (
√

((R + r cos u) cos v)2 + ((R + r cos u) sin v)2

−R)2 + (r sin u)2

= (
√

(R + r cos u)2 − R)2 + r2 sin2 u

= (R + r cos u − R)2 + r2 sin2 u

= (r cos u)2 + r2 sin2 u

= r2.
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(b) We calculate the associated normal element

Tu × Tv = (−r cos u cos v(R + r cos u),
−r cos u sin v(R + r cos u),
−r sin u(R + r cos u))

and find that it is not equal to the zero vector for any
choice of (u, v).

Section 7.4

1. 4π

3.
3

2
π [

√
2 + log (1 +

√
2)]

5. (a) (eu sin v, −eu cos v, eu)

(b) x + z = π

2
(c) π

√
2(e − 1)

7.
√

21

2

9.
1

3
π(6

√
6 − 8)

11. The integral for the volume converges, whereas that for
the area diverges.

13. A(E) =
∫ 2π

0

∫ π

0√
a2b2 sin2 φ cos2 φ + b2c2 sin4 φ cos2 θ + a2c2 sin4 φ sin2 θ dφ dθ

15. (π/6)(5
√

5 − 1)

17. (π/2)
√

6

19. 4
√

5; for fixed θ , (x , y, z) moves along the horizontal
line segment y = 2x , z = θ from the z axis out to a
radius of

√
5| cos θ | into quadrant 1 if cos θ > 0 and into

quadrant 3 if cos θ < 0.

x

y

z

π y = 2x

2π

21. (π + 2)/(π − 2)

23. π(a + b)
√

1 + m2(b − a)

25.
4

15
(9

√
3 − 8

√
2 + 1)

27. With f (x , y) =
√

R2 − x2 − y2, (4) becomes

A(S′) =
∫∫

D

√
x2 + y2

R2 − x2 − y2 + 1 dx dy

=
∫∫

D

R√
R2 − x2 − y2

dx dy,

where D is the disc of radius R. Evaluate using polar
coordinates, noting it is improper at the boundary, to get
2π R2.

Section 7.5

1.
512

3

√
5

3. 11
√

14

5. (a) For this surface parameterized by �, we have:

x2 − y2 = (u + v)2 − (u − v)2

= (u2 + 2uv + v2) − (u2 − 2uv + v2)

= 4uv

= 4z.

(b) 0

7.
3
√

2 + 5

24

9. πa3

11. (a)
√

2π R2 (b) 2π R2

13.
π

4

(5
√

5

3
+ 1

15

)

15. 16π R3/3

17. (a) The sphere looks the same from all three axes, so
these three integrals should be the same quantity
with different labels on the axes.

(b) 4π R4/3

(c) 4π R4/3

19. 8

21. (R/2, R/2, R/2)
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23. (a) Directly compute the vector cross product Tu × Tv

and then calculate its length and compare your
answer to the left-hand side.

(b) In this case, F = 0, so A(s) = ∫∫
D

√
EG du dv.

(c) 4πa2

25. Let a = ∂x/∂u, b = ∂y/∂u, c = ∂x/∂v, and
d = ∂y/∂v. The conditions (a) and (b) in Exercise 16
are then a2 + b2 = c2 + d2 and ac + bd = 0. Show that
a 	= 0 and, by a normalization argument, show that you
can assume a = 1. Now calculate further.

27. 2a2

Section 7.6

1.
5π

2

3. (a) 18π (b) 36π

5. ±48π (the sign depends on orientation).

7. 4π

9. 2π (or −2π , if you choose a different orientation).

11. 2π

13. 12π/5

15. With the usual spherical coordinate parametrization,
Tθ × Tφ = − sin φ r (see Example 1). Thus,∫∫

S
F · dS =

∫∫
F · (Tφ × Tθ ) dφ dθ

=
∫∫

(F · r) sin φ dφ dθ

=
∫ 2π

0

∫ π

0
Fr sin φ dφ dθ

and

∫∫
S

f dS =
∫ 2π

0

∫ π

0
f sin φ dφ dθ.

17. For a cylinder of radius R = 1 and normal component Fr ,

∫∫
S

F · dS =
∫ b

a

∫ 2π

0
Fr dθ dz.

19. 2π/3

21.
2

5
a3bcπ

Section 7.7

1. Apply formula (3) of this section and simplify; H = 0
and K = −b2/(u2 + b2)2.

3. Apply formula (3) of this section and simplify.

5. K = −4a6b6

(a4b4 + 4b4u2 + 4a4v2)2

7. Using the standard parametrization of the ellipsoid
�(u, v) = (a cos u sin v, a sin u sin v, c cos v), u ∈
[0, 2π ], v ∈ [0, π ], from Exercise 6 you should have
found that the Gauss curvature of the ellipsoid is:

K = a4c2

(a4 cos2 v + a2c2 cos2 u sin2 v + a2c2 sin2 u sin2 v)2

= a4c2

(a4 cos2 v + a2c2 sin2 v)2
.

Then, the area area element for the ellipsoid is given as:

Tu × Tv = sin v

√
a4 cos2 v + a2c2 sin2 v.

This yields the integral:

∫ π

0

∫ 2π

0

a4c2 sin v

(a4 cos2 v + a2c2 sin2 v)
3
2

du dv.

To evaluate this integral, we try to get it into one of the
standard forms found in the tables contained in the text:∫ π

0

∫ 2π

0

a4c2 sin v

(a4 cos2 v + a2c2 sin2 v)
3
2

du dv

= 2π

∫ π

0

a4c2 sin v

a3(a2 cos2 v + c2 sin2 v)
3
2

dv

= 2πac2

∫ π

0

sin v

(a2 cos2 v + c2(1 − cos2 v)
3
2

dv

= 2πac2

∫ π

0

sin v

((a2 − c2) cos2 v + c2)
3
2

dv

= 2πac2

(a2 − c2)
3
2

∫ π

0

sin v(
cos2 v + c2

a2−c2

) 3
2

dv.

At this point, make the substitution w = cos v:

2πac2

(a2 − c2)
3
2

∫ π

0

sin v(
cos2 v + c2

a2−c2

) 3
2

dv

= 2πac2

(a2 − c2)
3
2

∫ 1

−1

1(
(w)2 +

(√
c2

a2−c2

)2
) 3

2

dw .
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Finally, use the trigonometric substitution

w =
√

c2

a2−c2 tan θ to finish the integration. The final

solution will simplify to 4π , verifying the
Gauss–Bonnet theorem.

9. Apply formula (3) of this section and simplify.

11. Apply formula (2) of this section and simplify;
K = −h′′/[(1 + (h′)2)2h].

Review Exercises for Chapter 7

1. (a) 3
√

2(1 − e6π )/13

(b) −π
√

2/2

(c) (236, 158
√

26 − 8)/35 · (25)3

(d) 8
√

2/189

3. (a)
2

π
+ 1 (b) −1/2

5. 2a3

7. (a) A sphere of radius 5 centered at (2, 3, 0);
�(θ , φ) = (2 + 5 cos θ sin φ , 3 + 5 sin θ sin φ , 5
cos φ); 0 ≤ θ ≤ 2π ; 0 ≤ φ ≤ π .

(b) An ellipsoid with center at (2, 0, 0);
�(θ , φ) = (2 + (1/

√
2)3 cos θ sin φ ,

3 sin θ sin φ , 3 cos φ); 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π .

(c) An elliptic hyperboloid of one sheet;

�(θ , z) =
(1

2

√
8 + 2z2 cos θ ,

1

3

√
8 + 2z2 sin θ , z

)
;

0 ≤ θ ≤ 2π, −∞ < z < ∞.

9. A(�) = 1

2

∫ 2π

0

√
3 cos2 θ + 5 dθ ; � describes the upper

nappe of a cone with elliptical horizontal cross sections.

11. 11
√

3/6

13.
√

2/3

15. 5
√

5/6

17. (a) (ey cos π z, xey cos π z, −πxey sin π z)

(b) 0

19.
1

2
(e2 + 1)

21. n = (1/
√

5)(−1, 0, 2), 2z − x = 1

23. 0

25. If F = ∇φ, then ∇ × F = 0 (at least if φ is of class C2;
see Theorem 1, Section 4.4). Theorem 3 of Section 7.2
shows that

∫
c ∇φ · ds = 0 because c is a closed curve.

27. (a) 24π (b) 24π (c) 60π

29. (a) [
√

R2 + p2(z0 − z1)]/p

(b)
√

2z0(R2 + p2)/p2g

Chapter 8

Section 8.1

1. γ (t) =

⎧⎪⎨
⎪⎩

(2t − 1, −t + 1), t ∈ [0, 1]

(2t − 1, 2t − 2), t ∈ [1, 2]

(−4t + 11, −t + 4), t ∈ [2, 3]

3. 8

5. 8

7. 61

9. −8

11. (a) 0

(b) −π R2

(c) 0

(d) −π R2

13. 3πa2

15. 3π/2

17. 3π(b2 − a2)/2

19. (a) Both sides are 2π . (b) 0

21. 0

23. πab

25. A horizontal line segment divides the region into three
regions of which Green’s theorem applies; now use
Exercise 16 or the technique in Figure 8.1.5.

27. 9π/8

29. If ε > 0, there is a δ > 0 such that |u(q) − u(p)| < ε

whenever ‖p − q‖ = ρ < δ. Parametrize ∂ Bρ (p) by
q(θ ) = p + ρ(cos θ , sin θ ). Then

|I (ρ) − 2πu(p)| ≤
∫ 2π

0
|u(q(θ )) − u(p)| dθ ≤ 2π.
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31. If p = ( p1, p2), parametrize ∂ Bρ (p) by
ρ �→ ( p1 + ρ cos θ , p2 + ρ sin θ ), then
I (ρ) = ∫ 2π

0 u( p1 + ρ cos θ , p2 + ρ sin θ ) dθ.

Differentiation under the integral sign gives

d I

dρ
=

∫ 2π

0
∇u · (cos θ , sin θ ) dθ =

∫ 2π

0
∇u · n dθ

= 1

ρ

∫
∂ Bρ

∂u

∂n
ds = 1

ρ

∫∫
Bρ

∇2u dA

(the last equality uses Exercise 30).

33. Using Exercise 32,

∫∫
BR

u dA =
∫ R

0

∫ 2π

0
u[p + ρ(cos θ , sin θ )]ρ dθ dρ

=
∫ R

0

(∫
∂ Bρ

u ds

)
dρ

=
∫ R

0
2πρu(p) dρ = π R2u(p).

35. Suppose u is subharmonic. We establish the assertions
corresponding to Exercise 34(a) and (b). The argument
for superharmonic functions is similar, with inequalities
reversed.

Suppose ∇2u ≥ 0 and u(p) ≥ u(q) for all q in
BR(p). By Exercise 31, I ′(ρ) ≥ 0 for 0 < ρ ≤ R, and
so Exercise 32 shows that 2πu(p) ≤ I (ρ) ≤ I (R) for
0 < ρ ≤ R. If u(q) < u(p) for some q = p +
ρ(cos θ0, sin θ0) ∈ BR(p), then, by continuity, there is
an arc [θ0 − δ, θ0 + δ] on ∂ Bρ (p) where u < u(p) − d
for some d > 0. This would mean that

2πu(p) ≤ I (ρ) = 1

ρ

∫ 2π

0
u[p + ρ(cos θ , sin θ )]ρ dθ

≤ (2π − 2δ)u(p) + 2δ[u(p) − d] ≤ 2πu(p) − 2 δd.

This contradiction shows that we must have u(q) = u(p)
for every q in BB (p).

If the maximum at p is absolute for D, the last
paragraph shows that u(x) = u(p) for all x in some disc
around p. If c: [0, 1) → D is a path from p to q, then
u(c(t)) = u(p) for all t in some interval [0, b). Let b0 be
the largest b ∈ [0, 1] such that u(c(t)) = u(p) for all
t ∈ [0, b). (Strictly speaking, this requires the notion of
the least upper bound from a good calculus text.)
Because u is continuous, u(c(b0)) = u(p). If b0 	= 1,
then the last paragraph would apply at c(b0) and u is
constantly equal to u(p) on a disc around c(b0). In
particular, there is a δ > 0 such that u(c(t)) = u(c(b0)) =
u(p) on [0, b0 + δ). This contradicts the maximality of
b0, so we must have b0 = 1. That is, c(q) = c(p).
Because q was an arbitrary point in D, u is constant
on D.

37. Assume ∇2u1 = 0 and ∇2u2 = 0 are two solutions. Let
φ = u1 − u2. Then ∇2φ = 0 and φ(x) = 0 for all
x ∈ ∂ D. Consider the integral

∫∫
D φ∇2φ dA =

− ∫∫
D ∇φ · ∇φ d A. Thus,

∫∫
D ∇φ · ∇φ dA = 0, which

implies that ∇φ = 0, and so φ is a constant function and
hence must be identically zero.

Section 8.2

1. γ (t) =

⎧⎪⎪⎨
⎪⎪⎩

(3t − 1, 1, −6t + 4), t ∈ [0, 1]

(2, 2t − 1, −6t + 4), t ∈ [1, 2]

(−3t + 8, 3, 10t − 28), t ∈ [2, 3]

(−1, −2t + 9, 2t − 4), t ∈ [3, 4]

�(u, v) = (u, v, 5 − 2u − 3v), u ∈ [−1, 2], v ∈ [1, 3]

3. 0 (Note: F is a gradient field.)

5. π

7. 52

9. −2π

11. Each integral in Stokes’ theorem is zero.

13. 0

15. −4π/
√

3

17. 0

19. ±2π

21. Using Faraday’s law,
∫∫

S[∇ × E + ∂H/∂t] · dS = 0 for
any surface S. If the integrand were a nonzero vector at
some point, then by continuity the integral over some
small disc centered at that point and lying perpendicular
to that vector would be nonzero.

23. The orientations of ∂S1 = ∂S2 must agree.

25. Suppose C is a closed loop on the surface drawn so that
it divides the surface into two pieces, S1 and S2. For the
surface of a doughnut (torus) you must use two closed
loops; can you see why? Then C bounds both S1 and S2,
but with positive orientation with respect to one and
negative with respect to the other. Therefore,

∫∫
S
∇ × F · dS =

∫∫
S1

∇ × F · dS +
∫∫

S2

∇ × F · dS

=
∫

C
F · ds −

∫
C

F · ds = 0.
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27. (a) If C = ∂S,
∫

C v · ds = ∫∫
S(∇ × v) · dS =∫∫

S 0 · ds = 0.

(b)
∫

C v · ds = ∫ b
a v · c′(t) dt = v ·

∫ b
a c′(t) dt =

v · (c(b) − c(a)), where c: [a, b] → R3 is a
parametrization of C . (The vector integral is the
vector whose components are the integrals of the
component functions.) If C is closed, the last
expression is 0.

29. Both integrals give π/4.

31. (a) 0 (b) π (c) π

33. −20π (or 20π if the opposite orientation is used).

35. One possible answer: The Möbius curve C is also the
boundary of an oriented surface S̃; the equation in
Faraday’s law is valid for this new surface.

Section 8.3

1. (a) f = x2/2 + y2/2 + C

(b) F is not a gradient field.

(c) f = 1

3
x3 + xy2 + C

3. (a) There exists such a G, but no such g.

(b) There exists such a g, but no such G.

(c) There exists such a g, but no such G.

(d) Neither function exists.

5. If F = ∇ f = ∇g and C is a curve from v to w, then
( f − g)(w) − ( f − g)(v) = ∫

C ∇( f − g) · ds = 0 and
so f − g is constant.

7. x2 yz − cos x + C

9. Yes, it is the gradient of g(x , y) = F(x) + F( y), where
F ′(x) = f (x).

11. No; ∇ × F = (0, 0, −x) 	= 0.

13. e sin 1 + 1

3
e3 − 1

3

15. 3.5 × 1029 ergs

17. (a) f (x , y, z) = x2 yz

(b) Not a gradient field.

(c) Not a gradient field.

(d) f (x , y, z) = x2 cos y

19. Use Theorem 7 in each case.

(a) −3/2 (b) −1

(c) cos(e2) − cos(1/e)/e

21. (a) No.

(b)

(
1

2
z2, xy − z, x2 y

)
or

(
1

2
z2 − 2xyz − 1

2
y2, −x2z − z, 0

)
.

23.
1

3
(z3i + x3j + y3k)

25. (−z sin y + y sin x , xz cos y, 0) (Other answers are
possible.)

27. (a) ∇ × F = (0, 0, 2) 	= 0

(b) Let c(t) be the path of an object in the fluid. Then
F(c(t)) = c′(t). Let c(t) = (x(t), y(t), z(t)). Then
x ′ = −y, y′ = x , and z′ = 0, and so z is constant
and the motion is parallel to the xy plane. Also,
x ′′ + x = 0, y′′ + y = 0. Thus, x = A cos t + B sin t
and y = C cos t + D sin t . Substituting these values
in x ′ = −y, y′ = x , we get C = −B, D = A, so
that x2 + y2 = A2 + B2 and we have a circle.

(c) Counterclockwise.

29. (a) F = − GmM

(x2 + y2 + z2)3/2 (x , y, z);

∇ · F = −GmM

[
x2 + y2 + z2 − 3x2

(x2 + y2 + z2)5/2

+ x2 + y2 + z2 − 3y2

(x2 + y2 + z2)5/2 + x2 + y2 + z2 − 3z2

(x2 + y2 + z2)5/2

]

= 0

(b) Let S be the unit sphere, S1 the upper hemisphere,
S2 the lower hemisphere, and C the unit circle. If
F = ∇ × G, then

∫∫
S

F · dS =
∫∫

S1

F · dS +
∫∫

S2

F · dS

=
∫

C
G · ds −

∫
C

G · ds = 0.

But
∫∫

S F · dS = −GmM
∫∫

S(r/‖r‖3) · n d S =
−4πGmM , because ‖r‖ = 1 and r = n on S. Thus,
F = ∇ × G is impossible. This does not contradict
Theorem 8 because F is not smooth at the origin.

Section 8.4

1. 3

3. 4πr3

5. 4π

7. 3
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9. (a) 0

(b) 4/15

(c) −4/15

11. 6

13.
7

10

15. 1

17. Apply the divergence theorem to f F using
∇ · ( f F) = ∇ f · F + f ∇ · F.

19. If F = r/r2, then ∇ · F = 1/r2. If (0, 0, 0) 	∈ �, the
result follows from Gauss’ theorem. If (0, 0, 0) ∈ �, we
compute the integral by deleting a small ball
Bε = {(x , y, z)|(x2 + y2 + z2)1/2 < ε} around the
origin and then letting ε → 0:

∫∫∫
�

1

r2 dV = limit
ε→0

∫∫∫
�\Bε

1

r2 dV = limit
ε→0

∫∫
∂(�\Bε)

r · n

r2 d S

= limit
ε→0

(∫∫
∂�

r · n

r2 d S −
∫∫

∂ Bε

r · n

r2 d S

)

= limit
ε→0

(∫∫
∂�

r · n

r2 d S − 4πε

)

=
∫∫

∂�

r · n

r2 d S.

The integral over ∂ Bε is obtained from Theorem 10
(Gauss’ law), because r = ε everywhere on Bε .

21. Use the vector identity for div( f F) and the divergence
theorem for part (a). Use the vector identity
∇ · ( f ∇g − g∇ f ) = f ∇2g − g∇2 f for part (b).

23. (a) If φ(p) = ∫∫∫
W ρ(q)/(4π‖p − q‖) dV (q), then

∇φ(p) =
∫∫∫

W
[ρ(q)/4π ]∇p(1/‖p − q‖) dV (q)

= −
∫∫∫

W
[ρ(q)/4π ][(p − q)/‖p − q‖3] dV (q),

where ∇p means the gradient with respect to the
coordinates of p and the integral is the vector whose
components are the three component integrals. If p
varies in V ∪ ∂V and n is the outward unit normal
to ∂V , we can take the inner product using these
components and collect the pieces as

∇φ(p) · n = −
∫∫∫

W

ρ(q)

4π

1

‖p − q‖3 (p−q) · n dV (q).

Thus,

∫∫
∂V

∇φ(p) · n dV (p) = −
∫∫

∂V(∫∫∫
W

ρ(q)

4π

1

‖p − q‖3 (p − q) · n dq

)
dV (p).

There are essentially five variables of integration
here, three placing q in W and two placing p on ∂V .
Use Fubini’s theorem to obtain

∫∫
∂V

∇φ · n · dS

= −
∫∫∫

W

ρ(q)

4π

[∫∫
∂V

(p − q) · n

‖p − q‖3 d S(p)

]
dV (q).

If V is a symmetric elementary region, Theorem 10
says that the inner integral is 4π if q ∈ V and 0 if
q 	∈ V . Thus,

∫∫
∂V

∇φ · n d S = −
∫∫∫

W∩V
ρ(q) dV (q).

Because ρ = 0 outside W ,

∫∫
∂V

∇φ · n d S = −
∫∫∫

V
ρ(q) dV (q).

If V is not a symmetric elementary region,
subdivide it into a sum of such regions. The
equation holds on each piece, and, upon adding
them together, the boundary integrals along
appropriately oriented interior boundaries cancel,
leaving the desired result.

(b) By Theorem 9,
∫∫

∂V ∇φ · dS = ∫∫∫
V ∇2φ dV , and

so
∫∫∫

V ∇2φ dV = − ∫∫∫
V ρ dV . Because both ρ

and ∇2φ are continuous and this holds for
arbitrarily small regions, we must have ∇2φ = −ρ.

25. If the charge Q is spread evenly over the sphere S of
radius R centered at the origin, the density of charge per
unit area must be Q/4π R2. If p is a point not on S and
q ∈ S, then the contribution to the electric field at p due
to charge near q is directed along the vector p − q.
Because the charge is evenly distributed, the tangential
component of this contribution will be canceled by that
from a symmetric point on the other side of the sphere at
the same distance from p. (Draw the picture.) The total
resulting field must be radial. Because S looks the same
from any point at a distance ‖p‖ from the origin, the
field must depend only on radius and be of the form
E = f (r )r.
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If we look at the sphere � of radius ‖p‖, we have

(charge inside �) =
∫∫

�

E · dS =
∫∫

�

f (‖p‖)r · n d S

= f (‖p‖)‖p‖ area � = 4π‖p‖3 f (‖p‖).

If ‖p‖ < R, there is no charge inside �; if ‖p‖ > R, the
charge inside � is Q, and so

E(p) =

⎧⎨
⎩

1

4π

Q

‖p‖3 p if ‖p‖ > R

0 if ‖p‖ < R.

27. By Theorem 10,
∫∫

∂ M F · dS = 4π for any surface
enclosing the origin. But if F were the curl of some field,
then the integral over such a closed surface would have
to be 0.

29. If S = ∂W , then
∫∫

S r · n d S = ∫∫∫
W ∇ · r dV =∫∫∫

W 3 dV = 3 volume (W ). For the geometric
explanation, assume (0, 0, 0) ∈ W and consider the
skew cone with its vertex at (0, 0, 0) with base S and

altitude ‖r‖. Its volume is
1

3
(S )(r · n).

Section 8.5

1. (a) (2xy2 − yx3) dx dy

(b) (x2 + y2) dx dy

(c) (x2 + y2 + z2) dx dy dz

(d) (xy + x2) dx dy dz

(e) dx dy dz

3. (a) 2xy dx + (x2 + 3y2) dy

(b) −(x + y2 sin x) dx dy

(c) −(2x + y) dx dy

(d) dx dy dz

(e) 2x dx dy dz

(f) 2y dy dz − 2x dz dx

(g) − 4xy

(x2 + y2)2 dx dy

(h) 2xy dx dy dz

5. (a) 8π2 + 44π3

3
+ 11π4

2
+ 3π5

5

(b) 8π2 + 44π3

3
+ 53π4

2
+ 64π5

5
+ 7π6

3
+ π7

7

(c) 8π + 10π2 + 9π3 + 5π4

2
+ π5

5

7. (a)
Form2 (αV1 + V2) = Form2 (αA1 + A2, αB1 + B2, αC1 + C2)

= (αA1 + A2) dy dz + (αB1 + B2) dz dx

+ (αC1 + C2) dx dy

= α( A1 dy dz + B1 dz dx + C1 dx dy)

+ ( A2 dy dz + B2 dz dx + C2 dx dy)

= α Form2 (V1) + Form2(V2).

(b)

dω =
(

∂ A

∂x
dx + ∂ A

∂y
dy + ∂ A

∂z
dz

)
∧ dx + A(dx)2

+
(

∂ B

∂x
dx + ∂ B

∂y
dy + ∂ B

∂z
dz

)
∧ dy + B(dy)2

+
(

∂C

∂x
dx + ∂C

∂y
dy + ∂C

∂z
dz

)
∧ dz + C(dz)2

But ( dx)2 = ( dy)2 = ( dz)2 = dx ∧ dx = dy ∧ dy =
dz ∧ dz = 0, dy ∧ dx = − dx ∧ dy, dz ∧ dy =
− dy ∧ dz, and dx ∧ dz = − dz ∧ dx. Hence,

dω =
(

∂C

∂y
− ∂ B

∂z

)
dy dz +

(
∂ A

∂z
− ∂C

∂y

)
dz dx

+
(

∂ B

∂x
− ∂ A

∂y

)
dx dy

= Form2 (curl V).

9. An oriented 1-manifold is a curve. Its boundary is a pair
of points that may be considered a 0-manifold. Therefore,
ω is a 0-form or function, and

∫
∂ M dω = ω(b) − ω(a)

if the curve M runs from a to b. Furthermore, dω is the
1-form (∂ω/∂x) dx + (∂ω/∂y) dy. Therefore,

∫
M dω is

the line integral
∫

M (∂ω/∂x) dω + (∂ω/ dy) dy =∫
M ∇ω · ds. Thus, we obtain Theorem 3 of Section 7.2,∫
M ∇ω · ds = ω(b) − ω(a).

11. Put ω = F1 dx dy + F2 dy dz + F3 dz dx. The integral
becomes

∫∫
∂T

ω =
∫∫∫

T
dω

=
∫∫∫

T

(
∂ F1

∂z
+ ∂ F2

∂x
+ ∂ F3

∂y

)
dx dy dz.

(a) 0

(b) 40

13. Consider ω = x dy dz + y dz dx + z dx dy.
Compute that dω = 3 dx dy dz, so that
1

3

∫∫
∂ R ω = 1

3

∫∫∫
R dω = ∫∫∫

R dx dy dz = v(R).
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532 Answers to Odd-Numbered Exercises

Review Exercises for Chapter 8

1. (a) 2πa2

(b) 0

3. 0

5. (a) f = x4/4 − x2 y3

(b) −1/4

7. (a) Check that ∇ × F = 0.

(b) f = 3x2 y cos z + C

(c) 0

9. 23/6

11. No: ∇ × (a × r) = 2a.

13. (a) ∇ f = 3yez2
i + 3xez2

j + 6xyzez2
k

(b) 0

(c) Both sides are 0.

15. 8π/3

17. πa2/4

19. 21

21. (a) G is conservative; F is not.

(b) G = ∇φ if φ = (x4/4)+( y4/4)− 3

2
x2 y2+ 1

2
z2+C ,

where C is any constant.

(c)

∫
α

F · ds = 0;

∫
α

G · ds = −1

2
;

∫
β

F · ds = 1

3
;

∫
β

G · ds = −1

2

23. Use (∇ · F)(x0, y0, z0) =
limitρ→0

1

V (�ρ )

∫∫
∂�ρ

F · n d S from Section 8.4.
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An n following a page reference indicates the information is found in a note.

2 × 2 matrix, 31, 63
3 × 3 matrix, 31–32, 63
ε’s and δ’s limits, 99–102
In , 66
n-dimensional Euclidian space, 60
n-space vectors, 60–62
Rn, 2
x axis, 1
x coordinate, 1
x-simple regions, 283, 287, 428, 430
y axis, 1
y coordinate, 2
y-simple domain, 340
y-simple regions, 283, 286, 287, 428–439
z axis, 1
z coordinate, 2
0-form, 477
1-form, 478
2-form, 478–479
3-form, 479–480
symbols, xviii

absolute maximum, 180, 192, 193
absolute minimum, 180, 192, 193
absolute value, xxiii
acceleration, 217–228
action, principle of, 166–168
action at a distance, 243, 419
additive inverse, 3
adiabatic process, 375
affine approximation, 108–109
Alexandov, 417
algebra of forms, 483–488
al-Khuwarizmi, xviii
Ampère’s law, 372, 408, 452, 472
analytic function, 166
Andromeda galaxy, 419
angle between two vectors, 22–23
angular momentum, conservation of, 450
angular velocity vector, 250
anticommutativity, 483
Apollonius of Perga, xv
approximations, 158
Arabian mathematics, xvii–xviii
Archimedes, xvi, xix, 266, 333, 389
arch length

definition, 228, 231
differential, 230–232

formula justification, 232–234
function, 232
reparametrization, 234

area
curl as circulation per unit area, 445–448
Green’s theorem, 433–434
surfaces, 383–392

Argand, 46
Aristarchus of Samus, xix
Aristotle, xvi
Ars Magna [the Great Art] (Cardano), 44
associativity, 3, 46n1, 67, 483
average value, 357
average value of a function, 329–330

Babylonian mathematics, xiii–xvii
ball, volume of, 326
basic 1-form, 478
basic 2-form, 478–479
basic 3-form, 479–480
bearing, 30
Bentley, Richard, 419
Bernoulli, Jacob, 52
Bernoulli, Johann II, 155, 167, 358, 419
best linear approximation, 110
binormal vector, 235
bonded function

definition, 271
integratability, 274

bordered Hessian determinant, 197, 198, 199
bound vectors, 6
boundaries, 90–91
boundary curve, 440
boundary points, 90, 91
boundary regions, 283
bounded set, 180
brachistrochrone, 358
Brahe, Tycho, xx
Bunyakovskii, 61n4
Buys-Ballot’s law, 262

C1, 114
calculus of variations, 358
capped cylinder, 451
Cardano, Gerolamo, 44, 45
Cartesian coordinates, 1, 2
Cartesian product, 263
Catoptrica (Euclid), xv
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Cauchy, Augustin-Louis, 35, 45, 61n4,
281, 390

Cauchy–Bunyakovskii–Schwarz (CBS)
inequality, 61n4

Cauchy–Riemann equations, 399
Cauchy–Schwarz inequality, 23–25, 61
Cavalieri, Bonaventura, 266
Cavalieri’s principle, 265–266
CBS (Cauchy–Bunyakovskii–Schwarz)

inequality, 61n4
center of gravity, 399
center of mass, 330–333
centripetal force, 221
chain rule

described, 124, 126–127
as differentiation rules, 218
example, 153, 156
first special case, 127–128
implicit function theorem and surface, 206
Lagrange multiplier method, 186
second special case, 128–132
Stokes’ theorems and, 441
vector quantities and, 448

change of variables formula
applications, 329–338
cylindrical coordinates, 324
described, 307–308, 318–320
double integrals, 319
Gaussian integral, 322–323
polar coordinates, 320–323
spherical coordinates, 325–326
triple integrals, 323–324

change of variables theorem, 314–328
changing the order of integration, 289–294
charge density, 472
chemical equation, 4
circular orbit, 220–222
circulation, 373, 446
circulation and curl, 445–448
class C 1 functions, 114
class C 2 functions, 150
class C k , 237
Clifford, W. K., 351, 419
closed curve, 368
closed interval, xxiii
closed set, 180
closed surface, 452
Cobb–Douglas production function, 203
coefficients, matrix of, 195n12
commutative, 66
complex numbers, 45–48
component curves, 370
component functions, 117
components, 1, 4
component scalar fields, 237

composition, 99
conductivity, 238
cone, 379, 385, 392
conformal parametrization, 399, 423
conical refraction, 46
conic sections, xiv
conservation of angular momentum, 450
conservation of energy, 240
conservative fields

definition, 453
physical interpretation, 455–457
planar case, 458–459

conservative vector field, 453
constant multiple rule, 125
constant vector field, 491
constrained extrema, 185–203

LaGrange multiplier method for several
constraints, 191–193

second derivative test, 197–201
continuity, 88–105

of compositions, 99
definition, 97
open sets and, 88–90
theorems, 113–114

continuous functions, 95–98
conversion of energy, 240
coordinates, 1–2, 4
Copernicus, Nicolaus, xvi, xix
Coulomb’s law, 239, 243, 409
Cramer, 34
Cramer’s rule, 35
Crick, Francis, 418
critical points, 168, 177, 181, 182,

186, 198
cross product, 31, 35–39, 44, 47–48
cross product rule, 218
cross-sectional area, 265–266
cross section of a torus, 391
cubic equations, 44
curl

as circulation per unit area, 445–448
definition, 249–250
divergence, 253
gradients, 252
rotational flow, 251
rotations and, 250–251
scalar curl, 252–253

curvature
definition, 355
hemisphere, 415–417
on a path, 235
planes, 415
of surfaces, 414–417
surfaces of constant, 417, 418
total curvature, 414



Marsden-3620111 VC˙index September 26, 2011 10:2 535

Index 535

curves, 116–124
components, 370
integral of 1-forms over, 480–481
knotted, 355
line integrals over, 368–371
piecewise, 229
planar, 353–355
total curvature, 355

cyclicly permuting, 36
cyclist, 374
cycloid, 119
cycloidal path, 121
cylinder, 270, 451
cylindrical coordinates

change of variables, 324
described, 52–54
Stokes’ theorems, 448

cylindrical hole, 392

d’Alembert, Le Rond, 155
DaVinci, Leonardo, 333
definite integral, xxv
degenerate critical point, 177
degenerate type, 176
Delaunay, 417
del Ferro, Scipione, xix, 44
del operator, 245, 256
density

charge, 472
current, 472

derivative of a function, xxiv
derivative of a k-form, 484–485
derivative operator, 245
derivatives

directional, 136–137
gradients, 112–113
partial, 105–108, 111
properties of, 124–134

Descartes, René, xix, 68
determinants

geometry of, 39–41
matrix, 31–32
properties of, 32–35, 66–67

determinant test for positive definiteness, 175
Dido, Queen of Carthage, 190
Dieterici’s equation, 133
differentiability

functions of two variables, 109
general case, 110–112
tangent plane, 110
theorems, 113–114

differential equations, 154
differential forms, 476–491

0-form, 477
1-form, 478

2-form, 478–479
3-form, 479–480
algebra of forms, 483–488
cross product and, 48n3
definition, 360
Gauss’, 487
Gauss’ theorem, 487, 488
Green’s theorem, 487
integral of 1-forms over curves, 480–481
integral of 2-forms over surfaces, 481–482
integral of 3-forms over regions, 483
Stokes’ theorems, 488

differentiation, 105–116
differentiation of paths, 217–219
Dirac, Paul, xviii
directed simple curve, 368
directional derivatives, 136–137
directions of fastest increase, 137–138
Dirichlet’s functional, 399
discontinuous functions, 97
discriminant of the Hessian, 176
displacement

infinitesimal, 231
vector, 27–29

distance
definition, xxiii
from point to plane, 43–44
between vector endpoints, 21–22, 62

distributivity, 3, 483
divergence

curls, 253
cylindrical coordinates, 448
definition, 245
Gauss’ theorem, 463–466, 467, 468, 470
Green’s theorem, 436–437
Laplace operator, 254
physical interpretation, 246
spherical coordinates, 448, 470–471

divergence-free, 468
domain, xxiv
dot product, 19–20, 24, 38, 44, 48, 55, 60, 245
dot product rule, 218
double helix, 418
double integrals

bonded function, 274
Cavalieri’s principle, 265–266
change of variables formula, 319
changing the order of integration, 289–294
Fubini’s theorem, 276–280
mean value equality, 292–293
mean value inequality, 292
over a rectangle, 271–283
over elementary regions, 283–289
reduction to iterated integrals, 267–269,

285–288
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double integrals (Continued)
as volumes, 263–265

doughnut surface, 375
dr notation for line integral, 371

economics, 196–197
Egyptian mathematics, xiii–xvii
eigenvalue, 203
eigenvector, 203
Einstein, Albert, 243, 418–420
Einstein’s field equations, 420, 422
Einstein’s general theory of relativity, 418
elasticity, 155, 348
electric field, 472
Electromagnetic Theory (Heaviside), 49
elementary regions

described, 297–298
double integrals over, 283–289
Gauss’ theorem, 461–463
Green’s theorem, 428
other types of, 299
symmetric, 300
triple integrals over, 298–302

Elementary Treatises on Quaternions
(Tait), 47

Elements (Euclid), xv
Elements of Vector Analysis (Gibbs), 49
ellipsoid, 391, 413
elliptic, 213
endpoints, 368
energy, conversion of, 240
energy vector field, 238
epicycles, xv, 119
epicycloid, 119
equality of mixed partials, 151, 152
Equilibrium (Archimedes), 333
equipotential surfaces, 141, 239
escape velocity, 240–241
Escher, M. C., 402
Euclid, xv, xix, 236, 333
Euclidian n-space

matrices, 63–73
vectors in, 60–62

Eudoxus, xv
Euler, Leonhard, 45, 48, 76n1, 149, 152, 155,

187, 222, 390
Euler equations, 152
Euler’s theorems, 146
European mathematics, xviii–xxi
exceptional points, 453
exhausting regions, 340
extrema of real-valued functions,

166–185
extreme points, 168
extremum, 168

Faraday’s law, 407, 449–450, 472
Fary–Milnor theorems, 356
fence, Tom Sawyer’s, 354
Feynman, Richard, 222, 223–224, 427
Feynman integrals, 223
field concept, 242–243
Fields medal, 356
Fior, Antonio, 44
first-order Taylor formula, 159, 160, 164
flexural rigidity, 348
flow lines, 241–242
flux, 407, 408, 467–468
flux per unit volume, 467–468
Fontana, Nicolo, 44
force fields

gravitational, 238, 239, 240, 459
work done by, 358–359

force vectors, 29
Fourier, Joseph, 154
Fourier series, 154, 281
free vectors, 6
Frenet formulas, 235
frequency, orbit, 221
frustum, 392
Fubini, Guido, 281
Fubini’s theorem, 268, 271, 276–280,

342–344
functions

analytic, 166
arch length, 232
average value, 329–330
class C1, 114
class C2, 150
Cobb–Douglas production function, 203
component, 117
continuous, 95–98
definition, xxiv
differentiability, 109
graphs, 77
Green’s, 475
harmonic, 157
mappings and, 76–77
one-to-one, 310–311
onto, 311–313
potential, 455, 458, 475
quadratic, 172
of several variables, 76
smooth, 193

functions unbounded at isolated points,
344–345

fundamental solution, 156
fundamental theorem of algebra, 45
fundamental theorem of calculus, 159, 232,

280, 430–431, 476
fundamental theorem of integral calculus, 276
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Galileo, 153, 358
gauge freedom, 472
Gauss, Karl Friedrich, 45, 46, 408, 413,

418, 420
Gauss–Bonnet theorem, 420–422
Gauss curvature, 414, 416, 417, 418, 420
Gaussian integral, 322–323
Gauss’ law, 408, 468–470, 472
Gauss divergence theorem, 256
Gauss’ theorem

divergence as flux per unit volume,
467–468

divergence theorem, 463–466
elementary regions and boundaries,

461–463
generalizing, 466–467

general implicit function theorem,
207–208

general second-derivative test, 176
general vector field, 236
geodesics, 420
geometric example, 195–196
La Geometrie (Descartes), 66
geometry

of determinants, 39–41
real-valued functions, 76–87
scalar multiplication, 3, 6, 42
theorems by vector methods, 11–12
vector addition, 2–4
vector subtraction, 7

geometry theorems by vector methods,
11–12

geosynchronous orbit, 222
Gibbs, Josiah Willard, 48, 49,

256–257, 258
global maximum, 180–182, 193–195
global minimum, 180–182, 193–195
gradients, 112–113, 135, 138
gradient vector field

conservative fields, 453–461
described, 140–141, 238–240
line integrals over, 366–368

graphs
cylindrical coordinates, 448
definition, xxiv
orientation, 404
real-valued functions, 77
smooth vs. nonsmooth, 105
spherical coordinates, 448
Stokes’ theorems for, 439–443
surface area, 387
surface integrals over, 394–396,

409–410, 411
gravitational constant, 453
gravitational field, escaping earth’s, 240

gravitational force fields, 238, 239,
240, 459

gravitational potential, 155, 238, 334–337
gravitational potential energy, 457
Greek mathematics, xiii–xvii
Green, George, 431
Green’s identities, 475
Green’s theorem

area of region bounded by curve, 433–434
correct orientation for boundary

curves, 432
differential forms, 487
divergence theorem in the plane, 436–437
generalizing, 432–433
lemmas, 429–431
overview, 427
simple and elementary regions and

boundaries, 428
vector form, 434–437

Gregory, James, 76n1

Halley, Edmund, xxi, xxii
halo orbits, 226
Hamilton, Sir William Rowan, xxii, 46–47,

48, 222, 256, 476
Hamilton’s principle, 222, 223–224
harmonic functions, 157
heat equation, 154, 155, 156
heat flux vector field, 238
Heaviside, Oliver, 48, 49
helicoid, 386, 394, 397, 417
heliocentric theory, xix
helix, 121, 352, 418
hemisphere, curvature, 415–417
Hessian, 172–175, 176
Hessian matrix, 175–176, 179, 197
higher-order approximations, 158
higher-order derivatives, 149
Hilbert, David, 422
Hilbert’s action principle, 422
Hipparchus, xv
Hölder-continuous, 105
homogeneity with respect to functions, 483
homogeneous of degree, 146
Hooke, Robert, xxi
hot-air balloon, 451
Huygens, Christian, 45, 68, 119, 390
hydrodynamic equation, 258
hyperbolic paraboloid, 80
hyperboloid, 381
hypocycloid, 119, 219, 374, 433

ideal gas law, 147
imaginary numbers, xix, 44–46
implicit function theorem, 203–215
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improper integrals
exhausting regions, 340
as limits, 340–341
as limits of iterated integrals, 341–342
one-variable, 339, 340
in plane, 339–340

incompressible fluid, 468
Indian mathematics, xvii–xviii
induced orientation, 440, 445, 469
inequality

Cauchy–Schwartz, 23–25, 61
mean value, 292
triangle, 26–27, 62, 126, 236

infinitesimal displacement, 231
inhomogeneouswave equation, 473
inner product, 3, 19–20, 21, 24–25, 60
integer, xxiii
integral

double, 271–283
Feynman, 223
Gaussian, 322–323
improper, 339–347
iterated, 267–269, 272–276, 286,

341–342
line, 358–375, 442–443
oriented, 366
path, 351–358
Riemann, 281
scalar functions over surfaces, 393
surface, 394–396, 400–401, 406–411
topological invariant, 421
triple, 294–305, 323–324

integral curves, 241, 242
integratability, 272
integration

double integral reduction, 267–269,
285–288

triple integral reduction, 295, 296
integration by parts, 159, 160
intersection, xxiv
inverse function theorem, 208–209
invertible matrices, 66
irrational number, xxiii
irrotational vector field, 251, 455, 457
isobar, 262
isoquant, 196
isotherms, 238
iterated integrals

Fubini’s theorem for, 342–344
improper integrals as limits of iterated

integrals, 341–342
properties of, 272–276
reduction of double integrals, 267–269,

285–288
iterated partial derivatives, 150–158

Jacobi, 35
Jacobian determinant, 209, 315–318, 323

Kelvin’s circulation theorem, 407
Kepler, Johannes, xx, 222
Kepler’s laws of celestial motion, xx, 153, 221
kernel, 214
knotted curve, 355

Lagrange, Joseph Louis, 35, 56
Lagrange multiplier method

constrained extrema and, 185–190
global maximum, 193–195
global minimum, 193–195
for several constraints, 191–193

Laplace, Pierre-Simon de, 35, 155
Laplace operator, 254
Laplace’s equation, 154, 155
law of cosines, 22, 61
law of planetary motion, 222
Lebesgue, Henri, 281
left-hand limit, 104
Leibniz, Gottfried Wilhelm, xx, xxi, 34,

45, 68, 167–168, 225–226, 266, 281,
419, 476

lemniscate, 327
length, vectors, 20, 21, 60
level contours, 78
level curves, 78–85
level sets, 78–85
level surface, 79, 138–139
L’Hôpital’s rule, 100
limits

boundaries, 90–91
concept of, 91–94
definition, 92, 93, 99
open sets and, 88–90
properties of, 94–95
in terms of ε’s and δ’s, 99–102
uniqueness of, 94

linear approximation, 108–109, 158,
164, 165

line integrals
definition, 359–363
differential forms, 360
dr notation, 371
of gradient field, 366–368
over curves, 368–371
reparametrization, 363–366
Stokes’ theorems, 442–443
work done by force fields, 358–359, 362

lines
dimensionality, 17
equations of, 12–17
parametrical expression, 12–17



Marsden-3620111 VC˙index September 26, 2011 10:2 539

Index 539

passing through endpoints of two
vectors, 14

point-direction form, 12
point–point form of parametric

equations, 15
segment description, 16

Lipschitz-continuous, 105
Listing, J. B., 402
local extrema, 168
local maximum

definition, 168
first derivative test, 169–171
second derivative test, 171–175
second-derivative test for two variables,

176–180
local minimum

definition, 168
first derivative test, 169–171
second-derivative test, 171–175
second-derivative test for two variables,

176–180

Maclaurin, 34
magnetic field, 472
mappings, functions and, 76–77
maps

from R2 to R2, 308–314
definition, xxiv
images of, 310
Jacobian determinant, 315–318
one-to-one, 310–311
onto, 311–313
parametrized surfaces as, 376–378

Marcellus, 389
mass

center of, 330–333
density, 337

mathematics, xiii
matrices

2 × 2 matrix, 31, 63
3 × 3 matrix, 31–32, 63
coefficients, 195n12
determinants, 31–35, 39–41, 66–67
general matrices, 63–66
Hessian, 175–176, 179, 197
invertible, 66
partial derivatives, 111, 130
properties of, 66–68
triple product, 36, 46, 67

Maupertuis, Pierre-Louis de, 166, 167, 168
Maupertuis’ principle, 166–168, 222
maximum

absolute, 180–182, 192, 193
global, 180–182, 193–195

Maxwell, James Clerk, 48, 49, 256, 258

Maxwell field equations, 243, 452, 471–474
Maxwell’s equations, 155
mean curvature, 415, 417
mean-value equality, 292–293
mean-value inequality, 292
mean-value theorem, 353
Menaechmus, xiv
The Method of Fuxions and Infinite Series

(Newton), 52
method of least squares, 214, 215n16
method of sections, 80–85
method of substitution, 318
Milky Way, 419
Milnor, John, 356
minimal surfaces, 423
minimum

absolute, 180–182, 192, 193
global, 180–182, 193–195
local, 168

mixed partial derivatives, 150–156
Möbius, A. F., 402
Möbius strip, 402
moment of a force, 51
moments of inertia, 333–334
momentum, 72
Muir, T., 35
multiplication, 3, 6, 44, 46, 65n5

negative, 3
negative-definite quadratic function, 173,

174, 175
negative pressure gradient, 262
neighborhood, 90, 91, 98, 113, 205
Newton, Sir Isaac, xxi–xxii, 46, 52, 222, 266,

335, 358, 413, 418, 419, 476
Newton’s law of gravitation, 141, 153, 168,

220, 238, 239, 243, 419
Newton’s mechanics, 222
Newton’s potential, 155, 158
Newton’s second law, 217–228, 240
nondegenerate critical point, 177, 179
nonsmooth graph, 105
norm of a vector, 60
normalized vectors, 21
notations, 76n1

octonians, 48n3
Oersted Hans Christian 372n6
one-dimensional wave equation, 155
one-to-one maps, 310–311
one-variable implicit function theorem, 203
On Floating Bodies (Archimedes), 333
On Growth and Form (D’Arcy), 418
On the Equilibrium and Centers of Mass of

Plane Figures (Archimedes), 333
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onto maps, xxiv, 311–313
open ball, 88
open disk, 88
open interval, xxiii
open sets, 88–90
opposite path, 363
Optics (Euclid), xv
orbit

circular, 220–222
geosynchronous, 222
halo, 226

order of integration, 289–294
ordinary differential equations, 154
orientation

graphs, 404
surfaces, 401–404
vector surface element of a sphere, 404

orientation-preserving parametrization,
403, 404

orientation-preserving reparametrization,
363, 364

orientation-reversing parametrization,
403, 404

orientation-reversing reparametrization,
363, 364

oriented integral, 366
oriented simple curve, 368
oriented surface, 401–402, 403
origin, 1
orthogonal projections, 25–26
orthogonal vectors, 24, 36
orthonormal, 58
orthonormal vectors, 24

paddle wheel, 445, 455
Pappus of Alexandria, 333
Pappus’ theorem, 392
paraboloid, 300, 302
paraboloid of revolution, 79
parallelepiped, 40–41
parallelogram

area of, 385
change of variables, 320
cross product calculation, 38
parametric description, 16, 17

parallelogram law, 69
parallel planes, 42–43
parametrized by arc length, 235
parametrized surface

definition, 377
as mappings, 376–378
regular surface, 378–379
tangent plane to, 379–381
tangent vectors, 378

parametrized surfaces

graph restrictions, 375–376
Stokes’ theorems, 444–445
surface integrals, 410–411

parametrization, 117, 309, 362, 368, 372,
378–381, 405

partial derivatives
described, 105–108
equality of mixed partials, 151–156
iterated partial, 150–158
matrix of, 111
mixed partial, 150

partial differential equations, 153–155
Pascal, Blaise, 119
path, 116–124

differentiation, 217–219
integration of secular functions over,

351–358
piecewise smooth, 229, 230

path-connected region, 305
path-independent integral, 453
path integral, 351–358
Peano, Giuseppe, 183
perpendicular vectors, 24
Philosophiae Naturalis Principia

Mathematica (Newton), 335
physical applications of vectors, 27–29
piecewise curve, 229
Pierce, J. M., 49
planar curves, 353–355
Planck, Max, 222, 225
planes

curvature, 415
dimensionality, 17
equations of, 41–43
parallel, 42–43
parametric description, 17
parametrization, 375, 376
path in, 117
three coordinate planes, 17

Plato, xiv–xv, xviii
Poincaré, 226
point to plane, distance from, 43–44
Poisson’s equation, 155, 475
polar coordinates, 52, 53, 131, 320–323
polarization identity, 69
Pope, Alexander, xxi
position vector, 371
positive-definite quadratic function, 173
positive orientation, 440
potential, 475
potential equation, 155
potential function, 455, 458, 475
potential temperature, 147
Poynting vector, 475
principal normal vector, 235
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Index 541

Principia (Newton), xxi, xxii
principle of least action, 167–168, 223,

225–226
“Principles of the Motions of Fluids”

(Euler), 155
product rule, 125
properties

continuous functions, 98
derivatives, 124–134
determinants, 32–35, 66–67
iterated integrals, 272–276
of limits, 94–95
triple integrals, 295–297

proper time of a path, 235
property of the unit element, 3
property of zero, 3
Ptolemaic model of planetary motion, 166
Ptolemaic theory, xv
Ptolemy of Alexandria, xv, xvi
Pythagorean theorem, 20

quadratic approximations, 158, 164, 165
quadratic equations, 44–45
quadratic functions, 172
quaternions, 46–48, 256
quotient rule, 125

radio waves, 471–474
range, xxiv
rational number, xxiii
real-valued functions

extrema, 166–185
geometry, 76–87

regular differentiable path, 219
regular partition, 271
regular surface, 378–379
relative extrema, 168, 188
relativistic triangle inequality, 236
remarkable theorems, 418
reparametrization, 363–366
restaurant plans, 412
Riemann, Bernhard, 45, 281, 399n11, 418,

420, 476
Riemann integral, 281
Riemann sum, 263–265, 269, 272, 278,

353, 385
right-hand limit, 104
right-hand rule, 37
Rodrigues, Olinde, 49
rotary vector field, 237

saddle, 80, 83
saddle point, 168, 170, 177
saddle-type critical point, 175, 176, 200
scalar curl, 252–253, 458

scalar field, 236
scalar multiplication, 3, 6, 42, 44
scalar multiplication rule, 218
scalar part, 47, 48
scalar quantity, 46
scalar-valued function, 76
Schwarz, 61n4
second-order Taylor formula, 159–160,

163, 164
sections, method of, 80–85
semimajor axis, 195
semiminor axis, 195
sets

bounded, 180
closed, 180
level, 78–85
open, 88–90

simple closed curve, 368, 369
simple curve, 368
simple regions, 283, 287
single-sheeted hyperboloid of revolution, 83
single-variable Taylor theorem, 158–160
sink, 468
slice method—Cavalieri’s principle, 266
smooth function, 193
smooth graph, 105
smooth path, 181
smooth surface, 378
Snell’s law, 51
soap bubble, 390–391, 417
soap film surfaces, 417, 423
solid ellipsoid, 347
solid of revolution, 270
solutions, existence of, 190–191
space, path in, 117
space analysis, 68
special implicit function theorem, 203–206
speed, 120, 220, 230
sphere, 411, 445
spherical coordinates

change of variables, 325–326
described, 54–58
divergence, 470–471
Stokes’ theorems, 448

standard basis vectors, 8–10, 60
steady flow, 237
Stokes’ theorems

conservative fields, 453, 455
curl as circulation per unit area,

445–448
differential forms, 488
for graphs, 439–443
parametrized surfaces, 444–445

streamlines, 241
strictly subharmonic relative, 213
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Stokes’ theorem
Faraday’s law, 449–450
reorientation applications, 449

strong maximum principle, 439
strong minimum principle, 439
subharmonic function, 439
subset, xxiii
sum, 2
sum, Riemann, 263–265, 269, 272, 278,

353, 385
sum rule, 125, 218
superharmonic function, 439
surface area

definition, 384–385
graph surface area, 387
surfaces of revolution, 387–389

surface integrals
independence of parametrization, 405
over graphs, 394–396, 409–410
physical interpretation, 406–411
scalar integral relationship, 405–406
summary of formulas, 410–411
of vector fields, 400–413

surfaces
curvature of, 414–417
described, 78–85
implicit function theorem and, 205–206
integral of 2-forms over, 481–482
integrals of scalar functions over, 393–400

symmetric elementary regions, 300

Tait, Peter Guthrie, 47, 48
tangent line to a path, 122–123
tangent plane, 110, 139, 379–381
tangent vectors, 120, 129, 378
target, xxiv
Tartaglia, Niccolo, xix, 44, 45, 333
Tartaglia–Cardano solution, 45
Taylor series, 164
Taylor’s theorem, 158–166, 173
temperature, 147, 154, 155, 375, 412
tetrahedron, 286, 287
Thales of Miletus, xiv
theorema egregium (remarkable

theorem), 418
theorems

change of variables, 314–328
Euler’s, 146
Fary–Milnor, 356
Fubini’s, 268, 271, 276–280, 342–344
fundamental theorem of algebra, 45
fundamental theorem of calculus, 159, 232,

280, 430–431, 476
fundamental theorem of integral

calculus, 276

Gauss,’ 461, 463–466, 488
Gauss–Bonnet, 420–422
general implicit function, 207–208
Green’s, 428–439
implicit function, 203–215
inverse function, 208–209
Kelvin’s circulation, 407
mean-value, 353
Pappus,’ 392
Pythagorean, 20
remarkable, 418
special implicit function, 203–205
Stokes,’ 250, 407
and surfaces, 205–206
Taylor’s, 158–166, 173

The Theory of Determinants in the Historical
Order of Development (Muir), 35

theory of mirrors, xv
thermodynamic path, 375
The Theodicy (Leibniz), 167
third-order Taylor formula, 163
Thomae, Karl J., 281
Thompson, D’Arcy, 418
three-body problem, 226
Tom Sawyer’s fence, 354
topological invariant, 421
torsion, 235
torus, 375, 391, 421, 476
total curvature, 355, 414
traces out, 117
trajectories, 26
transformations, xxiv
Treatise on Electricity and Magnetism

(Maxwell), 48, 256
triangle inequality, 26–27, 62, 126, 236
triple, 2, 3
triple integral

change of variables formula for, 323–324
definition, 294–295
over elementary regions, 298–302
properties, 295–297
reduction to integrated integrals, 295, 296

triple product, 36, 46, 67
twice continuously differentiable, 150

unbound regions, 345
unicellular organisms, 418
union, xxiii
unit ball, 298, 328
unit cube, 462
unit disk, 283, 284
unit speed, 235
unit sphere, 392, 403
unit tangent, 235
unit vectors, 21, 58
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Vandermonde, 35
van der Waals gas, 375
vector analysis, 68
Vector Analysis (Wilson), 49
vector fields

basic identities of vector analysis,
254–256

concept of, 236–238
conservative fields, 453–461
curl, 249–253
definition, 236
divergence, 245–248
flow lines, 241–242
general, 236
gradient, 140–141, 238–240
integral curves, 241, 242
integration of over paths, 358–375
Laplace operator, 254
rotary, 237
surface integrals, 400–413
types of, 236, 237

vector joining two points, 10–11
vector methods, geometry theorems by,

11–12
vector moment, 51
vector operations, geometry of, 4–8
vector part, 47, 48
vector product, 35, 44
vectors

addition, 2–4
bound, 6
definition, 4, 46
displacement, 27–29
force, 29

free, 6
length, 20, 21
normalized, 21
orthogonal, 24, 36
orthonormal, 24
perpendicular, 24
physical interpretation, 5
scalar multiplication, 3, 6, 42
subtraction, 7
unit, 21, 58
velocity, 28
zero, 29

vector standard basis, 8–10
vector-valued functions, 76, 217–262
velocity field V, 237
velocity vector, 28, 120, 122, 123, 129

Watson, James, 418
wave equation, 155
wedge product, 483
Weierstrass, 190–191
Wente, Henry, 417
Wessel, 46
Wiener, Norbert, 215n16
Wilson, E. B., 49, 257
Wimsey, Peter, 190
work, 30, 358–359, 362
Wren, Sir Christopher, xxi

Young’s modulus of elasticity, 348

zero element, 3
zero vector, 29
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DERIVATIVES

1.
dau

dx
= a

du

dx
19.

d arccos u

dx
= −1√

1 − u2

du

dx

2.
d(u + v)

dx
= du

dx
+ dv

dx
20.

d arctan u

dx
= 1

1 + u2

du

dx

3.
d(uv)

dx
= u

dv

dx
+ v

du

dx
21.

d arccot u

dx
= −1

1 + u2

du

dx

4.
d(u/v)

dx
= v(du/dx) − u(dv/dx)

v2
22.

d arcsec u

dx
= 1

u
√

u2 − 1

du

dx

5.
d(un)

dx
= nun−1 du

dx
23.

d arccsc u

dx
= −1√

u2 − 1

du

dx

6.
d(uv)

dx
= vuv−1 du

dx
+ uv(log u)

dv

dx
24.

d sinh u

dx
= cosh u

du

dx

7.
d(eu)

dx
= eu du

dx
25.

d cosh u

dx
= sinh u

du

dx

8.
d(eau)

dx
= aeau du

dx
26.

d tanh u

dx
= sech2 u

du

dx

9.
dau

dx
= au(log a)

du

dx
27.

d coth u

dx
= −(csch2u)

du

dx

10.
d(log u)

dx
= 1

u

du

dx
28.

d sech u

dx
= −(sech u)(tanh u)

du

dx

11.
d(loga u)

dx
= 1

u(log a)

du

dx
29.

d csch u

dx
= −(csch u)(coth u)

du

dx

12.
d sin u

dx
= cos u

du

dx
30.

d sinh−1 u

dx
= 1√

1 + u2

du

dx

13.
d cos u

dx
= − sin u

du

dx
31.

d cosh−1u

dx
= 1√

u2 − 1

du

dx

14.
d tan u

dx
= sec2 u

du

dx
32.

d tanh−1u

dx
= 1

1 − u2

du

dx

15.
d cot u

dx
= − csc2 u

du

dx
33.

d coth−1u

dx
= 1

u2 − 1

du

dx

16.
d sec u

dx
= tan u sec u

du

dx
34.

d sech−1u

dx
= −1

u
√

1 − u2

du

dx

17.
d csc u

dx
= −(cot u)(csc u)

du

dx
35.

d csch−1u

dx
= −1

|u|√1 + u2

du

dx

18.
d arcsin u

dx
= 1√

1 − u2

du

dx
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INTEGRALS (An arbitrary constant may be added to each integral.)

1.
∫

xn dx = 1

n + 1
xn+1 (n �= −1)

2.
∫

1

x
dx = log |x |

3.
∫

ex dx = ex

4.
∫

ax dx = ax

log a

5.
∫

sin x dx = − cos x

6.
∫

cos x dx = sin x

7.
∫

tan x dx = − log |cos x |

8.
∫

cot x dx = log |sin x |

9.
∫

sec x dx = log |sec x + tan x | = log

∣∣∣∣tan

(
1

2
x + 1

4
π

)∣∣∣∣
10.

∫
csc x dx = log |csc x − cot x | = log

∣∣∣∣tan
1

2
x

∣∣∣∣
11.

∫
arcsin

x

a
dx = x arcsin

x

a
+

√
a2 − x2 (a > 0)

12.
∫

arccos
x

a
dx = x arccos

x

a
−

√
a2 − x2 (a > 0)

13.
∫

arctan
x

a
dx = x arctan

x

a
− a

2
log(a2 + x2) (a > 0)

14.
∫

sin2 mx dx = 1

2m
(mx − sin mx cos mx)

15.
∫

cos2 mx dx = 1

2m
(mx + sin mx cos mx)

16.
∫

sec2 x dx = tan x

17.
∫

csc2 x dx = − cot x

18.
∫

sinn x dx = − sinn−1 x cos x

n
+ n − 1

n

∫
sinn−2 x dx

19.
∫

cosn x dx = cosn−1 x sin x

n
+ n − 1

n

∫
cosn−2 x dx

20.
∫

tann x dx = tann−1 x

n − 1
−

∫
tann−2 x dx (n �= 1)

21.
∫

cotn x dx = −cotn−1 x

n − 1
−

∫
cotn−2 x dx (n �= 1)

22.
∫

secn x dx = tan x secn−2 x

n − 1
+ n − 2

n − 1

∫
secn−2 x dx (n �= 1)

23.
∫

cscn x dx = −cot x cscn−2 x

n − 1
+ n − 2

n − 1

∫
cscn−2 x dx (n �= 1)

(Continued on next page)
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24.
∫

sinh x dx = cosh x

25.
∫

cosh x dx = sinh x

26.
∫

tanh x dx = log |cosh x |

27.
∫

coth x dx = log |sinh x |

28.
∫

sech x dx = arctan (sinh x)

29.
∫

csch x dx = log
∣∣∣tanh

x

2

∣∣∣ = −1

2
log

cosh x + 1

cosh x − 1

30.
∫

sinh2 x dx = 1

4
sinh 2x − 1

2
x

31.
∫

cosh2 x dx = 1

4
sinh 2x + 1

2
x

32.
∫

sech2 x dx = tanh x

33.
∫

sinh−1 x

a
dx = x sinh−1 x

a
−

√
x2 + a2 (a > 0)

34.
∫

cosh−1 x

a
dx =

⎧⎪⎪⎨
⎪⎪⎩

x cosh−1 x

a
−

√
x2 − a2

[
cosh−1

( x

a

)
> 0, a > 0

]

x cosh−1 x

a
+

√
x2 − a2

[
cosh−1

( x

a

)
< 0, a > 0

]

35.
∫

tanh−1 x

a
dx = x tanh−1 x

a
+ a

2
log

∣∣a2 − x2
∣∣

36.
∫

1√
a2 + x2

dx = log (x +
√

a2 + x2 = sinh−1 x

a
(a > 0)

37.
∫

1

a2 + x2
dx = 1

a
arctan

x

a
(a > 0)

38.
∫ √

a2 − x2 dx = x

2

√
a2 − x2 + a2

2
arcsin

x

a
(a > 0)

39.
∫

(a2 − x2)3/2 dx = x

8
(5a2 − 2x2)

√
a2 − x2 + 3a4

8
arcsin

x

a
(a > 0)

40.
∫

1√
a2 − x2

dx = arcsin
x

a
(a > 0)

41.
∫

1

a2 − x2
dx = 1

2a
log

∣∣∣∣a + x

a − x

∣∣∣∣
42.

∫
1

(a2 − x2)3/2
dx = x

a2
√

a2 − x2

43.
∫ √

x2 ± a2 dx = x

2

√
x2 ± a2 ± a2

2
log

∣∣x +
√

x2 ± a2
∣∣

44.
∫

1√
x2 − a2

dx = log
∣∣x +

√
x2 − a2

∣∣ = cosh−1 x

a
(a > 0)

45.
∫

1

x(a + bx)
dx = 1

a
log

∣∣∣∣ x

a + bx

∣∣∣∣
46.

∫
x
√

a + bx dx = 2(3bx − 2a)(a + bx)3/2

15b2

(Continued at the back of the book)
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47.
∫ √

a + bx

x
dx = 2

√
a + bx + a

∫
1

x
√

a + bx
dx

48.
∫

x√
a + bx

dx = 2(bx − 2a)
√

a + bx

3b2

49.
∫

1

x
√

a + bx
dx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
a

log

∣∣∣∣∣
√

a + bx − √
a√

a + bx + √
a

∣∣∣∣∣ (a > 0)

2√−a
arctan

∣∣∣∣∣
√

a + bx

−a

∣∣∣∣∣ (a < 0)

50.
∫ √

a2 − x2

x
dx =

√
a2 − x2 − a log

∣∣∣∣∣
a + √

a2 − x2

x

∣∣∣∣∣
51.

∫
x
√

a2 − x2 dx = −1

3
(a2 − x2)3/2

52.
∫

x2
√

a2 − x2 dx = x

8
(2x2 − a2)

√
a2 − x2 + a4

8
arcsin

x

a
(a > 0)

53.
∫

1

x
√

a2 − x2
dx = −1

a
log

∣∣∣∣∣
a + √

a2 − x2

x

∣∣∣∣∣
54.

∫
x√

a2 − x2
dx = −

√
a2 − x2

55.
∫

x2

√
a2 − x2

dx = − x

2

√
a2 − x2 + a2

2
arcsin

x

a
(a > 0)

56.
∫ √

x2 + a2

x
dx =

√
x2 + a2 − a log

∣∣∣∣∣
a + √

x2 + a2

x

∣∣∣∣∣
57.

∫ √
x2 − a2

x
dx =

√
x2 − a2 − a arccos

a

|x | (a > 0)

58.
∫

x2

√
x2 + a2

dx = x
√

x2 + a2

2
− a2

2
log

(
x +

√
x2 + a2

)

59.
∫

1

x
√

x2 + a2
dx = 1

a
log

∣∣∣∣ x

a + √
x2 + a2

∣∣∣∣
60.

∫
1

x
√

x2 − a2
dx = 1

a
arccos

a

|x | (a > 0)

61.
∫

1

x2
√

x2 ± a2
dx = ∓

√
x2 ± a2

a2x

62.
∫

1√
x2 ± a2

dx = ln

∣∣∣∣1

a

√
x2 ± a2 + x

a

∣∣∣∣

63.
∫

1

ax2 + bx + c
dx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
b2 − 4ac

log

∣∣∣∣∣
2ax + b − √

b2 − 4ac

2ax + b + √
b2 − 4ac

∣∣∣∣∣ (b2 > 4ac)

2√
4ac − b2

arctan
2ax + b√
4ac − b2

(b2 < 4ac)

64.
∫

x

ax2 + bx + c
dx = 1

2a
log |ax2 + bx + c| − b

2a

∫
1

ax2 + bx + c
dx

65.
∫

1√
ax2 + bx + c

dx =

⎧⎪⎪⎨
⎪⎪⎩

1√
a

log
∣∣2ax + b + 2

√
a
√

ax2 + bx + c
∣∣ (a > 0)

1√−a
arcsin

−2ax − b√
b2 − 4ac

(a < 0)
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66.
∫ √

ax2 + bx + c dx = 2ax + b

4a

√
ax2 + bx + c + 4ac − b2

8a

∫
1√

ax2 + b + c
dx

67.
∫

x√
ax2 + bx + c

dx =
√

ax2 + bx + c

a
− b

2a

∫
1√

ax2 + bx + c
dx

68.
∫

1

x
√

ax2 + bx + c
dx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1√
c

log

∣∣∣∣∣
2
√

c
√

ax2 + bx + c + bx + 2c

x

∣∣∣∣∣ (c > 0)

1√−c
arcsin

bx + 2c

|x |√b2 − 4ac
(c < 0)

69.
∫

x3
√

x2 + a2dx =
(

1

5
x2 − 2

15
a2

) √
(a2 + x2)3

70.
∫ √

x2 ± a2

x4
dx = ∓√

(x2 ± a2)3

3a2x3

71.
∫

sin ax sin bx dx = sin (a − b)x

2(a − b)
− sin (a + b)x

2(a + b)
(a2 �= b2)

72.
∫

sin ax cos bx dx = −cos (a − b)x

2(a − b)
− cos (a + b)x

2(a + b)
(a2 �= b2)

73.
∫

cos ax cos bx dx = sin (a − b)x

2(a − b)
+ sin (a + b)x

2(a + b)
(a2 �= b2)

74.
∫

sec x tan x dx = sec x

75.
∫

csc x cot x dx = − csc x

76.
∫

cosm x sinn x dx = cosm−1 x sinn+1 x

m + n
+ m − 1

m + n

∫
cosm−2 x sinn x dx

= − sinn−1 x cosm+1 x

m + n
+ n − 1

m + n

∫
cosm x sinn−2 x dx

77.
∫

xn sin ax dx = −1

a
xn cos ax + n

a

∫
xn−1 cos ax dx

78.
∫

xn cos ax dx = 1

a
xn sin ax − n

a

∫
xn−1 sin ax dx

79.
∫

xneax dx = xneax

a
− n

a

∫
xn−1eax dx

80.
∫

xn log ax dx = xn+1

[
log ax

n + 1
− 1

(n + 1)2

]

81.
∫

xn(log ax)mdx = xn+1

n + 1
(log ax)m − m

n + 1

∫
xn(log ax)m−1 dx

82.
∫

eax sin bx dx = eax (a sin bx − b cos bx)

a2 + b2

83.
∫

eax cos bx dx = eax (b sin bx + a cos bx)

a2 + b2

84.
∫

sech x tanh x dx = −sech x

85.
∫

csch x coth x dx = −csch x
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SYMBOLS INDEX
SYMBOLS ARE LISTED IN ORDER OF THEIR APPEARANCE IN THE TEXT

SYMBOL NAME

R real numbers
[a, b] closed interval {x | a ≤ x ≤ b}
(a, b) open interval {x | a < x < b}
[a, b) half-open interval {x | a ≤ x < b}
(a, b] half-open interval {x | a < x ≤ b}
|a| absolute value of a
Q rational numbers
Rn n-dimensional space
i, j, k standard basis in R3

||a|| norm of a vector a
a · b inner product of the vectors a and b
a × b cross product of the vectors a and b
(r , θ , z) cylindrical coordinates
(ρ, θ , φ) spherical coordinates
Dr (x0) disk of radius rabout x0

lim
x→x0

limit as x approaches x0

lim
x→b−

left-hand limit; x → b from below
∂ f

∂x
partial derivative of f with respect to x

D f (x0) derivative of f at the point x0

∇ f grad f , gradient of the function f

C1 continuously differentiable
c a path
C2 twice continuously differentiable
H f (x0) Hessian of f at the point x0

∇ del or nabla
∇ · F div F, divergence of F
∇ × F curl F, curl of F
∇2 Laplacian∫∫

D
f dA =

∫∫
D

f (x , y) dx dy double integral∫∫∫
W

f dV =
∫∫∫

W
f (x , y, z) dx dy dz triple integral

J = ∂(x , y)

∂(u, v)
Jacobian

cop opposite path∫
C

f ds path integral
∫

C
F · ds line integral

∫∫
S

f d S scalar surface integral
∫∫

S
F · dS =

∫∫
S

F · n d S vector surface integral
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